Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200123 (University of Priština - Kosovska Mitrovica, Faculty of Natural Sciences and Mathematics)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200123/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200123 (University of Priština - Kosovska Mitrovica, Faculty of Natural Sciences and Mathematics) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200123 (Univerzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Prirodno-matematički fakultet) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200123 (Универзитет у Приштини са привременим седиштем у Косовској Митровици, Природно-математички факултет) (sr)
Authors

Publications

A combined experimental and DFT study of metal core/indocyanine green shell hybrid nanoparticles

Laban, Bojana B.; Novaković, Mirjana; Vasić-Anićijević, Dragana; Bondžić, Aleksandra M.; Vujačić Nikezić, Ana

(2024)

TY  - JOUR
AU  - Laban, Bojana B.
AU  - Novaković, Mirjana
AU  - Vasić-Anićijević, Dragana
AU  - Bondžić, Aleksandra M.
AU  - Vujačić Nikezić, Ana
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12442
AB  - Indocyanine green (ICG) is the FDA-approved fluorescent dye used for in vivo medical imaging, diagnostics, and photothermal therapy. However, this dye is easily degradable in the human vascular system, and therefore its stabilization is preferable. In this work, ICG molecules were stabilized by their adsorption on the surface of the L-methionine-capped Ag and Au nanoparticles (Ag and Au @LM NPs) in aqueous colloidal dispersions. The result is the formation of hybrid metal core/ICG shell NPs in colloidal dispersions. Additionally, colloidal dispersions were stabilized, indicating a double effect of ICG adsorption. The obtained hybrid NPs were studied experimentally (UV–Vis spectrophotometry, HRTEM, DLS, FTIR) and theoretically (DFT calculations). HRTEM revealed that the interplanar spacing between adjacent planes of NPs decreases after the dye adsorption. The results obtained from the DFT study confirmed the formation of a covalent bond between the oxygen from ICG dye SO3− group and metal NPs. Considering the characteristics of both components of the NPs/ICG hybrid system, the authors assume that this hybrid system can exhibit the synergistic effect that could lead to more successful theranostic treatment of cancer in nanomedicine.
T2  - Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
T1  - A combined experimental and DFT study of metal core/indocyanine green shell hybrid nanoparticles
VL  - 309
SP  - 123828
DO  - 10.1016/j.saa.2023.123828
ER  - 
@article{
author = "Laban, Bojana B. and Novaković, Mirjana and Vasić-Anićijević, Dragana and Bondžić, Aleksandra M. and Vujačić Nikezić, Ana",
year = "2024",
abstract = "Indocyanine green (ICG) is the FDA-approved fluorescent dye used for in vivo medical imaging, diagnostics, and photothermal therapy. However, this dye is easily degradable in the human vascular system, and therefore its stabilization is preferable. In this work, ICG molecules were stabilized by their adsorption on the surface of the L-methionine-capped Ag and Au nanoparticles (Ag and Au @LM NPs) in aqueous colloidal dispersions. The result is the formation of hybrid metal core/ICG shell NPs in colloidal dispersions. Additionally, colloidal dispersions were stabilized, indicating a double effect of ICG adsorption. The obtained hybrid NPs were studied experimentally (UV–Vis spectrophotometry, HRTEM, DLS, FTIR) and theoretically (DFT calculations). HRTEM revealed that the interplanar spacing between adjacent planes of NPs decreases after the dye adsorption. The results obtained from the DFT study confirmed the formation of a covalent bond between the oxygen from ICG dye SO3− group and metal NPs. Considering the characteristics of both components of the NPs/ICG hybrid system, the authors assume that this hybrid system can exhibit the synergistic effect that could lead to more successful theranostic treatment of cancer in nanomedicine.",
journal = "Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy",
title = "A combined experimental and DFT study of metal core/indocyanine green shell hybrid nanoparticles",
volume = "309",
pages = "123828",
doi = "10.1016/j.saa.2023.123828"
}
Laban, B. B., Novaković, M., Vasić-Anićijević, D., Bondžić, A. M.,& Vujačić Nikezić, A.. (2024). A combined experimental and DFT study of metal core/indocyanine green shell hybrid nanoparticles. in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 309, 123828.
https://doi.org/10.1016/j.saa.2023.123828
Laban BB, Novaković M, Vasić-Anićijević D, Bondžić AM, Vujačić Nikezić A. A combined experimental and DFT study of metal core/indocyanine green shell hybrid nanoparticles. in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2024;309:123828.
doi:10.1016/j.saa.2023.123828 .
Laban, Bojana B., Novaković, Mirjana, Vasić-Anićijević, Dragana, Bondžić, Aleksandra M., Vujačić Nikezić, Ana, "A combined experimental and DFT study of metal core/indocyanine green shell hybrid nanoparticles" in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 309 (2024):123828,
https://doi.org/10.1016/j.saa.2023.123828 . .

Organically modified montmorillonite as an environmental adsorbent of pollutants: Formaldehyde from urea-formaldehyde resin and Acid Red 183 dye from the aqueous solution

Ristić, Mirjana; Samaržija-Jovanović, Suzana; Jovanović, Tijana; Jovanović, Vojislav; Kostić, Marija; Marković, Gordana; Marinović-Cincović, Milena

(2024)

TY  - JOUR
AU  - Ristić, Mirjana
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Tijana
AU  - Jovanović, Vojislav
AU  - Kostić, Marija
AU  - Marković, Gordana
AU  - Marinović-Cincović, Milena
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12482
AB  - In this research, a composite based on montmorillonite (K10) modified with HDTMABr was used. The characterization of the pure K10, NaMMT and OMMT was performed using XRD, FTIR-ATR, SEM, TG, DTG, and DTA. Ion exchange capacity (CEC) and specific surface area (SSA) were also determined. The sulfite method was used to determine free and liberated formaldehyde (FA) from synthesized urea-formaldehyde/montmorillonite (UF/ MMT) composites. This research aims to demonstrate the bifunctionality of OMMT and that it can be used both for the capture of FA from the synthesized cross-linked UF resin and for the adsorption of the anionic dye Acid Red 183 (AR183) from aquatic medium. SEM analysis showed that there are changes in the morphology of the OMMT and the formation of a hollow network, which affects the absorption capacity of the clay. The calculated values of free and liberated FA in the UF/OMMT composites are drastically reduced and amount to 0.12% and 0.96%, respectively, compared to the composites with K10 (0.6% and 2.04%, respectively). Also, very promising results were obtained of the adsorption of AR183 dyes from the aquatic medium using OMMT. The results show that OMMT (0.5 g OMMT/50 cm3 aqueous dye solution, c=20 mgdm− 3 ) managed to remove 85.95% of AR183 dye (pH dye=7). The adsorption mechanism of AR183 on OMMT follows the Freundlich isotherm and proceeds according to the pseudo-first-order kinetic model. Overall, the findings of this work indicate that the use of the obtained OMMT has great potential in removing pollutants from two totally different systems.
T2  - Journal of Environmental Chemical Engineering
T1  - Organically modified montmorillonite as an environmental adsorbent of pollutants: Formaldehyde from urea-formaldehyde resin and Acid Red 183 dye from the aqueous solution
VL  - 12
IS  - 1
SP  - 111828
DO  - 10.1016/j.jece.2023.111828
ER  - 
@article{
author = "Ristić, Mirjana and Samaržija-Jovanović, Suzana and Jovanović, Tijana and Jovanović, Vojislav and Kostić, Marija and Marković, Gordana and Marinović-Cincović, Milena",
year = "2024",
abstract = "In this research, a composite based on montmorillonite (K10) modified with HDTMABr was used. The characterization of the pure K10, NaMMT and OMMT was performed using XRD, FTIR-ATR, SEM, TG, DTG, and DTA. Ion exchange capacity (CEC) and specific surface area (SSA) were also determined. The sulfite method was used to determine free and liberated formaldehyde (FA) from synthesized urea-formaldehyde/montmorillonite (UF/ MMT) composites. This research aims to demonstrate the bifunctionality of OMMT and that it can be used both for the capture of FA from the synthesized cross-linked UF resin and for the adsorption of the anionic dye Acid Red 183 (AR183) from aquatic medium. SEM analysis showed that there are changes in the morphology of the OMMT and the formation of a hollow network, which affects the absorption capacity of the clay. The calculated values of free and liberated FA in the UF/OMMT composites are drastically reduced and amount to 0.12% and 0.96%, respectively, compared to the composites with K10 (0.6% and 2.04%, respectively). Also, very promising results were obtained of the adsorption of AR183 dyes from the aquatic medium using OMMT. The results show that OMMT (0.5 g OMMT/50 cm3 aqueous dye solution, c=20 mgdm− 3 ) managed to remove 85.95% of AR183 dye (pH dye=7). The adsorption mechanism of AR183 on OMMT follows the Freundlich isotherm and proceeds according to the pseudo-first-order kinetic model. Overall, the findings of this work indicate that the use of the obtained OMMT has great potential in removing pollutants from two totally different systems.",
journal = "Journal of Environmental Chemical Engineering",
title = "Organically modified montmorillonite as an environmental adsorbent of pollutants: Formaldehyde from urea-formaldehyde resin and Acid Red 183 dye from the aqueous solution",
volume = "12",
number = "1",
pages = "111828",
doi = "10.1016/j.jece.2023.111828"
}
Ristić, M., Samaržija-Jovanović, S., Jovanović, T., Jovanović, V., Kostić, M., Marković, G.,& Marinović-Cincović, M.. (2024). Organically modified montmorillonite as an environmental adsorbent of pollutants: Formaldehyde from urea-formaldehyde resin and Acid Red 183 dye from the aqueous solution. in Journal of Environmental Chemical Engineering, 12(1), 111828.
https://doi.org/10.1016/j.jece.2023.111828
Ristić M, Samaržija-Jovanović S, Jovanović T, Jovanović V, Kostić M, Marković G, Marinović-Cincović M. Organically modified montmorillonite as an environmental adsorbent of pollutants: Formaldehyde from urea-formaldehyde resin and Acid Red 183 dye from the aqueous solution. in Journal of Environmental Chemical Engineering. 2024;12(1):111828.
doi:10.1016/j.jece.2023.111828 .
Ristić, Mirjana, Samaržija-Jovanović, Suzana, Jovanović, Tijana, Jovanović, Vojislav, Kostić, Marija, Marković, Gordana, Marinović-Cincović, Milena, "Organically modified montmorillonite as an environmental adsorbent of pollutants: Formaldehyde from urea-formaldehyde resin and Acid Red 183 dye from the aqueous solution" in Journal of Environmental Chemical Engineering, 12, no. 1 (2024):111828,
https://doi.org/10.1016/j.jece.2023.111828 . .

