AIDA-2020 - Advanced European Infrastructures for Detectors at Accelerators

Link to this page

info:eu-repo/grantAgreement/EC/H2020/654168/EU//

AIDA-2020 - Advanced European Infrastructures for Detectors at Accelerators (en)
Authors

Publications

Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam

Abramowicz, H; Abusleme, A; Afanaciev, K; Benhammou, Y; Borysov, O; Borysova, M; Božović-Jelisavčić, Ivanka; Daniluk, W; Dannheim, D; Demichev, M; Elsener, K; Firlej, M; Firu, E; Fiutowski, T; Ghenescu, V; Gostkin, M; Hempel, M; Henschel, H; Idzik, M; Ignatenko, A; Ishikawa, A; Joffe, A; Kačarević, Goran; Kananov, S; Karacheban, O; Klempt, W; Kotov, S; Kotula, J; Kruchonak, U; Kulis, Sz.; Lange, W; Leonard, J; Lesiak, T; Levy, A.; Levy, I; Linssen, L; Lohmann, W; Moron, J; Moszczynski, A; Neagu, A T; Pawlik, B; Preda, T; Sailer, A; Schumm, B; Schuwalow, S; Sicking, E; Swientek, K; Turbiarz, B; Vukašinović, Nataša; Wojton, T; Yamamoto, H; Zawiejski, L; Zgura, I S; Zhemchugov, A

(2019)

