COST ACTION-Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (RADIOMAG) [TD 1402]

Link to this page

COST ACTION-Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (RADIOMAG) [TD 1402]

Authors

Publications

Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study

Karageorgou, Maria-Argyro; Vranješ-Đurić, Sanja; Radović, Magdalena; Lyberopoulou, Anna; Antić, Bratislav; Rouchota, Maritina; Gazouli, Maria; Loudos, George; Xanthopoulos, Stavros; Sideratou, Zili; Stamopoulos, Dimosthenis; Bouziotis, Penelope; Tsoukalas, Charalampos

(2017)

TY  - JOUR
AU  - Karageorgou, Maria-Argyro
AU  - Vranješ-Đurić, Sanja
AU  - Radović, Magdalena
AU  - Lyberopoulou, Anna
AU  - Antić, Bratislav
AU  - Rouchota, Maritina
AU  - Gazouli, Maria
AU  - Loudos, George
AU  - Xanthopoulos, Stavros
AU  - Sideratou, Zili
AU  - Stamopoulos, Dimosthenis
AU  - Bouziotis, Penelope
AU  - Tsoukalas, Charalampos
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1903
AB  - The aim of this study was to develop a dual-modality PET/MR imaging probe by radiolabeling iron oxide magnetic nanoparticles (IONPs), surface functionalized with water soluble stabilizer 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD), with the positron emitter Gallium-68. Magnetite nanoparticles (Fe3O4 MNPs) were synthesized via coprecipitation method and were stabilized with DPD. The Fe3O4-DPD MNPs were characterized based on their structure, morphology, size, surface charge, and magnetic properties. In vitro cytotoxicity studies showed reduced toxicity in normal cells, compared to cancer cells. Fe3O4-DPD MNPs were successfully labeled with Gallium-68 at high radiochemical purity ( GT 91%) and their stability in human serum and in PBS was demonstrated, along with their further characterization on size and magnetic properties. The ex vivo biodistribution studies in normal Swiss mice showed high uptake in the liver followed by spleen. The acquired PET images were in accordance with the ex vivo biodistribution results. Our findings indicate that 68 Ga-Fe3O4-DPD MNPs could serve as an important diagnostic tool for biomedical imaging.
T2  - Contrast Media and Molecular Imaging
T1  - Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study
DO  - 10.1155/2017/6951240
ER  - 
@article{
author = "Karageorgou, Maria-Argyro and Vranješ-Đurić, Sanja and Radović, Magdalena and Lyberopoulou, Anna and Antić, Bratislav and Rouchota, Maritina and Gazouli, Maria and Loudos, George and Xanthopoulos, Stavros and Sideratou, Zili and Stamopoulos, Dimosthenis and Bouziotis, Penelope and Tsoukalas, Charalampos",
year = "2017",
abstract = "The aim of this study was to develop a dual-modality PET/MR imaging probe by radiolabeling iron oxide magnetic nanoparticles (IONPs), surface functionalized with water soluble stabilizer 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD), with the positron emitter Gallium-68. Magnetite nanoparticles (Fe3O4 MNPs) were synthesized via coprecipitation method and were stabilized with DPD. The Fe3O4-DPD MNPs were characterized based on their structure, morphology, size, surface charge, and magnetic properties. In vitro cytotoxicity studies showed reduced toxicity in normal cells, compared to cancer cells. Fe3O4-DPD MNPs were successfully labeled with Gallium-68 at high radiochemical purity ( GT 91%) and their stability in human serum and in PBS was demonstrated, along with their further characterization on size and magnetic properties. The ex vivo biodistribution studies in normal Swiss mice showed high uptake in the liver followed by spleen. The acquired PET images were in accordance with the ex vivo biodistribution results. Our findings indicate that 68 Ga-Fe3O4-DPD MNPs could serve as an important diagnostic tool for biomedical imaging.",
journal = "Contrast Media and Molecular Imaging",
title = "Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study",
doi = "10.1155/2017/6951240"
}
Karageorgou, M., Vranješ-Đurić, S., Radović, M., Lyberopoulou, A., Antić, B., Rouchota, M., Gazouli, M., Loudos, G., Xanthopoulos, S., Sideratou, Z., Stamopoulos, D., Bouziotis, P.,& Tsoukalas, C.. (2017). Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study. in Contrast Media and Molecular Imaging.
https://doi.org/10.1155/2017/6951240
Karageorgou M, Vranješ-Đurić S, Radović M, Lyberopoulou A, Antić B, Rouchota M, Gazouli M, Loudos G, Xanthopoulos S, Sideratou Z, Stamopoulos D, Bouziotis P, Tsoukalas C. Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study. in Contrast Media and Molecular Imaging. 2017;.
doi:10.1155/2017/6951240 .
Karageorgou, Maria-Argyro, Vranješ-Đurić, Sanja, Radović, Magdalena, Lyberopoulou, Anna, Antić, Bratislav, Rouchota, Maritina, Gazouli, Maria, Loudos, George, Xanthopoulos, Stavros, Sideratou, Zili, Stamopoulos, Dimosthenis, Bouziotis, Penelope, Tsoukalas, Charalampos, "Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study" in Contrast Media and Molecular Imaging (2017),
https://doi.org/10.1155/2017/6951240 . .
32
13
31