Sinteza i karakterizacija nanostrukturnog Ca0.9 Er0.1 MnO3

Vlašković, Tijana; Laban, Bojana; Milošević, Maja; Čebela, Maria; Dodevski, Vladimir; Rosić, Milena

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Vlašković, Tijana
AU  - Laban, Bojana
AU  - Milošević, Maja
AU  - Čebela, Maria
AU  - Dodevski, Vladimir
AU  - Rosić, Milena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13035
AB  - Nanostrukturni Ca0.9Er0.1MnO3 je sintetisan saharoza-nitratnon procedurom (SNP). Tokom ove metode sagorevanja su korišćene sledeće hemikalije: saharoza C12H22O11 koja ima dvostruku ulogu i goriva i kompleksanta, kalcijum-nitrat tetrahidrat, mangan(II)-nitrat hidrat i  erbijum(III)-nitrat pentahidrat. Nitrati metala i saharoza su kombinovani u njihovim odgovarajućim stehiometrijskim odnosima da bi se pripremio složeni oksid perovskitske nanostrukture. Dobijeni prah Ca0.9Er0.1MnO3 je kalcinisan u temperaturnom opsegu od 800-1000°C tokom 15 min. Ispitani su veličina čestica, parametri rešetke, strukturne promene i površina. Za karakterizaciju sintetisanih uzoraka korišćena je diferencijalno termijska analiza (DTA), rendgenska difrakciona analiza (XRD), Furijeova transformaciona infracrvena spektroskopija (FTIR) i skenirajuća elektronska mikroskopija (SEM).
AB  - Nanostructured Ca0.9Er0.1MnO3 was synthesized by the sucrose-nitrate procedure (SNP). During this combustion method, sucrose C12H22O11 which is both fuel and complexant and metal ions in the form of calcium nitrate tetrahydrate, manganese(II) nitrate hydrate, erbium(III) nitrate pentahydrate were used. Metal nitrates and sucrose were combined to prepare this nanostructured in their appropriate stoichiometric ratios. Obtained Ca0,9Er0,1MnO3 powder was calcined in a temperature range of 800-1000 °C for 15min. Particle size, lattice parameters, structural changes, and specific surface area were investigated. DTA, X-ray diffraction (XRD), FTIR, and Field emission scanning electron microscopy (SEM) were used to characterize the synthesized samples at room temperature.
PB  - Belgrade : Serbian Chemical Society
C3  - 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings
T1  - Sinteza i karakterizacija nanostrukturnog Ca0.9 Er0.1 MnO3
T1  - Synthesis and characterization of nanostructured Ca0.9Er0.1MnO3
SP  - 95
EP  - 95
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13035
ER  - 
@conference{
author = "Vlašković, Tijana and Laban, Bojana and Milošević, Maja and Čebela, Maria and Dodevski, Vladimir and Rosić, Milena",
year = "2023",
abstract = "Nanostrukturni Ca0.9Er0.1MnO3 je sintetisan saharoza-nitratnon procedurom (SNP). Tokom ove metode sagorevanja su korišćene sledeće hemikalije: saharoza C12H22O11 koja ima dvostruku ulogu i goriva i kompleksanta, kalcijum-nitrat tetrahidrat, mangan(II)-nitrat hidrat i  erbijum(III)-nitrat pentahidrat. Nitrati metala i saharoza su kombinovani u njihovim odgovarajućim stehiometrijskim odnosima da bi se pripremio složeni oksid perovskitske nanostrukture. Dobijeni prah Ca0.9Er0.1MnO3 je kalcinisan u temperaturnom opsegu od 800-1000°C tokom 15 min. Ispitani su veličina čestica, parametri rešetke, strukturne promene i površina. Za karakterizaciju sintetisanih uzoraka korišćena je diferencijalno termijska analiza (DTA), rendgenska difrakciona analiza (XRD), Furijeova transformaciona infracrvena spektroskopija (FTIR) i skenirajuća elektronska mikroskopija (SEM)., Nanostructured Ca0.9Er0.1MnO3 was synthesized by the sucrose-nitrate procedure (SNP). During this combustion method, sucrose C12H22O11 which is both fuel and complexant and metal ions in the form of calcium nitrate tetrahydrate, manganese(II) nitrate hydrate, erbium(III) nitrate pentahydrate were used. Metal nitrates and sucrose were combined to prepare this nanostructured in their appropriate stoichiometric ratios. Obtained Ca0,9Er0,1MnO3 powder was calcined in a temperature range of 800-1000 °C for 15min. Particle size, lattice parameters, structural changes, and specific surface area were investigated. DTA, X-ray diffraction (XRD), FTIR, and Field emission scanning electron microscopy (SEM) were used to characterize the synthesized samples at room temperature.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings",
title = "Sinteza i karakterizacija nanostrukturnog Ca0.9 Er0.1 MnO3, Synthesis and characterization of nanostructured Ca0.9Er0.1MnO3",
pages = "95-95",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13035"
}
Vlašković, T., Laban, B., Milošević, M., Čebela, M., Dodevski, V.,& Rosić, M.. (2023). Sinteza i karakterizacija nanostrukturnog Ca0.9 Er0.1 MnO3. in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings
Belgrade : Serbian Chemical Society., 95-95.
https://hdl.handle.net/21.15107/rcub_vinar_13035
Vlašković T, Laban B, Milošević M, Čebela M, Dodevski V, Rosić M. Sinteza i karakterizacija nanostrukturnog Ca0.9 Er0.1 MnO3. in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings. 2023;:95-95.
https://hdl.handle.net/21.15107/rcub_vinar_13035 .
Vlašković, Tijana, Laban, Bojana, Milošević, Maja, Čebela, Maria, Dodevski, Vladimir, Rosić, Milena, "Sinteza i karakterizacija nanostrukturnog Ca0.9 Er0.1 MnO3" in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings (2023):95-95,
https://hdl.handle.net/21.15107/rcub_vinar_13035 .

Mikroskopska i teorijska studija adsorpcije boje Indocijanin zeleno na površini nanočestica srebra

Laban, Bojana; Vujačić Nikezić, Ana; Novaković, Mirjana; Kovačević, Marija; Vasić Anićijević, Dragana