TY  - JOUR
AU  - Abramowicz, H
AU  - Abusleme, A
AU  - Afanaciev, K
AU  - Benhammou, Y
AU  - Borysov, O
AU  - Borysova, M
AU  - Božović-Jelisavčić, Ivanka
AU  - Daniluk, W
AU  - Dannheim, D
AU  - Demichev, M
AU  - Elsener, K
AU  - Firlej, M
AU  - Firu, E
AU  - Fiutowski, T
AU  - Ghenescu, V
AU  - Gostkin, M
AU  - Hempel, M
AU  - Henschel, H
AU  - Idzik, M
AU  - Ignatenko, A
AU  - Ishikawa, A
AU  - Joffe, A
AU  - Kačarević, Goran
AU  - Kananov, S
AU  - Karacheban, O
AU  - Klempt, W
AU  - Kotov, S
AU  - Kotula, J
AU  - Kruchonak, U
AU  - Kulis, Sz.
AU  - Lange, W
AU  - Leonard, J
AU  - Lesiak, T
AU  - Levy, A.
AU  - Levy, I
AU  - Linssen, L
AU  - Lohmann, W
AU  - Moron, J
AU  - Moszczynski, A
AU  - Neagu, A T
AU  - Pawlik, B
AU  - Preda, T
AU  - Sailer, A
AU  - Schumm, B
AU  - Schuwalow, S
AU  - Sicking, E
AU  - Swientek, K
AU  - Turbiarz, B
AU  - Vukašinović, Nataša
AU  - Wojton, T
AU  - Yamamoto, H
AU  - Zawiejski, L
AU  - Zgura, I S
AU  - Zhemchugov, A
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8388
AB  - A new design of a detector plane of sub-millimetre thickness for an electromagnetic sampling calorimeter is presented. It is intended to be used in the luminometers LumiCal and BeamCal in future linear e+e- collider experiments. The detector planes were produced utilising novel connectivity scheme technologies. They were installed in a compact prototype of the calorimeter and tested at DESY with an electron beam of energy 1–5 GeV. The performance of a prototype of a compact LumiCal comprising eight detector planes was studied. The effective Molière radius at 5 GeV was determined to be (8.1 ± 0.1 (stat) ± 0.3 (syst)) mm, a value well reproduced by the Monte Carlo (MC) simulation (8.4 ± 0.1) mm. The dependence of the effective Molière radius on the electron energy in the range 1–5 GeV was also studied. Good agreement was obtained between data and MC simulation. © 2019, The Author(s).
T2  - The European Physical Journal C
T1  - Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam
VL  - 79
IS  - 7
SP  - 579
DO  - 10.1140/epjc/s10052-019-7077-9
ER  - 
@article{
author = "Abramowicz, H and Abusleme, A and Afanaciev, K and Benhammou, Y and Borysov, O and Borysova, M and Božović-Jelisavčić, Ivanka and Daniluk, W and Dannheim, D and Demichev, M and Elsener, K and Firlej, M and Firu, E and Fiutowski, T and Ghenescu, V and Gostkin, M and Hempel, M and Henschel, H and Idzik, M and Ignatenko, A and Ishikawa, A and Joffe, A and Kačarević, Goran and Kananov, S and Karacheban, O and Klempt, W and Kotov, S and Kotula, J and Kruchonak, U and Kulis, Sz. and Lange, W and Leonard, J and Lesiak, T and Levy, A. and Levy, I and Linssen, L and Lohmann, W and Moron, J and Moszczynski, A and Neagu, A T and Pawlik, B and Preda, T and Sailer, A and Schumm, B and Schuwalow, S and Sicking, E and Swientek, K and Turbiarz, B and Vukašinović, Nataša and Wojton, T and Yamamoto, H and Zawiejski, L and Zgura, I S and Zhemchugov, A",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8388",
abstract = "A new design of a detector plane of sub-millimetre thickness for an electromagnetic sampling calorimeter is presented. It is intended to be used in the luminometers LumiCal and BeamCal in future linear e+e- collider experiments. The detector planes were produced utilising novel connectivity scheme technologies. They were installed in a compact prototype of the calorimeter and tested at DESY with an electron beam of energy 1–5 GeV. The performance of a prototype of a compact LumiCal comprising eight detector planes was studied. The effective Molière radius at 5 GeV was determined to be (8.1 ± 0.1 (stat) ± 0.3 (syst)) mm, a value well reproduced by the Monte Carlo (MC) simulation (8.4 ± 0.1) mm. The dependence of the effective Molière radius on the electron energy in the range 1–5 GeV was also studied. Good agreement was obtained between data and MC simulation. © 2019, The Author(s).",
journal = "The European Physical Journal C",
title = "Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam",
volume = "79",
number = "7",
pages = "579",
doi = "10.1140/epjc/s10052-019-7077-9"
}
Abramowicz, H., Abusleme, A., Afanaciev, K., Benhammou, Y., Borysov, O., Borysova, M., Božović-Jelisavčić, I., Daniluk, W., Dannheim, D., Demichev, M., Elsener, K., Firlej, M., Firu, E., Fiutowski, T., Ghenescu, V., Gostkin, M., Hempel, M., Henschel, H., Idzik, M., Ignatenko, A., Ishikawa, A., Joffe, A., Kačarević, G., Kananov, S., Karacheban, O., Klempt, W., Kotov, S., Kotula, J., Kruchonak, U., Kulis, Sz., Lange, W., Leonard, J., Lesiak, T., Levy, A., Levy, I., Linssen, L., Lohmann, W., Moron, J., Moszczynski, A., Neagu, A. T., Pawlik, B., Preda, T., Sailer, A., Schumm, B., Schuwalow, S., Sicking, E., Swientek, K., Turbiarz, B., Vukašinović, N., Wojton, T., Yamamoto, H., Zawiejski, L., Zgura, I. S.,& Zhemchugov, A. (2019). Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam.
The European Physical Journal C, 79(7), 579.
https://doi.org/10.1140/epjc/s10052-019-7077-9
Abramowicz H, Abusleme A, Afanaciev K, Benhammou Y, Borysov O, Borysova M, Božović-Jelisavčić I, Daniluk W, Dannheim D, Demichev M, Elsener K, Firlej M, Firu E, Fiutowski T, Ghenescu V, Gostkin M, Hempel M, Henschel H, Idzik M, Ignatenko A, Ishikawa A, Joffe A, Kačarević G, Kananov S, Karacheban O, Klempt W, Kotov S, Kotula J, Kruchonak U, Kulis S, Lange W, Leonard J, Lesiak T, Levy A, Levy I, Linssen L, Lohmann W, Moron J, Moszczynski A, Neagu AT, Pawlik B, Preda T, Sailer A, Schumm B, Schuwalow S, Sicking E, Swientek K, Turbiarz B, Vukašinović N, Wojton T, Yamamoto H, Zawiejski L, Zgura IS, Zhemchugov A. Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam. The European Physical Journal C. 2019;79(7):579
Abramowicz H, Abusleme A, Afanaciev K, Benhammou Y, Borysov O, Borysova M, Božović-Jelisavčić Ivanka, Daniluk W, Dannheim D, Demichev M, Elsener K, Firlej M, Firu E, Fiutowski T, Ghenescu V, Gostkin M, Hempel M, Henschel H, Idzik M, Ignatenko A, Ishikawa A, Joffe A, Kačarević Goran, Kananov S, Karacheban O, Klempt W, Kotov S, Kotula J, Kruchonak U, Kulis Sz., Lange W, Leonard J, Lesiak T, Levy A., Levy I, Linssen L, Lohmann W, Moron J, Moszczynski A, Neagu A T, Pawlik B, Preda T, Sailer A, Schumm B, Schuwalow S, Sicking E, Swientek K, Turbiarz B, Vukašinović Nataša, Wojton T, Yamamoto H, Zawiejski L, Zgura I S, Zhemchugov A, "Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam" The European Physical Journal C, 79, no. 7 (2019):579,
https://doi.org/10.1140/epjc/s10052-019-7077-9 .
1
2
2
4

