National Research, Development and Innovation Office (NKFIH) [KH 126886]

Link to this page

National Research, Development and Innovation Office (NKFIH) [KH 126886]

Authors

Publications

Electron transmission through a steel capillary

Maljković, Jelena B.; Borka, Duško; Ranković, Miloš Lj.; Marinković, Bratislav P.; Milosavljević, Aleksandar R.; Lemell, Christoph; Tokesi, Karoly

(2018)

TY  - JOUR
AU  - Maljković, Jelena B.
AU  - Borka, Duško
AU  - Ranković, Miloš Lj.
AU  - Marinković, Bratislav P.
AU  - Milosavljević, Aleksandar R.
AU  - Lemell, Christoph
AU  - Tokesi, Karoly
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7656
AB  - The transmission of low-energy electrons through a macroscopic steel capillary has been investigated both experimentally and theoretically. The length of the steel capillary was L = 19.5 mm and the inner diameter was d = 0.9 mm. The kinetic energy distribution of electrons transmitted through the steel capillary was recorded for a tilt angle of psi = 2.6 degrees of the incident electron beam with respect to the capillary axis. Accompanying simulations based on classical transport theory reproduce the experimental data to a high degree of agreement. Transmission for other tilt angles has also been simulated to investigate the influence of the tilt angle on the guiding efficiency.
T2  - Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms
T1  - Electron transmission through a steel capillary
VL  - 423
SP  - 87
EP  - 91
DO  - 10.1016/j.nimb.2018.03.020
ER  - 
@article{
author = "Maljković, Jelena B. and Borka, Duško and Ranković, Miloš Lj. and Marinković, Bratislav P. and Milosavljević, Aleksandar R. and Lemell, Christoph and Tokesi, Karoly",
year = "2018",
abstract = "The transmission of low-energy electrons through a macroscopic steel capillary has been investigated both experimentally and theoretically. The length of the steel capillary was L = 19.5 mm and the inner diameter was d = 0.9 mm. The kinetic energy distribution of electrons transmitted through the steel capillary was recorded for a tilt angle of psi = 2.6 degrees of the incident electron beam with respect to the capillary axis. Accompanying simulations based on classical transport theory reproduce the experimental data to a high degree of agreement. Transmission for other tilt angles has also been simulated to investigate the influence of the tilt angle on the guiding efficiency.",
journal = "Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms",
title = "Electron transmission through a steel capillary",
volume = "423",
pages = "87-91",
doi = "10.1016/j.nimb.2018.03.020"
}
Maljković, J. B., Borka, D., Ranković, M. Lj., Marinković, B. P., Milosavljević, A. R., Lemell, C.,& Tokesi, K.. (2018). Electron transmission through a steel capillary. in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 423, 87-91.
https://doi.org/10.1016/j.nimb.2018.03.020
Maljković JB, Borka D, Ranković ML, Marinković BP, Milosavljević AR, Lemell C, Tokesi K. Electron transmission through a steel capillary. in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. 2018;423:87-91.
doi:10.1016/j.nimb.2018.03.020 .
Maljković, Jelena B., Borka, Duško, Ranković, Miloš Lj., Marinković, Bratislav P., Milosavljević, Aleksandar R., Lemell, Christoph, Tokesi, Karoly, "Electron transmission through a steel capillary" in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 423 (2018):87-91,
https://doi.org/10.1016/j.nimb.2018.03.020 . .
1
1
1