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Laban, Bojana
AU  - Vujačić Nikezić, Ana
AU  - Novaković, Mirjana
AU  - Kovačević, Marija
AU  - Vasić Anićijević, Dragana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13034
AB  - U ovom radu, transmisionom elektronskom mikroskopijom (TEM) i teorijskim proračunom (DFT), izučavana je adsorpcija boje Indocijanin zeleno (ICG) na površini nanočestica srebra (AgNPs). Studija je pokazala da su dobijene hibridne nanočestice sastava Ag-jezgro-ICG-omotač. TEM merenjima potvrđeno je formiranje omotača boje oko AgNPs debljine ~ 3 do 4 nm, dok su HRTEM merenja pokazala mikrostrukturne promene AgNPs usled adsorpcije boje ICG. Teorijskim proračunom utvrđeno je da se molekul ICG boje vezuje kovalentno za atom Ag, na površini AgNPs, preko svoje SO3− grupe.
AB  - Here we present the TEM and DFT study of hybrid nanoparticles consisting of an Ag core and Indocyanine green (ICG) shell. TEM measurements revealed the formation of a distinctive ~ 3 to 4 nm thick halo around the particles, while HRTEM measurements show microstructural changes in NPs. The DFT calculations were used to investigate the energetics of interaction between ICG molecule and Ag-surface. The obtained data indicate a strong interaction between Ag-atom from NPs surface and SO3− group of ICG molecule.
PB  - Belgrade : Serbian Chemical Society
C3  - 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings
T1  - Mikroskopska i teorijska studija adsorpcije boje Indocijanin zeleno na površini nanočestica srebra
T1  - TEM and DFT study of Indocyanine green adsorption on a silver nanoparticle surface
SP  - 89
EP  - 89
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13034
ER  - 
@conference{
author = "Laban, Bojana and Vujačić Nikezić, Ana and Novaković, Mirjana and Kovačević, Marija and Vasić Anićijević, Dragana",
year = "2023",
abstract = "U ovom radu, transmisionom elektronskom mikroskopijom (TEM) i teorijskim proračunom (DFT), izučavana je adsorpcija boje Indocijanin zeleno (ICG) na površini nanočestica srebra (AgNPs). Studija je pokazala da su dobijene hibridne nanočestice sastava Ag-jezgro-ICG-omotač. TEM merenjima potvrđeno je formiranje omotača boje oko AgNPs debljine ~ 3 do 4 nm, dok su HRTEM merenja pokazala mikrostrukturne promene AgNPs usled adsorpcije boje ICG. Teorijskim proračunom utvrđeno je da se molekul ICG boje vezuje kovalentno za atom Ag, na površini AgNPs, preko svoje SO3− grupe., Here we present the TEM and DFT study of hybrid nanoparticles consisting of an Ag core and Indocyanine green (ICG) shell. TEM measurements revealed the formation of a distinctive ~ 3 to 4 nm thick halo around the particles, while HRTEM measurements show microstructural changes in NPs. The DFT calculations were used to investigate the energetics of interaction between ICG molecule and Ag-surface. The obtained data indicate a strong interaction between Ag-atom from NPs surface and SO3− group of ICG molecule.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings",
title = "Mikroskopska i teorijska studija adsorpcije boje Indocijanin zeleno na površini nanočestica srebra, TEM and DFT study of Indocyanine green adsorption on a silver nanoparticle surface",
pages = "89-89",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13034"
}
Laban, B., Vujačić Nikezić, A., Novaković, M., Kovačević, M.,& Vasić Anićijević, D.. (2023). Mikroskopska i teorijska studija adsorpcije boje Indocijanin zeleno na površini nanočestica srebra. in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings
Belgrade : Serbian Chemical Society., 89-89.
https://hdl.handle.net/21.15107/rcub_vinar_13034
Laban B, Vujačić Nikezić A, Novaković M, Kovačević M, Vasić Anićijević D. Mikroskopska i teorijska studija adsorpcije boje Indocijanin zeleno na površini nanočestica srebra. in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings. 2023;:89-89.
https://hdl.handle.net/21.15107/rcub_vinar_13034 .
Laban, Bojana, Vujačić Nikezić, Ana, Novaković, Mirjana, Kovačević, Marija, Vasić Anićijević, Dragana, "Mikroskopska i teorijska studija adsorpcije boje Indocijanin zeleno na površini nanočestica srebra" in 59th Meeting of the Serbian Chemical Society : Book of Abstracts, Proceedings (2023):89-89,
https://hdl.handle.net/21.15107/rcub_vinar_13034 .

Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors

Laban, Bojana B.; Lazarević-Pašti, Tamara; Veljović, Đorđe; Marković, Mirjana; Klekotka, Urszula

(2023)

TY  - JOUR
AU  - Laban, Bojana B.
AU  - Lazarević-Pašti, Tamara
AU  - Veljović, Đorđe
AU  - Marković, Mirjana
AU  - Klekotka, Urszula
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10740
AB  - The silver and gold L-methionine capped nanoparticles (Ag and Au @LM NPs) were analyzed as prospective acetylcholinesterase (AChE) inhibitors to test their potential in the treatment of cognitive impairment in depression and Alzheimer's disease. The stability of NPs, and their ability to inhibit AChE were studied by UV-Vis and FTIR spectrophotometry. At the same time, TEM and SEM measurements, DLS, and zeta potential measurements were employed in the structural characterization of NPs. Nearly spherical, negatively charged Ag and Au @LM NPs, with 17 nm and 31 nm in diameter, respectively, showed moderate inhibitory potential toward AChE in the given frame of investigated concentrations. For both NPs IC50 is not reached. Furthermore, the adsorption of enzyme molecules on the surface of Ag and Au @LM NPs was demonstrated. Hence, our assumption is that inhibition of AChE is caused by blockage of the enzyme‘s active site due to the steric hindrance of NPs.
T2  - European Journal of Inorganic Chemistry
T1  - Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors
SP  - e202200754
DO  - 10.1002/ejic.202200754
ER  - 
@article{
author = "Laban, Bojana B. and Lazarević-Pašti, Tamara and Veljović, Đorđe and Marković, Mirjana and Klekotka, Urszula",
year = "2023",
abstract = "The silver and gold L-methionine capped nanoparticles (Ag and Au @LM NPs) were analyzed as prospective acetylcholinesterase (AChE) inhibitors to test their potential in the treatment of cognitive impairment in depression and Alzheimer's disease. The stability of NPs, and their ability to inhibit AChE were studied by UV-Vis and FTIR spectrophotometry. At the same time, TEM and SEM measurements, DLS, and zeta potential measurements were employed in the structural characterization of NPs. Nearly spherical, negatively charged Ag and Au @LM NPs, with 17 nm and 31 nm in diameter, respectively, showed moderate inhibitory potential toward AChE in the given frame of investigated concentrations. For both NPs IC50 is not reached. Furthermore, the adsorption of enzyme molecules on the surface of Ag and Au @LM NPs was demonstrated. Hence, our assumption is that inhibition of AChE is caused by blockage of the enzyme‘s active site due to the steric hindrance of NPs.",
journal = "European Journal of Inorganic Chemistry",
title = "Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors",
pages = "e202200754",
doi = "10.1002/ejic.202200754"
}
Laban, B. B., Lazarević-Pašti, T., Veljović, Đ., Marković, M.,& Klekotka, U.. (2023). Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors. in European Journal of Inorganic Chemistry, e202200754.
https://doi.org/10.1002/ejic.202200754
Laban BB, Lazarević-Pašti T, Veljović Đ, Marković M, Klekotka U. Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors. in European Journal of Inorganic Chemistry. 2023;:e202200754.
doi:10.1002/ejic.202200754 .
Laban, Bojana B., Lazarević-Pašti, Tamara, Veljović, Đorđe, Marković, Mirjana, Klekotka, Urszula, "Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors" in European Journal of Inorganic Chemistry (2023):e202200754,
https://doi.org/10.1002/ejic.202200754 . .
2

Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers

Ristić, Mirjana; Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Kostić, Marija; Erceg, Tamara; Jovanović, Tijana; Marković, Gordana; Marinović-Cincović, Milena

(2023)