Raman mapping of 4‐MeV C and Si channeling implantation of 6H‐SiC

Flessa, Aikaterini; Ntemou, Eleni; Kokkoris, Michael; Liarokapis, Efthymios; Gloginjić, Marko; Petrović, Srđan M.; Erich, Marko; Fazinić, Stjepko; Karlušić, Marko; Tomić, Kristina

(2019)

TY  - JOUR
AU  - Flessa, Aikaterini
AU  - Ntemou, Eleni
AU  - Kokkoris, Michael
AU  - Liarokapis, Efthymios
AU  - Gloginjić, Marko
AU  - Petrović, Srđan M.
AU  - Erich, Marko
AU  - Fazinić, Stjepko
AU  - Karlušić, Marko
AU  - Tomić, Kristina
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8439
AB  - A 6H-SiC single crystal implanted in channeling mode by 4-MeV C+3 and Si+3 ions at various doping levels has been examined by scanning electron microscopy (SEM) and micro-Raman spectroscopy in order to study the lattice distortions inflicted by the impinging ions. C ions create zones of strongly damaged regions, parallel to the front face of the wafer with width increasing with the amount of doping. As expected, Si has induced considerably more lattice distortions than C, and more than one order of magnitude less doping induces apparently the same effect as C. Despite the large laser spot size compared with the boundaries of the distorted regions, micro-Raman data provided results agreeing with the SEM pictures and the Monte Carlo calculations using the SRIM-2013 software. From the evolution of the crystalline peaks in the Raman spectra obtained across the damaged area, one can conclude that the impinging ions do not accommodate as defects in the lattice but mostly displace the ions breaking the bonds and destroying the long range order. The spatial correlation model that takes into consideration the intensity variation at the laser spot and the anticipated from Monte Carlo calculations for the collision events can reproduce the trend of the strong transversal optical phonon width indicating nanocrystallites of a few nanometers size in the most damaged area. © 2019 John Wiley & Sons, Ltd.
T2  - Journal of Raman Spectroscopy
T1  - Raman mapping of 4‐MeV C and Si channeling implantation of 6H‐SiC
VL  - 50
IS  - 8
SP  - 1186
EP  - 1196
DO  - 10.1002/jrs.5629
ER  - 
@article{
author = "Flessa, Aikaterini and Ntemou, Eleni and Kokkoris, Michael and Liarokapis, Efthymios and Gloginjić, Marko and Petrović, Srđan M. and Erich, Marko and Fazinić, Stjepko and Karlušić, Marko and Tomić, Kristina",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8439",
abstract = "A 6H-SiC single crystal implanted in channeling mode by 4-MeV C+3 and Si+3 ions at various doping levels has been examined by scanning electron microscopy (SEM) and micro-Raman spectroscopy in order to study the lattice distortions inflicted by the impinging ions. C ions create zones of strongly damaged regions, parallel to the front face of the wafer with width increasing with the amount of doping. As expected, Si has induced considerably more lattice distortions than C, and more than one order of magnitude less doping induces apparently the same effect as C. Despite the large laser spot size compared with the boundaries of the distorted regions, micro-Raman data provided results agreeing with the SEM pictures and the Monte Carlo calculations using the SRIM-2013 software. From the evolution of the crystalline peaks in the Raman spectra obtained across the damaged area, one can conclude that the impinging ions do not accommodate as defects in the lattice but mostly displace the ions breaking the bonds and destroying the long range order. The spatial correlation model that takes into consideration the intensity variation at the laser spot and the anticipated from Monte Carlo calculations for the collision events can reproduce the trend of the strong transversal optical phonon width indicating nanocrystallites of a few nanometers size in the most damaged area. © 2019 John Wiley & Sons, Ltd.",
journal = "Journal of Raman Spectroscopy",
title = "Raman mapping of 4‐MeV C and Si channeling implantation of 6H‐SiC",
volume = "50",
number = "8",
pages = "1186-1196",
doi = "10.1002/jrs.5629"
}
Flessa, A., Ntemou, E., Kokkoris, M., Liarokapis, E., Gloginjić, M., Petrović, S. M., Erich, M., Fazinić, S., Karlušić, M.,& Tomić, K. (2019). Raman mapping of 4‐MeV C and Si channeling implantation of 6H‐SiC.
Journal of Raman Spectroscopy, 50(8), 1186-1196.
https://doi.org/10.1002/jrs.5629
Flessa A, Ntemou E, Kokkoris M, Liarokapis E, Gloginjić M, Petrović SM, Erich M, Fazinić S, Karlušić M, Tomić K. Raman mapping of 4‐MeV C and Si channeling implantation of 6H‐SiC. Journal of Raman Spectroscopy. 2019;50(8):1186-1196
Flessa Aikaterini, Ntemou Eleni, Kokkoris Michael, Liarokapis Efthymios, Gloginjić Marko, Petrović Srđan M., Erich Marko, Fazinić Stjepko, Karlušić Marko, Tomić Kristina, "Raman mapping of 4‐MeV C and Si channeling implantation of 6H‐SiC" Journal of Raman Spectroscopy, 50, no. 8 (2019):1186-1196,
https://doi.org/10.1002/jrs.5629 .
2
2
2

Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization

(2018)

TY  - JOUR
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7586
AB  - This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the < 1 0 0 > oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering (12)c(p,p(0))C-12 at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the < 1 0 0 > diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.
T2  - Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms
T1  - Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization
VL  - 416
SP  - 89
EP  - 93
DO  - 10.1016/j.nimb.2017.12.001
ER  - 
@article{
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/7586",
abstract = "This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the < 1 0 0 > oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering (12)c(p,p(0))C-12 at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the < 1 0 0 > diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.",
journal = "Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms",
title = "Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization",
volume = "416",
pages = "89-93",
doi = "10.1016/j.nimb.2017.12.001"
}
 (2018). Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization.
Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 416, 89-93.
https://doi.org/10.1016/j.nimb.2017.12.001
 Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. 2018;416:89-93
, "Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization" Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 416 (2018):89-93,
https://doi.org/10.1016/j.nimb.2017.12.001 .
1
1
1

Higgs physics at the CLIC electron-positron linear collider

Abramowicz, H.; Božović-Jelisavčić, Ivanka; Kačarević, Goran; Lukić, Strahinja; Milutinović-Dumbelović, Gordana; Pandurović, Mila

(2017)

TY  - JOUR
AU  - Abramowicz, H.
AU  - Božović-Jelisavčić, Ivanka
AU  - Kačarević, Goran
AU  - Lukić, Strahinja
AU  - Milutinović-Dumbelović, Gordana
AU  - Pandurović, Mila
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1647
AB  - The Compact Linear Collider (CLIC) is an option for a future e(+) e(-) collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: root s = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e(+) e(-) - GT ZH) and WW-fusion (e(+) e(-) - GT H nu(e) (nu) over bar (e)), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma(H), and model-independent determinations of the Higgs couplings. Operation at root s GT 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e(+) e(-) - GT t (t) over barH and e(+) e(-) - GT HH nu(e) (nu) over bar (e) allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
T2  - European Physical Journal C. Particles and Fields
T1  - Higgs physics at the CLIC electron-positron linear collider
VL  - 77
IS  - 7
DO  - 10.1140/epjc/s10052-017-4968-5
ER  - 
@article{
author = "Abramowicz, H. and Božović-Jelisavčić, Ivanka and Kačarević, Goran and Lukić, Strahinja and Milutinović-Dumbelović, Gordana and Pandurović, Mila",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1647",
abstract = "The Compact Linear Collider (CLIC) is an option for a future e(+) e(-) collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: root s = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e(+) e(-) - GT ZH) and WW-fusion (e(+) e(-) - GT H nu(e) (nu) over bar (e)), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma(H), and model-independent determinations of the Higgs couplings. Operation at root s GT 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e(+) e(-) - GT t (t) over barH and e(+) e(-) - GT HH nu(e) (nu) over bar (e) allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.",
journal = "European Physical Journal C. Particles and Fields",
title = "Higgs physics at the CLIC electron-positron linear collider",
volume = "77",
number = "7",
doi = "10.1140/epjc/s10052-017-4968-5"
}
Abramowicz, H., Božović-Jelisavčić, I., Kačarević, G., Lukić, S., Milutinović-Dumbelović, G.,& Pandurović, M. (2017). Higgs physics at the CLIC electron-positron linear collider.
European Physical Journal C. Particles and Fields, 77(7).
https://doi.org/10.1140/epjc/s10052-017-4968-5
Abramowicz H, Božović-Jelisavčić I, Kačarević G, Lukić S, Milutinović-Dumbelović G, Pandurović M. Higgs physics at the CLIC electron-positron linear collider. European Physical Journal C. Particles and Fields. 2017;77(7)
Abramowicz H., Božović-Jelisavčić Ivanka, Kačarević Goran, Lukić Strahinja, Milutinović-Dumbelović Gordana, Pandurović Mila, "Higgs physics at the CLIC electron-positron linear collider" European Physical Journal C. Particles and Fields, 77, no. 7 (2017),
https://doi.org/10.1140/epjc/s10052-017-4968-5 .
8
65
61
73