Australian Research Council [ARC DP170100967]

Link to this page

Australian Research Council [ARC DP170100967]

Authors

Publications

Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA

Sakata, Dousatsu; Belov, Oleg; Bordage, Marie-Claude; Emfietzoglou, Dimitris; Guatelli, Susanna; Inaniwa, Taku; Ivanchenko, Vladimir; Karamitros, Mathieu; Kyriakou, Ioanna; Lampe, Nathanael; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Shin, Wook-Geun; Incerti, Sebastien

(2020)

TY  - JOUR
AU  - Sakata, Dousatsu
AU  - Belov, Oleg
AU  - Bordage, Marie-Claude
AU  - Emfietzoglou, Dimitris
AU  - Guatelli, Susanna
AU  - Inaniwa, Taku
AU  - Ivanchenko, Vladimir
AU  - Karamitros, Mathieu
AU  - Kyriakou, Ioanna
AU  - Lampe, Nathanael
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Shin, Wook-Geun
AU  - Incerti, Sebastien
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9751
AB  - Ionising radiation induced DNA damage and subsequent biological responses to it depend on the radiation's track-structure and its energy loss distribution pattern. To investigate the underlying biological mechanisms involved in such complex system, there is need of predicting biological response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, in this work, we have developed an application using the open source Geant4-DNA toolkit to propose a realistic "fully integrated" MC simulation to calculate both early DNA damage and subsequent biological responses with time. We had previously developed an application allowing simulations of radiation induced early DNA damage on a naked cell nucleus model. In the new version presented in this work, we have developed three additional important features: (1) modeling of a realistic cell geometry, (2) inclusion of a biological repair model, (3) refinement of DNA damage parameters for direct damage and indirect damage scoring. The simulation results are validated with experimental data in terms of Single Strand Break (SSB) yields for plasmid and Double Strand Break (DSB) yields for plasmid/human cell. In addition, the yields of indirect DSBs are compatible with the experimental scavengeable damage fraction. The simulation application also demonstrates agreement with experimental data of gamma -H2AX yields for gamma ray irradiation. Using this application, it is now possible to predict biological response along time through track-structure MC simulations.
T2  - Scientific Reports
T1  - Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA
VL  - 10
IS  - 1
SP  - 20788
DO  - 10.1038/s41598-020-75982-x
ER  - 
@article{
author = "Sakata, Dousatsu and Belov, Oleg and Bordage, Marie-Claude and Emfietzoglou, Dimitris and Guatelli, Susanna and Inaniwa, Taku and Ivanchenko, Vladimir and Karamitros, Mathieu and Kyriakou, Ioanna and Lampe, Nathanael and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Shin, Wook-Geun and Incerti, Sebastien",
year = "2020",
abstract = "Ionising radiation induced DNA damage and subsequent biological responses to it depend on the radiation's track-structure and its energy loss distribution pattern. To investigate the underlying biological mechanisms involved in such complex system, there is need of predicting biological response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, in this work, we have developed an application using the open source Geant4-DNA toolkit to propose a realistic "fully integrated" MC simulation to calculate both early DNA damage and subsequent biological responses with time. We had previously developed an application allowing simulations of radiation induced early DNA damage on a naked cell nucleus model. In the new version presented in this work, we have developed three additional important features: (1) modeling of a realistic cell geometry, (2) inclusion of a biological repair model, (3) refinement of DNA damage parameters for direct damage and indirect damage scoring. The simulation results are validated with experimental data in terms of Single Strand Break (SSB) yields for plasmid and Double Strand Break (DSB) yields for plasmid/human cell. In addition, the yields of indirect DSBs are compatible with the experimental scavengeable damage fraction. The simulation application also demonstrates agreement with experimental data of gamma -H2AX yields for gamma ray irradiation. Using this application, it is now possible to predict biological response along time through track-structure MC simulations.",
journal = "Scientific Reports",
title = "Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA",
volume = "10",
number = "1",
pages = "20788",
doi = "10.1038/s41598-020-75982-x"
}
Sakata, D., Belov, O., Bordage, M., Emfietzoglou, D., Guatelli, S., Inaniwa, T., Ivanchenko, V., Karamitros, M., Kyriakou, I., Lampe, N., Petrović, I. M., Ristić-Fira, A., Shin, W.,& Incerti, S.. (2020). Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. in Scientific Reports, 10(1), 20788.
https://doi.org/10.1038/s41598-020-75982-x
Sakata D, Belov O, Bordage M, Emfietzoglou D, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, Petrović IM, Ristić-Fira A, Shin W, Incerti S. Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. in Scientific Reports. 2020;10(1):20788.
doi:10.1038/s41598-020-75982-x .
Sakata, Dousatsu, Belov, Oleg, Bordage, Marie-Claude, Emfietzoglou, Dimitris, Guatelli, Susanna, Inaniwa, Taku, Ivanchenko, Vladimir, Karamitros, Mathieu, Kyriakou, Ioanna, Lampe, Nathanael, Petrović, Ivan M., Ristić-Fira, Aleksandra, Shin, Wook-Geun, Incerti, Sebastien, "Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA" in Scientific Reports, 10, no. 1 (2020):20788,
https://doi.org/10.1038/s41598-020-75982-x . .
2
44
17
40

Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA

Sakata, Dousatsu; Lampe, Nathanael; Karamitros, Mathieu; Kyriakou, Ioanna; Belov, Oleg; Bernal, Mario A; Bolst, David; Bordage, Marie-Claude; Breton, Vincent; Brown, Jeremy M.C.; Francis, Ziad; Ivanchenko, Vladimir; Meylan, Sylvain; Murakami, Koichi; Okada, Shogo; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Santin, Giovanni; Sarramia, David; Sasaki, Takashi; Shin, Wook-Geun; Tang, Nicolas; Tran, Hoang N; Villagrasa, Carmen; Emfietzoglou, Dimitris; Nieminen, Petteri; Guatelli, Susanna; Incerti, Sebastien

(2019)

TY  - JOUR
AU  - Sakata, Dousatsu
AU  - Lampe, Nathanael
AU  - Karamitros, Mathieu
AU  - Kyriakou, Ioanna
AU  - Belov, Oleg
AU  - Bernal, Mario A
AU  - Bolst, David
AU  - Bordage, Marie-Claude
AU  - Breton, Vincent
AU  - Brown, Jeremy M.C.
AU  - Francis, Ziad
AU  - Ivanchenko, Vladimir
AU  - Meylan, Sylvain
AU  - Murakami, Koichi
AU  - Okada, Shogo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Santin, Giovanni
AU  - Sarramia, David
AU  - Sasaki, Takashi
AU  - Shin, Wook-Geun
AU  - Tang, Nicolas
AU  - Tran, Hoang N
AU  - Villagrasa, Carmen
AU  - Emfietzoglou, Dimitris
AU  - Nieminen, Petteri
AU  - Guatelli, Susanna
AU  - Incerti, Sebastien
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S1120179719300882
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8206
AB  - The advancement of multidisciplinary research fields dealing with ionising radiation induced biological damage – radiobiology, radiation physics, radiation protection and, in particular, medical physics – requires a clear mechanistic understanding of how cellular damage is induced by ionising radiation. Monte Carlo (MC)simulations provide a promising approach for the mechanistic simulation of radiation transport and radiation chemistry, towards the in silico simulation of early biological damage. We have recently developed a fully integrated MC simulation that calculates early single strand breaks (SSBs)and double strand breaks (DSBs)in a fractal chromatin based human cell nucleus model. The results of this simulation are almost equivalent to past MC simulations when considering direct/indirect strand break fraction, DSB yields and fragment distribution. The simulation results agree with experimental data on DSB yields within 13.6% on average and fragment distributions agree within an average of 34.8%. © 2019 Associazione Italiana di Fisica Medica
T2  - Physica Medica
T1  - Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA
VL  - 62
SP  - 152
EP  - 157
DO  - 10.1016/j.ejmp.2019.04.010
ER  - 
@article{
author = "Sakata, Dousatsu and Lampe, Nathanael and Karamitros, Mathieu and Kyriakou, Ioanna and Belov, Oleg and Bernal, Mario A and Bolst, David and Bordage, Marie-Claude and Breton, Vincent and Brown, Jeremy M.C. and Francis, Ziad and Ivanchenko, Vladimir and Meylan, Sylvain and Murakami, Koichi and Okada, Shogo and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Santin, Giovanni and Sarramia, David and Sasaki, Takashi and Shin, Wook-Geun and Tang, Nicolas and Tran, Hoang N and Villagrasa, Carmen and Emfietzoglou, Dimitris and Nieminen, Petteri and Guatelli, Susanna and Incerti, Sebastien",