TY  - JOUR
AU  - Ristić, Mirjana
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Kostić, Marija
AU  - Erceg, Tamara
AU  - Jovanović, Tijana
AU  - Marković, Gordana
AU  - Marinović-Cincović, Milena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11101
AB  - In this work, betaine (trimethyl glycine) and tannin (complex biomolecules of polyphenolic nature) were used as bio-fillers. Urea-formaldehyde (UF) resin with a molar ratio of formaldehyde versus urea (FA/U) of 0.8 was synthesized in situ with tannin and betaine as bio-fillers, to obtain UF resin with reduced free FA content and increased hydrolytic and thermal stability by the principles of sustainability. The samples TUF (with tannin) and BUF (with betaine) were characterized by using X-ray diffraction analysis (XRD), non-isothermal thermogravimetric analysis (TGA), and differential thermal analysis (DTA), supported by data from Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The percentage of free FA in modified BUF resin is 0.1%, while the percentage of free FA in tannin-modified resin is 0.8%. The hydrolytic stability of the modified UF resins was determined by measuring the concentration of liberated FA in the modified UF resins, after acid hydrolysis. The modified BUF resin is hydrolytically more stable because the content of released FA is 3.6% compared to the modified TUF resin, where it was 7.4%. Based on the value for T5%, the more thermally stable resin is the modified TUF resin (T5% = 123.1°C), while the value of the T5% for the BUF resin is 83.1°C. This work showed how UF bio-composite with reduced free FA content and increased hydrolytic and thermal stability can be obtained using tannin and betaine as bio-fillers.
T2  - Journal of Vinyl and Additive Technology
T1  - Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers
VL  - 29
IS  - 6
SP  - 1082
EP  - 1092
DO  - 10.1002/vnl.22024
ER  - 
@article{
author = "Ristić, Mirjana and Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Kostić, Marija and Erceg, Tamara and Jovanović, Tijana and Marković, Gordana and Marinović-Cincović, Milena",
year = "2023",
abstract = "In this work, betaine (trimethyl glycine) and tannin (complex biomolecules of polyphenolic nature) were used as bio-fillers. Urea-formaldehyde (UF) resin with a molar ratio of formaldehyde versus urea (FA/U) of 0.8 was synthesized in situ with tannin and betaine as bio-fillers, to obtain UF resin with reduced free FA content and increased hydrolytic and thermal stability by the principles of sustainability. The samples TUF (with tannin) and BUF (with betaine) were characterized by using X-ray diffraction analysis (XRD), non-isothermal thermogravimetric analysis (TGA), and differential thermal analysis (DTA), supported by data from Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The percentage of free FA in modified BUF resin is 0.1%, while the percentage of free FA in tannin-modified resin is 0.8%. The hydrolytic stability of the modified UF resins was determined by measuring the concentration of liberated FA in the modified UF resins, after acid hydrolysis. The modified BUF resin is hydrolytically more stable because the content of released FA is 3.6% compared to the modified TUF resin, where it was 7.4%. Based on the value for T5%, the more thermally stable resin is the modified TUF resin (T5% = 123.1°C), while the value of the T5% for the BUF resin is 83.1°C. This work showed how UF bio-composite with reduced free FA content and increased hydrolytic and thermal stability can be obtained using tannin and betaine as bio-fillers.",
journal = "Journal of Vinyl and Additive Technology",
title = "Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers",
volume = "29",
number = "6",
pages = "1082-1092",
doi = "10.1002/vnl.22024"
}
Ristić, M., Samaržija-Jovanović, S., Jovanović, V., Kostić, M., Erceg, T., Jovanović, T., Marković, G.,& Marinović-Cincović, M.. (2023). Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers. in Journal of Vinyl and Additive Technology, 29(6), 1082-1092.
https://doi.org/10.1002/vnl.22024
Ristić M, Samaržija-Jovanović S, Jovanović V, Kostić M, Erceg T, Jovanović T, Marković G, Marinović-Cincović M. Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers. in Journal of Vinyl and Additive Technology. 2023;29(6):1082-1092.
doi:10.1002/vnl.22024 .
Ristić, Mirjana, Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Kostić, Marija, Erceg, Tamara, Jovanović, Tijana, Marković, Gordana, Marinović-Cincović, Milena, "Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers" in Journal of Vinyl and Additive Technology, 29, no. 6 (2023):1082-1092,
https://doi.org/10.1002/vnl.22024 . .
1

Effect of montmorillonite activation method on formaldehyde content in urea-formaldehyde composites

Kostić, Marija; Samaržija-Jovanović, Suzana; Ristić, Mirjana; Jovanović, Tijana; Jovanović, Vojislav; Marković, Gordana; Marinović-Cincović, Milena

(2023)

TY  - JOUR
AU  - Kostić, Marija
AU  - Samaržija-Jovanović, Suzana
AU  - Ristić, Mirjana
AU  - Jovanović, Tijana
AU  - Jovanović, Vojislav
AU  - Marković, Gordana
AU  - Marinović-Cincović, Milena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10923
AB  - In this paper, the synthesis of modified urea-formaldehyde (UF) composites with differently activated montmorillonite KSF (UF/KSF) was performed. Two types of montmorillonite (MMT) KSF were used: sample activated with sulfuric acid-KSF(H2SO4) and sample activated with acid and stirring-KSF(H2SO4+stirrer). In order to examine the effect of KSF activation mode on the thermal and hydrolytic stability of UF resins, thermogravimetric analysis (TGA) was performed, as well as A determination of the amount of liberated formaldehyde (FA) after acid hydrolysis. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis were used to characterize the samples of modified UF/KSF composites and differently activated KSF. Activation of KSF led to a decrease in its specific surface area (SSA) and to an increase in cation exchange capacity (CEC). SEM analysis showed that in the KSF(H2SO4+stirrer) sample, the layered microstructure was disrupted. Free formaldehyde was not detected in the sample of UF resin with KSF(H2SO4), and in the sample with KSF(H2SO4+stirrer) it was 0.06%. The UF/KSF(H2SO4) composite showed higher hydrolytic stability (3.9%) compared to UF/KSF(H2SO4+stirrer) (4.62%), but lower compared to the UF/KSF(inactive) (1.23%). TG analysis showed that the KSF(H2SO4) sample had better thermal stability than the KSF(H2SO4+stirrer) sample, but this did not contribute to the better thermal stability of UF/KSF(H2SO4) compared to UF/KSF(H2SO4+stirrer), both samples had a T5% value of 112 °C.
T2  - International Journal of Adhesion and Adhesives
T1  - Effect of montmorillonite activation method on formaldehyde content in urea-formaldehyde composites
VL  - 124
SP  - 103390
DO  - 10.1016/j.ijadhadh.2023.103390
ER  - 
@article{
author = "Kostić, Marija and Samaržija-Jovanović, Suzana and Ristić, Mirjana and Jovanović, Tijana and Jovanović, Vojislav and Marković, Gordana and Marinović-Cincović, Milena",
year = "2023",
abstract = "In this paper, the synthesis of modified urea-formaldehyde (UF) composites with differently activated montmorillonite KSF (UF/KSF) was performed. Two types of montmorillonite (MMT) KSF were used: sample activated with sulfuric acid-KSF(H2SO4) and sample activated with acid and stirring-KSF(H2SO4+stirrer). In order to examine the effect of KSF activation mode on the thermal and hydrolytic stability of UF resins, thermogravimetric analysis (TGA) was performed, as well as A determination of the amount of liberated formaldehyde (FA) after acid hydrolysis. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis were used to characterize the samples of modified UF/KSF composites and differently activated KSF. Activation of KSF led to a decrease in its specific surface area (SSA) and to an increase in cation exchange capacity (CEC). SEM analysis showed that in the KSF(H2SO4+stirrer) sample, the layered microstructure was disrupted. Free formaldehyde was not detected in the sample of UF resin with KSF(H2SO4), and in the sample with KSF(H2SO4+stirrer) it was 0.06%. The UF/KSF(H2SO4) composite showed higher hydrolytic stability (3.9%) compared to UF/KSF(H2SO4+stirrer) (4.62%), but lower compared to the UF/KSF(inactive) (1.23%). TG analysis showed that the KSF(H2SO4) sample had better thermal stability than the KSF(H2SO4+stirrer) sample, but this did not contribute to the better thermal stability of UF/KSF(H2SO4) compared to UF/KSF(H2SO4+stirrer), both samples had a T5% value of 112 °C.",
journal = "International Journal of Adhesion and Adhesives",
title = "Effect of montmorillonite activation method on formaldehyde content in urea-formaldehyde composites",
volume = "124",
pages = "103390",
doi = "10.1016/j.ijadhadh.2023.103390"
}
Kostić, M., Samaržija-Jovanović, S., Ristić, M., Jovanović, T., Jovanović, V., Marković, G.,& Marinović-Cincović, M.. (2023). Effect of montmorillonite activation method on formaldehyde content in urea-formaldehyde composites. in International Journal of Adhesion and Adhesives, 124, 103390.
https://doi.org/10.1016/j.ijadhadh.2023.103390
Kostić M, Samaržija-Jovanović S, Ristić M, Jovanović T, Jovanović V, Marković G, Marinović-Cincović M. Effect of montmorillonite activation method on formaldehyde content in urea-formaldehyde composites. in International Journal of Adhesion and Adhesives. 2023;124:103390.
doi:10.1016/j.ijadhadh.2023.103390 .
Kostić, Marija, Samaržija-Jovanović, Suzana, Ristić, Mirjana, Jovanović, Tijana, Jovanović, Vojislav, Marković, Gordana, Marinović-Cincović, Milena, "Effect of montmorillonite activation method on formaldehyde content in urea-formaldehyde composites" in International Journal of Adhesion and Adhesives, 124 (2023):103390,
https://doi.org/10.1016/j.ijadhadh.2023.103390 . .
1

Zeolite and Bentonite as Formaldehyde Scavengers in Urea-Formaldehyde Resins

Ristić, Mirjana; Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Kostić, Marija; Jovanović, Tijana; Marković, Gordana; Marinović-Cincović, Milena

(Leskovac : Faculty of Technology, University of Niš, 2023)

