European Regional Development Fund [ITMS2014+: 313011W085]

Link to this page

European Regional Development Fund [ITMS2014+: 313011W085]

Authors

Publications

Formation of Au-Ag alloy nanoparticles in amorphous silicon using sequential ion implantation

Novaković, Mirjana M.; Popović, Maja; Noga, Pavol; Vaňa, Dušan; Rakočević, Zlatko Lj.

(2020)

TY  - JOUR
AU  - Novaković, Mirjana M.
AU  - Popović, Maja
AU  - Noga, Pavol
AU  - Vaňa, Dušan
AU  - Rakočević, Zlatko Lj.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8929
AB  - Au-Ag alloy nanoparticles were formed into amorphous silicon by sequential ion implantation of Au and Ag. Monocrystalline Si was amorphized at the initial moment of implantation with 1 × 1016 ions/cm2 gold ions, and then different silver fluences were applied in the range of 1 × 1016–1 × 1017 ions/cm2. After implantations the samples were investigated by means of Rutherford backscattering spectrometry and transmission electron microscopy. The nanoparticles were found to be formed at surface and sub-surface regions of the Si substrate, at depths corresponding to the maximum distribution of Au and Ag ions. The particles are crystalline in nature with sizes from 2 nm to 30 nm in diameter, increasing with silver ion fluence. Although the lattice constants of gold and silver are too close to be distinguished by measuring the characteristic interplanar spacings, imaging in scanning transmission mode confirms the formation of Au-Ag bimetallic nanoparticles, presenting a solid-solution alloy of gold and silver.
T2  - Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
T1  - Formation of Au-Ag alloy nanoparticles in amorphous silicon using sequential ion implantation
VL  - 471
SP  - 33
EP  - 41
DO  - 10.1016/j.nimb.2020.03.021
ER  - 
@article{
author = "Novaković, Mirjana M. and Popović, Maja and Noga, Pavol and Vaňa, Dušan and Rakočević, Zlatko Lj.",
year = "2020",
abstract = "Au-Ag alloy nanoparticles were formed into amorphous silicon by sequential ion implantation of Au and Ag. Monocrystalline Si was amorphized at the initial moment of implantation with 1 × 1016 ions/cm2 gold ions, and then different silver fluences were applied in the range of 1 × 1016–1 × 1017 ions/cm2. After implantations the samples were investigated by means of Rutherford backscattering spectrometry and transmission electron microscopy. The nanoparticles were found to be formed at surface and sub-surface regions of the Si substrate, at depths corresponding to the maximum distribution of Au and Ag ions. The particles are crystalline in nature with sizes from 2 nm to 30 nm in diameter, increasing with silver ion fluence. Although the lattice constants of gold and silver are too close to be distinguished by measuring the characteristic interplanar spacings, imaging in scanning transmission mode confirms the formation of Au-Ag bimetallic nanoparticles, presenting a solid-solution alloy of gold and silver.",
journal = "Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms",
title = "Formation of Au-Ag alloy nanoparticles in amorphous silicon using sequential ion implantation",
volume = "471",
pages = "33-41",
doi = "10.1016/j.nimb.2020.03.021"
}
Novaković, M. M., Popović, M., Noga, P., Vaňa, D.,& Rakočević, Z. Lj.. (2020). Formation of Au-Ag alloy nanoparticles in amorphous silicon using sequential ion implantation. in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 471, 33-41.
https://doi.org/10.1016/j.nimb.2020.03.021
Novaković MM, Popović M, Noga P, Vaňa D, Rakočević ZL. Formation of Au-Ag alloy nanoparticles in amorphous silicon using sequential ion implantation. in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2020;471:33-41.
doi:10.1016/j.nimb.2020.03.021 .
Novaković, Mirjana M., Popović, Maja, Noga, Pavol, Vaňa, Dušan, Rakočević, Zlatko Lj., "Formation of Au-Ag alloy nanoparticles in amorphous silicon using sequential ion implantation" in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 471 (2020):33-41,
https://doi.org/10.1016/j.nimb.2020.03.021 . .
7
2
6