year = "2019",
abstract = "The advancement of multidisciplinary research fields dealing with ionising radiation induced biological damage – radiobiology, radiation physics, radiation protection and, in particular, medical physics – requires a clear mechanistic understanding of how cellular damage is induced by ionising radiation. Monte Carlo (MC)simulations provide a promising approach for the mechanistic simulation of radiation transport and radiation chemistry, towards the in silico simulation of early biological damage. We have recently developed a fully integrated MC simulation that calculates early single strand breaks (SSBs)and double strand breaks (DSBs)in a fractal chromatin based human cell nucleus model. The results of this simulation are almost equivalent to past MC simulations when considering direct/indirect strand break fraction, DSB yields and fragment distribution. The simulation results agree with experimental data on DSB yields within 13.6% on average and fragment distributions agree within an average of 34.8%. © 2019 Associazione Italiana di Fisica Medica",
journal = "Physica Medica",
title = "Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA",
volume = "62",
pages = "152-157",
doi = "10.1016/j.ejmp.2019.04.010"
}
Sakata, D., Lampe, N., Karamitros, M., Kyriakou, I., Belov, O., Bernal, M. A., Bolst, D., Bordage, M., Breton, V., Brown, J. M.C., Francis, Z., Ivanchenko, V., Meylan, S., Murakami, K., Okada, S., Petrović, I. M., Ristić-Fira, A., Santin, G., Sarramia, D., Sasaki, T., Shin, W., Tang, N., Tran, H. N., Villagrasa, C., Emfietzoglou, D., Nieminen, P., Guatelli, S.,& Incerti, S.. (2019). Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA. in Physica Medica, 62, 152-157.
https://doi.org/10.1016/j.ejmp.2019.04.010
Sakata D, Lampe N, Karamitros M, Kyriakou I, Belov O, Bernal MA, Bolst D, Bordage M, Breton V, Brown JM, Francis Z, Ivanchenko V, Meylan S, Murakami K, Okada S, Petrović IM, Ristić-Fira A, Santin G, Sarramia D, Sasaki T, Shin W, Tang N, Tran HN, Villagrasa C, Emfietzoglou D, Nieminen P, Guatelli S, Incerti S. Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA. in Physica Medica. 2019;62:152-157.
doi:10.1016/j.ejmp.2019.04.010 .
Sakata, Dousatsu, Lampe, Nathanael, Karamitros, Mathieu, Kyriakou, Ioanna, Belov, Oleg, Bernal, Mario A, Bolst, David, Bordage, Marie-Claude, Breton, Vincent, Brown, Jeremy M.C., Francis, Ziad, Ivanchenko, Vladimir, Meylan, Sylvain, Murakami, Koichi, Okada, Shogo, Petrović, Ivan M., Ristić-Fira, Aleksandra, Santin, Giovanni, Sarramia, David, Sasaki, Takashi, Shin, Wook-Geun, Tang, Nicolas, Tran, Hoang N, Villagrasa, Carmen, Emfietzoglou, Dimitris, Nieminen, Petteri, Guatelli, Susanna, Incerti, Sebastien, "Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA" in Physica Medica, 62 (2019):152-157,
https://doi.org/10.1016/j.ejmp.2019.04.010 . .
6
58
30
53