TY  - CONF
AU  - Ristić, Mirjana
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Kostić, Marija
AU  - Jovanović, Tijana
AU  - Marković, Gordana
AU  - Marinović-Cincović, Milena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12252
AB  - Urea-formaldehyde (UF) resins are the leading adhesive in the wood industry. Their disadvantages are low water resistance and formaldehyde (FA) emissions from wood panels due to the low stability of the amino-methylene bond. Since FA has a detrimental effect on the environment and human health, the main goal of the modern adhesives industry is to produce efficient UF adhesives with low amounts of emitted, if not without, FA. One way to achieve this is to add a formaldehyde scavenger. In this work, UF resins modified with zeolite type ZSM-5 and bentonite as free FA scavengers are analyzed and compared. A total of three UF resins were synthesized: pure UF resin (UF), UF composite containing zeolite (ZUF), and bentonite (BUF) under the same conditions. Specific surface area (SSA) and cation exchange capacity (CEC) for bentonite and zeolite were determined. SSA (Sears' method) for bentonite is 19.9 m2/g and for zeolite 39.1 m2/g. The CEC of bentonite is 0.68 mol/kg, and that of zeolite is 0.1 mol/kg. The disulfide method was used to determine free FA in modified UF resins. The amount of free FA in the ZUF composite is 0.06%, while in the BUF composite is 0.18%. The hydrolytic stability of modified UF resins was determined by measuring the amount of liberated FA in the modified UF resins after acid hydrolysis. The results show that the amount of released FA in the ZUF composite is 4.08%, while in the BUF resin, it is 4.8%. Based on the obtained results, it can be concluded that zeolite is a better scavenger of free FA than bentonite and that its ZUF composite is hydrolytically more stable than the BUF composite.
PB  - Leskovac : Faculty of Technology, University of Niš
C3  - 15th International symposium „Novel technologies and sustainable development" : Book of Abstracts
T1  - Zeolite and Bentonite as Formaldehyde Scavengers in Urea-Formaldehyde Resins
SP  - 111
EP  - 111
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12252
ER  - 
@conference{
author = "Ristić, Mirjana and Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Kostić, Marija and Jovanović, Tijana and Marković, Gordana and Marinović-Cincović, Milena",
year = "2023",
abstract = "Urea-formaldehyde (UF) resins are the leading adhesive in the wood industry. Their disadvantages are low water resistance and formaldehyde (FA) emissions from wood panels due to the low stability of the amino-methylene bond. Since FA has a detrimental effect on the environment and human health, the main goal of the modern adhesives industry is to produce efficient UF adhesives with low amounts of emitted, if not without, FA. One way to achieve this is to add a formaldehyde scavenger. In this work, UF resins modified with zeolite type ZSM-5 and bentonite as free FA scavengers are analyzed and compared. A total of three UF resins were synthesized: pure UF resin (UF), UF composite containing zeolite (ZUF), and bentonite (BUF) under the same conditions. Specific surface area (SSA) and cation exchange capacity (CEC) for bentonite and zeolite were determined. SSA (Sears' method) for bentonite is 19.9 m2/g and for zeolite 39.1 m2/g. The CEC of bentonite is 0.68 mol/kg, and that of zeolite is 0.1 mol/kg. The disulfide method was used to determine free FA in modified UF resins. The amount of free FA in the ZUF composite is 0.06%, while in the BUF composite is 0.18%. The hydrolytic stability of modified UF resins was determined by measuring the amount of liberated FA in the modified UF resins after acid hydrolysis. The results show that the amount of released FA in the ZUF composite is 4.08%, while in the BUF resin, it is 4.8%. Based on the obtained results, it can be concluded that zeolite is a better scavenger of free FA than bentonite and that its ZUF composite is hydrolytically more stable than the BUF composite.",
publisher = "Leskovac : Faculty of Technology, University of Niš",
journal = "15th International symposium „Novel technologies and sustainable development" : Book of Abstracts",
title = "Zeolite and Bentonite as Formaldehyde Scavengers in Urea-Formaldehyde Resins",
pages = "111-111",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12252"
}
Ristić, M., Samaržija-Jovanović, S., Jovanović, V., Kostić, M., Jovanović, T., Marković, G.,& Marinović-Cincović, M.. (2023). Zeolite and Bentonite as Formaldehyde Scavengers in Urea-Formaldehyde Resins. in 15th International symposium „Novel technologies and sustainable development" : Book of Abstracts
Leskovac : Faculty of Technology, University of Niš., 111-111.
https://hdl.handle.net/21.15107/rcub_vinar_12252
Ristić M, Samaržija-Jovanović S, Jovanović V, Kostić M, Jovanović T, Marković G, Marinović-Cincović M. Zeolite and Bentonite as Formaldehyde Scavengers in Urea-Formaldehyde Resins. in 15th International symposium „Novel technologies and sustainable development" : Book of Abstracts. 2023;:111-111.
https://hdl.handle.net/21.15107/rcub_vinar_12252 .
Ristić, Mirjana, Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Kostić, Marija, Jovanović, Tijana, Marković, Gordana, Marinović-Cincović, Milena, "Zeolite and Bentonite as Formaldehyde Scavengers in Urea-Formaldehyde Resins" in 15th International symposium „Novel technologies and sustainable development" : Book of Abstracts (2023):111-111,
https://hdl.handle.net/21.15107/rcub_vinar_12252 .

Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10

Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Jovanović, Tijana; Petković, Branka; Marković, Gordana; Porobić, Slavica; Marinović-Cincović, Milena

(2022)

TY  - JOUR
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Jovanović, Tijana
AU  - Petković, Branka
AU  - Marković, Gordana
AU  - Porobić, Slavica
AU  - Marinović-Cincović, Milena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10164
AB  - In this study, the thermal and hydrolytic properties of composite systems based on the urea–formaldehyde resin (UF) and eco-friendly montmorillonite (K10) as formaldehyde (FA) scavenger were examined. UF resin with molar ratio FA:U = 0.8 was synthesized in situ with inactivated, and activated K10. K10 was activated by sulfuric acid (H2SO4) with and without magnetic stirring. The samples are marked with $${\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$,$${\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$, and $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, respectively. X-ray diffraction analysis and non-isothermal thermogravimetric analysis, supported by data from Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the samples. Based on the measurement of specific surface area (SSA), the degree of activation was determined. Measurement of the SSA shows that higher values were obtained for modified K10 compared to inactive K10. The amount of free and liberated FA was 0.06% and 4.6% for $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$and 0.12% and 4% for $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$. This research showed that the $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$composite has a lesser amount of free FA (0.06%) in comparison to the $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite (0.12%). The $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite has a higher resistance to acidic hydrolysis. The modified $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$composite is more thermally stable than $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite.
T2  - Journal of Thermal Analysis and Calorimetry
T1  - Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10
DO  - 10.1007/s10973-022-11238-2
ER  - 
@article{
author = "Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Jovanović, Tijana and Petković, Branka and Marković, Gordana and Porobić, Slavica and Marinović-Cincović, Milena",
year = "2022",
abstract = "In this study, the thermal and hydrolytic properties of composite systems based on the urea–formaldehyde resin (UF) and eco-friendly montmorillonite (K10) as formaldehyde (FA) scavenger were examined. UF resin with molar ratio FA:U = 0.8 was synthesized in situ with inactivated, and activated K10. K10 was activated by sulfuric acid (H2SO4) with and without magnetic stirring. The samples are marked with $${\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$,$${\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$, and $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, respectively. X-ray diffraction analysis and non-isothermal thermogravimetric analysis, supported by data from Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the samples. Based on the measurement of specific surface area (SSA), the degree of activation was determined. Measurement of the SSA shows that higher values were obtained for modified K10 compared to inactive K10. The amount of free and liberated FA was 0.06% and 4.6% for $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$and 0.12% and 4% for $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$. This research showed that the $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$composite has a lesser amount of free FA (0.06%) in comparison to the $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite (0.12%). The $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite has a higher resistance to acidic hydrolysis. The modified $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$composite is more thermally stable than $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite.",
journal = "Journal of Thermal Analysis and Calorimetry",
title = "Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10",
doi = "10.1007/s10973-022-11238-2"
}
Samaržija-Jovanović, S., Jovanović, V., Jovanović, T., Petković, B., Marković, G., Porobić, S.,& Marinović-Cincović, M.. (2022). Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10. in Journal of Thermal Analysis and Calorimetry.
https://doi.org/10.1007/s10973-022-11238-2
Samaržija-Jovanović S, Jovanović V, Jovanović T, Petković B, Marković G, Porobić S, Marinović-Cincović M. Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10. in Journal of Thermal Analysis and Calorimetry. 2022;.
doi:10.1007/s10973-022-11238-2 .
Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Jovanović, Tijana, Petković, Branka, Marković, Gordana, Porobić, Slavica, Marinović-Cincović, Milena, "Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10" in Journal of Thermal Analysis and Calorimetry (2022),
https://doi.org/10.1007/s10973-022-11238-2 . .
1
1

Application of nanospectroscopy methods to study cyanine dyes - J-aggregation on the surface of noble metal nanoparticles

Laban, Bojana; Vasić-Anićijević, Dragana; Vodnik, Vesna

(2022)

TY  - CHAP
AU  - Laban, Bojana
AU  - Vasić-Anićijević, Dragana
AU  - Vodnik, Vesna
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10598
T2  - Optical Nanospectroscopy: Applications
T1  - Application of nanospectroscopy methods to study cyanine dyes - J-aggregation on the surface of noble metal nanoparticles
SP  - 367
EP  - 400
DO  - 10.1515/9783110442908-017
ER  - 
@inbook{
author = "Laban, Bojana and Vasić-Anićijević, Dragana and Vodnik, Vesna",
year = "2022",
journal = "Optical Nanospectroscopy: Applications",
booktitle = "Application of nanospectroscopy methods to study cyanine dyes - J-aggregation on the surface of noble metal nanoparticles",
pages = "367-400",
doi = "10.1515/9783110442908-017"
}
Laban, B., Vasić-Anićijević, D.,& Vodnik, V.. (2022). Application of nanospectroscopy methods to study cyanine dyes - J-aggregation on the surface of noble metal nanoparticles. in Optical Nanospectroscopy: Applications, 367-400.
https://doi.org/10.1515/9783110442908-017
Laban B, Vasić-Anićijević D, Vodnik V. Application of nanospectroscopy methods to study cyanine dyes - J-aggregation on the surface of noble metal nanoparticles. in Optical Nanospectroscopy: Applications. 2022;:367-400.
doi:10.1515/9783110442908-017 .
Laban, Bojana, Vasić-Anićijević, Dragana, Vodnik, Vesna, "Application of nanospectroscopy methods to study cyanine dyes - J-aggregation on the surface of noble metal nanoparticles" in Optical Nanospectroscopy: Applications (2022):367-400,
https://doi.org/10.1515/9783110442908-017 . .

