Ministry of Education, Science and Technological Development of the Republic of Serbia.

Link to this page

Ministry of Education, Science and Technological Development of the Republic of Serbia.

Authors

Publications

Photoluminescence of Y3NbO7:Eu3+ powders

Đačanin Far, Ljubica; Ćirić, Aleksandar; Ristić, Zoran; Periša, Jovana; Dramićanin, Tatjana; Lukić-Petrović, Svetlana R.; Dramićanin, Miroslav

(2022)

TY  - JOUR
AU  - Đačanin Far, Ljubica
AU  - Ćirić, Aleksandar
AU  - Ristić, Zoran
AU  - Periša, Jovana
AU  - Dramićanin, Tatjana
AU  - Lukić-Petrović, Svetlana R.
AU  - Dramićanin, Miroslav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10342
AB  - Y3NbO7:xEu3+ powders (x = 0.25, 0.5, 0.75, 2, 3, 5, 10 at%) were synthesized by a two-step vibrational milling, alternating with annealing. All the samples crystallize as fluorite-type structure (space group Fm3‾m), with crystallite size 50–60 nm and show a strong orange/red luminescence with an excited state lifetime around 1.2 ms. Photoluminescence excitation and emission spectra show rapid intensity decline after 3 at% of Eu3+ content, indicating this concentration as critical for the concentration quenching, and we predicted multipolar interaction as the dominant mechanism behind it. Judd–Ofelt intensity parameters (Ω2 = 0.941∙10−20 cm2, Ω4 = 0.277∙10−20 cm2, Ω6 = 0.277∙10−20 cm2) were obtained from the excitation spectrum of Y3NbO7:3 at%Eu3+. The emission of this luminescent powder is characterized by radiative and nonradiative lifetimes of 2.3 ms and 2.4 ms, respectively, and an intrinsic quantum yield of 51.5%.
T2  - Ceramics International
T1  - Photoluminescence of Y3NbO7:Eu3+ powders
DO  - 10.1016/j.ceramint.2022.06.130
ER  - 
@article{
author = "Đačanin Far, Ljubica and Ćirić, Aleksandar and Ristić, Zoran and Periša, Jovana and Dramićanin, Tatjana and Lukić-Petrović, Svetlana R. and Dramićanin, Miroslav",
year = "2022",
abstract = "Y3NbO7:xEu3+ powders (x = 0.25, 0.5, 0.75, 2, 3, 5, 10 at%) were synthesized by a two-step vibrational milling, alternating with annealing. All the samples crystallize as fluorite-type structure (space group Fm3‾m), with crystallite size 50–60 nm and show a strong orange/red luminescence with an excited state lifetime around 1.2 ms. Photoluminescence excitation and emission spectra show rapid intensity decline after 3 at% of Eu3+ content, indicating this concentration as critical for the concentration quenching, and we predicted multipolar interaction as the dominant mechanism behind it. Judd–Ofelt intensity parameters (Ω2 = 0.941∙10−20 cm2, Ω4 = 0.277∙10−20 cm2, Ω6 = 0.277∙10−20 cm2) were obtained from the excitation spectrum of Y3NbO7:3 at%Eu3+. The emission of this luminescent powder is characterized by radiative and nonradiative lifetimes of 2.3 ms and 2.4 ms, respectively, and an intrinsic quantum yield of 51.5%.",
journal = "Ceramics International",
title = "Photoluminescence of Y3NbO7:Eu3+ powders",
doi = "10.1016/j.ceramint.2022.06.130"
}
Đačanin Far, L., Ćirić, A., Ristić, Z., Periša, J., Dramićanin, T., Lukić-Petrović, S. R.,& Dramićanin, M.. (2022). Photoluminescence of Y3NbO7:Eu3+ powders. in Ceramics International.
https://doi.org/10.1016/j.ceramint.2022.06.130
Đačanin Far L, Ćirić A, Ristić Z, Periša J, Dramićanin T, Lukić-Petrović SR, Dramićanin M. Photoluminescence of Y3NbO7:Eu3+ powders. in Ceramics International. 2022;.
doi:10.1016/j.ceramint.2022.06.130 .
Đačanin Far, Ljubica, Ćirić, Aleksandar, Ristić, Zoran, Periša, Jovana, Dramićanin, Tatjana, Lukić-Petrović, Svetlana R., Dramićanin, Miroslav, "Photoluminescence of Y3NbO7:Eu3+ powders" in Ceramics International (2022),
https://doi.org/10.1016/j.ceramint.2022.06.130 . .
7
4