Cross-linked bio/inorganically modified urea-formaldehyde resins: Influence of γ-radiation on formaldehyde content

Ristić, Mirjana; Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Petković, Branka; Kostić, Marija; Jovanović, Tijana; Marković, Gordana; Marinović-Cincović, Milena

(RAD Centre, Niš, Serbia, 2022)

TY  - CONF
AU  - Ristić, Mirjana
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Petković, Branka
AU  - Kostić, Marija
AU  - Jovanović, Tijana
AU  - Marković, Gordana
AU  - Marinović-Cincović, Milena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11113
AB  - Fig (Ficus carica L.) is a fruit of the Moraceae family, which is mostly grown in subtropical regions, but also grows in Serbia. Fig trees are usually grown in warm and dry climates. According to the FAO world production of figs is stable, with a decade-long average of about 1.1 million tons a year. Fig pomace are formed after fermentation of this fruit which is used for the preparation of brandy. The brandy industry generates huge amounts of pomace as industrial waste, so pyrolysis as thermochemical technologies was used for organic agro-industrial waste treatment. Biochar produced by pyrolysis of fig pomace at 500 °C were characterized and investigated as adsorbents for the removal of Pb2+ ions from aqueous solution. Fig pomace before and after pyrolysis was characterized using proximate, inorganic and elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Biochar has a carbon matrix with a high degree of porosity and large surface area, suggesting that it can be used as a surface adsorbent and thus have a significant role in controlling environmental contaminants. The surface modification by gamma irradiation was done to enhance the adsorption capacity of biochar. The Pb2+ ions contents in aqueous solution were analyzed using ICP-OES. The adsorption capacity was estimated using the Freundlich and Langmuir model. The results of this work suggest that pyrolysis and irradiation of biomass is a promising way to produce efficient heavy metal sorbents for waste-water treatment.
PB  - RAD Centre, Niš, Serbia
C3  - RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; June 13-17; Herceg Novi, Montenegro
T1  - Cross-linked bio/inorganically modified urea-formaldehyde
resins: Influence of γ-radiation on formaldehyde content
SP  - 61
DO  - 10.21175/rad.spr.abstr.book.2022.16.5
ER  - 
@conference{
author = "Ristić, Mirjana and Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Petković, Branka and Kostić, Marija and Jovanović, Tijana and Marković, Gordana and Marinović-Cincović, Milena",
year = "2022",
abstract = "Fig (Ficus carica L.) is a fruit of the Moraceae family, which is mostly grown in subtropical regions, but also grows in Serbia. Fig trees are usually grown in warm and dry climates. According to the FAO world production of figs is stable, with a decade-long average of about 1.1 million tons a year. Fig pomace are formed after fermentation of this fruit which is used for the preparation of brandy. The brandy industry generates huge amounts of pomace as industrial waste, so pyrolysis as thermochemical technologies was used for organic agro-industrial waste treatment. Biochar produced by pyrolysis of fig pomace at 500 °C were characterized and investigated as adsorbents for the removal of Pb2+ ions from aqueous solution. Fig pomace before and after pyrolysis was characterized using proximate, inorganic and elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Biochar has a carbon matrix with a high degree of porosity and large surface area, suggesting that it can be used as a surface adsorbent and thus have a significant role in controlling environmental contaminants. The surface modification by gamma irradiation was done to enhance the adsorption capacity of biochar. The Pb2+ ions contents in aqueous solution were analyzed using ICP-OES. The adsorption capacity was estimated using the Freundlich and Langmuir model. The results of this work suggest that pyrolysis and irradiation of biomass is a promising way to produce efficient heavy metal sorbents for waste-water treatment.",
publisher = "RAD Centre, Niš, Serbia",
journal = "RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; June 13-17; Herceg Novi, Montenegro",
title = "Cross-linked bio/inorganically modified urea-formaldehyde
resins: Influence of γ-radiation on formaldehyde content",
pages = "61",
doi = "10.21175/rad.spr.abstr.book.2022.16.5"
}
Ristić, M., Samaržija-Jovanović, S., Jovanović, V., Petković, B., Kostić, M., Jovanović, T., Marković, G.,& Marinović-Cincović, M.. (2022). Cross-linked bio/inorganically modified urea-formaldehyde
resins: Influence of γ-radiation on formaldehyde content. in RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; June 13-17; Herceg Novi, Montenegro
RAD Centre, Niš, Serbia., 61.
https://doi.org/10.21175/rad.spr.abstr.book.2022.16.5
Ristić M, Samaržija-Jovanović S, Jovanović V, Petković B, Kostić M, Jovanović T, Marković G, Marinović-Cincović M. Cross-linked bio/inorganically modified urea-formaldehyde
resins: Influence of γ-radiation on formaldehyde content. in RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; June 13-17; Herceg Novi, Montenegro. 2022;:61.
doi:10.21175/rad.spr.abstr.book.2022.16.5 .
Ristić, Mirjana, Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Petković, Branka, Kostić, Marija, Jovanović, Tijana, Marković, Gordana, Marinović-Cincović, Milena, "Cross-linked bio/inorganically modified urea-formaldehyde
resins: Influence of γ-radiation on formaldehyde content" in RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; June 13-17; Herceg Novi, Montenegro (2022):61,
https://doi.org/10.21175/rad.spr.abstr.book.2022.16.5 . .

Influence of modified montmorillonites on formaldehyde content in urea-formaldehyde/montmorillonite composites

Ristić, Mirjana; Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Kostić, Marija; Jovanović, Tijana; Marković, Gordana; Marinović-Cincović, Milena

(Novi Sad : University of Novi Sad, Faculty of Technology, 2022)

TY  - CONF
AU  - Ristić, Mirjana
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Kostić, Marija
AU  - Jovanović, Tijana
AU  - Marković, Gordana
AU  - Marinović-Cincović, Milena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12248
AB  - The effect of different montmorillonites (KSF and K10) and their modifications (Na-KSF, Na-K10) on content of formaldehyde-FA (free and liberated) modified urea-formaldehyde (UF) composites was investigated. KSF and K10 were modified by sodium chloride (NaCl). A total of four samples were synthesized, with the designations UF/KSF, UF/Na-KSF, UF/K10, and UF/Na-K10, under the same conditions. The content of free FA was determined by the bisulfite method. The hydrolytic stability of modified UF resin was determined by measuring the concentration of liberated FA of modified UF composites after acid hydrolysis. The specific surface area of the tested montmorillonites was determined by the Sear's method. Higher values of specific surface area were obtained for pure KSF (149.4 m2/g) compared to modified Na-KSF (48.6 m2/g). Specific surface area for pure K10 was 111 m 2/g, compared to value of 71 m2/g for modified Na-K10. The amount of free and liberated FA was 0.4%, 0.12% and 1.2% and 2.3%, respectively for UF/KSF and UF/Na-KSF composite. The values for free FA for UF/K10 and UF/Na-K10 composite are the same and amount to 0.6%. It was concluded that the UF/Na-KSF composite has a smaller content of free FA (0.12%) compared to other UF composites. The UF/KSF composite has a higher resistance to acidic hydrolysis and lower liberated FA percent (1.2%).
PB  - Novi Sad : University of Novi Sad, Faculty of Technology
C3  - 2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad
T1  - Influence of modified montmorillonites on formaldehyde content in urea-formaldehyde/montmorillonite composites
SP  - 122
EP  - 122
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12248
ER  - 
@conference{
author = "Ristić, Mirjana and Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Kostić, Marija and Jovanović, Tijana and Marković, Gordana and Marinović-Cincović, Milena",
year = "2022",
abstract = "The effect of different montmorillonites (KSF and K10) and their modifications (Na-KSF, Na-K10) on content of formaldehyde-FA (free and liberated) modified urea-formaldehyde (UF) composites was investigated. KSF and K10 were modified by sodium chloride (NaCl). A total of four samples were synthesized, with the designations UF/KSF, UF/Na-KSF, UF/K10, and UF/Na-K10, under the same conditions. The content of free FA was determined by the bisulfite method. The hydrolytic stability of modified UF resin was determined by measuring the concentration of liberated FA of modified UF composites after acid hydrolysis. The specific surface area of the tested montmorillonites was determined by the Sear's method. Higher values of specific surface area were obtained for pure KSF (149.4 m2/g) compared to modified Na-KSF (48.6 m2/g). Specific surface area for pure K10 was 111 m 2/g, compared to value of 71 m2/g for modified Na-K10. The amount of free and liberated FA was 0.4%, 0.12% and 1.2% and 2.3%, respectively for UF/KSF and UF/Na-KSF composite. The values for free FA for UF/K10 and UF/Na-K10 composite are the same and amount to 0.6%. It was concluded that the UF/Na-KSF composite has a smaller content of free FA (0.12%) compared to other UF composites. The UF/KSF composite has a higher resistance to acidic hydrolysis and lower liberated FA percent (1.2%).",
publisher = "Novi Sad : University of Novi Sad, Faculty of Technology",
journal = "2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad",
title = "Influence of modified montmorillonites on formaldehyde content in urea-formaldehyde/montmorillonite composites",
pages = "122-122",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12248"
}
Ristić, M., Samaržija-Jovanović, S., Jovanović, V., Kostić, M., Jovanović, T., Marković, G.,& Marinović-Cincović, M.. (2022). Influence of modified montmorillonites on formaldehyde content in urea-formaldehyde/montmorillonite composites. in 2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad
Novi Sad : University of Novi Sad, Faculty of Technology., 122-122.
https://hdl.handle.net/21.15107/rcub_vinar_12248
Ristić M, Samaržija-Jovanović S, Jovanović V, Kostić M, Jovanović T, Marković G, Marinović-Cincović M. Influence of modified montmorillonites on formaldehyde content in urea-formaldehyde/montmorillonite composites. in 2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad. 2022;:122-122.
https://hdl.handle.net/21.15107/rcub_vinar_12248 .
Ristić, Mirjana, Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Kostić, Marija, Jovanović, Tijana, Marković, Gordana, Marinović-Cincović, Milena, "Influence of modified montmorillonites on formaldehyde content in urea-formaldehyde/montmorillonite composites" in 2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad (2022):122-122,
https://hdl.handle.net/21.15107/rcub_vinar_12248 .

Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size

Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Jovanović, Tijana; Kostić, Marija; Petković, Branka; Marković, Gordana; Marinović-Cincović, Milena

(2022)

TY  - JOUR
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Jovanović, Tijana
AU  - Kostić, Marija
AU  - Petković, Branka
AU  - Marković, Gordana
AU  - Marinović-Cincović, Milena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10193
AB  - Urea-formaldehyde (UF) composites with a formaldehyde/urea (FA/U) ratio = 0.8 and different particle sizes of montmorillonite (MMT), namely UF/KSF and UF/K10 were synthesized. The hydrolytic stability of modified UF composites was determined by measuring the content of the liberated formaldehyde of modified UF composites after acid hydrolysis. The synthesized modified UF composites were irradiated (50 kGy) and the effect of γ–irradiation was evaluated on the basis of these thermal behaviors. The thermal behavior was studied by non-isothermal thermo-gravimetric analysis (TG), differential thermo-gravimetry (DTG), and differential thermal analysis (DTA) supported by data from Fourier transform infrared spectroscopy (FTIR). The minimum percentages of free (0.4%) and liberated (1.2%) formaldehyde were obtained in the UF/KSF composite. The modified UF/KSF composite shows better radiation resistance than the modified UF/K10 composite. The shift of temperature values for the selected mass losses (T5%) to higher temperatures indicates an increase in the thermal stability of the UF/K10 composite after γ–irradiation. γ–irradiation causes a decrease in the absorption intensity of bands in the FTIR spectrum of a modified UF/KSF composite and an increase in the absorption intensity of bands in the FTIR spectrum of a modified UF/K10 composite. © 2022 Elsevier Ltd
T2  - International Journal of Adhesion and Adhesives
T1  - Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size
VL  - 115
SP  - 103131
DO  - 10.1016/j.ijadhadh.2022.103131
ER  - 
@article{
author = "Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Jovanović, Tijana and Kostić, Marija and Petković, Branka and Marković, Gordana and Marinović-Cincović, Milena",
year = "2022",
abstract = "Urea-formaldehyde (UF) composites with a formaldehyde/urea (FA/U) ratio = 0.8 and different particle sizes of montmorillonite (MMT), namely UF/KSF and UF/K10 were synthesized. The hydrolytic stability of modified UF composites was determined by measuring the content of the liberated formaldehyde of modified UF composites after acid hydrolysis. The synthesized modified UF composites were irradiated (50 kGy) and the effect of γ–irradiation was evaluated on the basis of these thermal behaviors. The thermal behavior was studied by non-isothermal thermo-gravimetric analysis (TG), differential thermo-gravimetry (DTG), and differential thermal analysis (DTA) supported by data from Fourier transform infrared spectroscopy (FTIR). The minimum percentages of free (0.4%) and liberated (1.2%) formaldehyde were obtained in the UF/KSF composite. The modified UF/KSF composite shows better radiation resistance than the modified UF/K10 composite. The shift of temperature values for the selected mass losses (T5%) to higher temperatures indicates an increase in the thermal stability of the UF/K10 composite after γ–irradiation. γ–irradiation causes a decrease in the absorption intensity of bands in the FTIR spectrum of a modified UF/KSF composite and an increase in the absorption intensity of bands in the FTIR spectrum of a modified UF/K10 composite. © 2022 Elsevier Ltd",
journal = "International Journal of Adhesion and Adhesives",
title = "Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size",
volume = "115",
pages = "103131",
doi = "10.1016/j.ijadhadh.2022.103131"
}
Samaržija-Jovanović, S., Jovanović, V., Jovanović, T., Kostić, M., Petković, B., Marković, G.,& Marinović-Cincović, M.. (2022). Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size. in International Journal of Adhesion and Adhesives, 115, 103131.
https://doi.org/10.1016/j.ijadhadh.2022.103131
Samaržija-Jovanović S, Jovanović V, Jovanović T, Kostić M, Petković B, Marković G, Marinović-Cincović M. Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size. in International Journal of Adhesion and Adhesives. 2022;115:103131.
doi:10.1016/j.ijadhadh.2022.103131 .
Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Jovanović, Tijana, Kostić, Marija, Petković, Branka, Marković, Gordana, Marinović-Cincović, Milena, "Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size" in International Journal of Adhesion and Adhesives, 115 (2022):103131,
https://doi.org/10.1016/j.ijadhadh.2022.103131 . .
3
3

Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid

Petković, Branka B.; Ognjanović, Miloš; Antić, Bratislav; Viktorovich Avdin, Vyacheslav; Manojlović, Dragan D.; Vranješ-Đurić, Sanja; Stanković, Dalibor M.

(2021)

TY  - JOUR
AU  - Petković, Branka B.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Viktorovich Avdin, Vyacheslav
AU  - Manojlović, Dragan D.
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor M.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9672
AB  - The homemade, porous carbon material, thermolysis prepared from Novolac phenol-formaldehyde resin, in situ modified with Co3O4 nanoparticles and mixed with single-wall carbon nanotubes, was used in selective sensing of prominent antioxidant α-lipoic acid (LA). XRD, SEM and EIS measurements were used for characterization of material composition, structure, morphology and improved conductivity. The quantification of LA at TPCo3O4&SWCNTCPE was done by a square-wave voltammetric technique in BR buffer solution at pH 6. The linear working range was recorded from 2 to 100 μM of LA and the proposed electrode material was successfully applied in the determination of LA in dietary supplements.
T2  - Electroanalysis
T2  - Electroanalysis
T1  - Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid
VL  - 33
IS  - 2
SP  - 446
EP  - 454
DO  - 10.1002/elan.202060290
ER  - 
@article{
author = "Petković, Branka B. and Ognjanović, Miloš and Antić, Bratislav and Viktorovich Avdin, Vyacheslav and Manojlović, Dragan D. and Vranješ-Đurić, Sanja and Stanković, Dalibor M.",
year = "2021",
abstract = "The homemade, porous carbon material, thermolysis prepared from Novolac phenol-formaldehyde resin, in situ modified with Co3O4 nanoparticles and mixed with single-wall carbon nanotubes, was used in selective sensing of prominent antioxidant α-lipoic acid (LA). XRD, SEM and EIS measurements were used for characterization of material composition, structure, morphology and improved conductivity. The quantification of LA at TPCo3O4&SWCNTCPE was done by a square-wave voltammetric technique in BR buffer solution at pH 6. The linear working range was recorded from 2 to 100 μM of LA and the proposed electrode material was successfully applied in the determination of LA in dietary supplements.",
journal = "Electroanalysis, Electroanalysis",
title = "Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid",
volume = "33",
number = "2",
pages = "446-454",
doi = "10.1002/elan.202060290"
}
Petković, B. B., Ognjanović, M., Antić, B., Viktorovich Avdin, V., Manojlović, D. D., Vranješ-Đurić, S.,& Stanković, D. M.. (2021). Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid. in Electroanalysis, 33(2), 446-454.
https://doi.org/10.1002/elan.202060290
Petković BB, Ognjanović M, Antić B, Viktorovich Avdin V, Manojlović DD, Vranješ-Đurić S, Stanković DM. Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid. in Electroanalysis. 2021;33(2):446-454.
doi:10.1002/elan.202060290 .
Petković, Branka B., Ognjanović, Miloš, Antić, Bratislav, Viktorovich Avdin, Vyacheslav, Manojlović, Dragan D., Vranješ-Đurić, Sanja, Stanković, Dalibor M., "Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid" in Electroanalysis, 33, no. 2 (2021):446-454,
https://doi.org/10.1002/elan.202060290 . .
9
5
7

CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine

Stanković, Dalibor M.; Ognjanović, Miloš; Fabián, Martin; Avdin, Vyacheslav Viktorovich; Manojlović, Dragan D.; Vranješ-Đurić, Sanja; Petković, Branka B.

(2021)

TY  - JOUR
AU  - Stanković, Dalibor M.
AU  - Ognjanović, Miloš
AU  - Fabián, Martin
AU  - Avdin, Vyacheslav Viktorovich
AU  - Manojlović, Dragan D.
AU  - Vranješ-Đurić, Sanja
AU  - Petković, Branka B.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9828
AB  - The goal of this work was to develop green electrode material that unites all advantages of domestic made, synthesized porous carbon powder and ceria dioxide nanoparticles known due to exceptional catalytic properties. Thermal decomposition of Novolac phenol-formaldehyde resin and cerium sulfate resulting in producing a high-performance CeO2 porous carbon material highly sensitive to dopamine (DA) electrooxidation. Morphological and structural characteristics of the material were determined by SEM and XRD measurements, while electrochemical characterization was performed by EIS and CV. The sensitivity of DA determination on the proposed CeO2-doped carbon material was enhanced by adding multi-wall carbon nanotubes to finally prepare a mixture for a specific carbon paste electrode (TPCeO2&MWCNT@CPE). SWV technique was used for quantification of dopamine in Britton-Robinson buffer pH 6 in the concentration range of 0.5-100 μM of DA, with the detection limit of 0.14 μM and quantification limit of 0.44 μM. Good selectivity overstudied bioactive compounds enables the successful and efficient application of the proposed electrode and developed an analytical procedure for the determination of dopamine in spiked urine samples.
T2  - Surfaces and Interfaces
T1  - CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine
VL  - 25
SP  - 101211
DO  - 10.1016/j.surfin.2021.101211
ER  - 
@article{
author = "Stanković, Dalibor M. and Ognjanović, Miloš and Fabián, Martin and Avdin, Vyacheslav Viktorovich and Manojlović, Dragan D. and Vranješ-Đurić, Sanja and Petković, Branka B.",
year = "2021",
abstract = "The goal of this work was to develop green electrode material that unites all advantages of domestic made, synthesized porous carbon powder and ceria dioxide nanoparticles known due to exceptional catalytic properties. Thermal decomposition of Novolac phenol-formaldehyde resin and cerium sulfate resulting in producing a high-performance CeO2 porous carbon material highly sensitive to dopamine (DA) electrooxidation. Morphological and structural characteristics of the material were determined by SEM and XRD measurements, while electrochemical characterization was performed by EIS and CV. The sensitivity of DA determination on the proposed CeO2-doped carbon material was enhanced by adding multi-wall carbon nanotubes to finally prepare a mixture for a specific carbon paste electrode (TPCeO2&MWCNT@CPE). SWV technique was used for quantification of dopamine in Britton-Robinson buffer pH 6 in the concentration range of 0.5-100 μM of DA, with the detection limit of 0.14 μM and quantification limit of 0.44 μM. Good selectivity overstudied bioactive compounds enables the successful and efficient application of the proposed electrode and developed an analytical procedure for the determination of dopamine in spiked urine samples.",
journal = "Surfaces and Interfaces",
title = "CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine",
volume = "25",
pages = "101211",
doi = "10.1016/j.surfin.2021.101211"
}
Stanković, D. M., Ognjanović, M., Fabián, M., Avdin, V. V., Manojlović, D. D., Vranješ-Đurić, S.,& Petković, B. B.. (2021). CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine. in Surfaces and Interfaces, 25, 101211.
https://doi.org/10.1016/j.surfin.2021.101211
Stanković DM, Ognjanović M, Fabián M, Avdin VV, Manojlović DD, Vranješ-Đurić S, Petković BB. CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine. in Surfaces and Interfaces. 2021;25:101211.
doi:10.1016/j.surfin.2021.101211 .
Stanković, Dalibor M., Ognjanović, Miloš, Fabián, Martin, Avdin, Vyacheslav Viktorovich, Manojlović, Dragan D., Vranješ-Đurić, Sanja, Petković, Branka B., "CeO2-doped – domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine" in Surfaces and Interfaces, 25 (2021):101211,
https://doi.org/10.1016/j.surfin.2021.101211 . .
4
2
3

Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites

Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Petković, Branka; Jovanović, Tijana; Marković, Gordana; Porobić, Slavica; Papan, Jelena; Marinović-Cincović, Milena

(2020)

TY  - JOUR
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Petković, Branka
AU  - Jovanović, Tijana
AU  - Marković, Gordana
AU  - Porobić, Slavica
AU  - Papan, Jelena
AU  - Marinović-Cincović, Milena
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9012
AB  - Urea-formaldehyde resin (F/U ratio of 0.8)/thermally activated montmorillonite (UF/Delta TK10) nanocomposite was synthesized. The hydrolytical, thermal, and UV radiation stability of UF/Delta TK10 nanocomposites are determined. UF hybrid nanocomposites have been irradiated with UV light with a wavelength of 254 nm and 366 nm, and after that, their radiation stability was evaluated. The free formaldehyde (FA) percentage in all prepared samples was determined. The sample was characterized by using X-ray diffraction analysis (XRD), nonisothermal thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential thermal gravimetry (DTG), with infrared (FTIR) spectroscopy. Crosslinked UF/Delta TK10 nanocomposite shows the highest resistance to acid hydrolysis after UV irradiation at a wavelength of 254 nm. The values for T-5% are identical for the unirradiated and UV irradiated (wavelength of 366 nm) UF/Delta TK10 nanocomposite. It can be concluded that this sample is thermally most stable and shows good resistance to UV irradiation.
T2  - Polymer Composites
T1  - Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites
VL  - 41
IS  - 9
SP  - 3575
EP  - 3584
DO  - 10.1002/pc.25644
ER  - 
@article{
author = "Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Petković, Branka and Jovanović, Tijana and Marković, Gordana and Porobić, Slavica and Papan, Jelena and Marinović-Cincović, Milena",
year = "2020",
abstract = "Urea-formaldehyde resin (F/U ratio of 0.8)/thermally activated montmorillonite (UF/Delta TK10) nanocomposite was synthesized. The hydrolytical, thermal, and UV radiation stability of UF/Delta TK10 nanocomposites are determined. UF hybrid nanocomposites have been irradiated with UV light with a wavelength of 254 nm and 366 nm, and after that, their radiation stability was evaluated. The free formaldehyde (FA) percentage in all prepared samples was determined. The sample was characterized by using X-ray diffraction analysis (XRD), nonisothermal thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential thermal gravimetry (DTG), with infrared (FTIR) spectroscopy. Crosslinked UF/Delta TK10 nanocomposite shows the highest resistance to acid hydrolysis after UV irradiation at a wavelength of 254 nm. The values for T-5% are identical for the unirradiated and UV irradiated (wavelength of 366 nm) UF/Delta TK10 nanocomposite. It can be concluded that this sample is thermally most stable and shows good resistance to UV irradiation.",
journal = "Polymer Composites",
title = "Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites",
volume = "41",
number = "9",
pages = "3575-3584",
doi = "10.1002/pc.25644"
}
Samaržija-Jovanović, S., Jovanović, V., Petković, B., Jovanović, T., Marković, G., Porobić, S., Papan, J.,& Marinović-Cincović, M.. (2020). Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites. in Polymer Composites, 41(9), 3575-3584.
https://doi.org/10.1002/pc.25644
Samaržija-Jovanović S, Jovanović V, Petković B, Jovanović T, Marković G, Porobić S, Papan J, Marinović-Cincović M. Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites. in Polymer Composites. 2020;41(9):3575-3584.
doi:10.1002/pc.25644 .
Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Petković, Branka, Jovanović, Tijana, Marković, Gordana, Porobić, Slavica, Papan, Jelena, Marinović-Cincović, Milena, "Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites" in Polymer Composites, 41, no. 9 (2020):3575-3584,
https://doi.org/10.1002/pc.25644 . .
11
2
9