Multilateral scientific and technological cooperation in the Danube region [DS021]

Link to this page

Multilateral scientific and technological cooperation in the Danube region [DS021]

Authors

Publications

Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films

Stanković, Nenad K.; Bodik, Michal; Šiffalovič, Peter; Kotlar, Mario; Mičušik, Matej; Špitalsky, Zdenko; Danko, Martin; Milivojević, Dušan; Kleinova, Angela; Kubat, Pavel; Capakova, Zdenka; Humpoliček, Petr; Lehocky, Marian; Todorović-Marković, Biljana; Marković, Zoran M.

(2018)

TY  - JOUR
AU  - Stanković, Nenad K.
AU  - Bodik, Michal
AU  - Šiffalovič, Peter
AU  - Kotlar, Mario
AU  - Mičušik, Matej
AU  - Špitalsky, Zdenko
AU  - Danko, Martin
AU  - Milivojević, Dušan
AU  - Kleinova, Angela
AU  - Kubat, Pavel
AU  - Capakova, Zdenka
AU  - Humpoliček, Petr
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Marković, Zoran M.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7653
AB  - Inimitable properties of carbon quantum dots as well as a cheap production contribute to their possible application in biomedicine especially as antibacterial and antibiofouling coatings. Fluorescent hydrophobic carbon quantum dots are synthesized by bottom-up condensation method and used for deposition of uniform and homogeneous Langmuir-Blodgett thin films on different substrates. It is found that this kind of quantum dots generates singlet oxygen under blue light irradiation. Antibacterial and antibiofouling testing on four different bacteria strains (Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa) reveals enhanced antibacterial and antibiofouling activity of hydrophobic carbon dots thin films under blue light irradiation. Moreover, hydrophobic quantum dots show noncytotoxic effect on mouse fibroblast cell line. These properties enable potential usage of hydrophobic carbon quantum dots thin films as excellent antibacterial and antibiofouling coatings for different biomedical applications.
T2  - ACS Sustainable Chemistry and Engineering
T1  - Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films
VL  - 6
IS  - 3
SP  - 4154
EP  - 4163
DO  - 10.1021/acssuschemeng.7b04566
ER  - 
@article{
author = "Stanković, Nenad K. and Bodik, Michal and Šiffalovič, Peter and Kotlar, Mario and Mičušik, Matej and Špitalsky, Zdenko and Danko, Martin and Milivojević, Dušan and Kleinova, Angela and Kubat, Pavel and Capakova, Zdenka and Humpoliček, Petr and Lehocky, Marian and Todorović-Marković, Biljana and Marković, Zoran M.",
year = "2018",
abstract = "Inimitable properties of carbon quantum dots as well as a cheap production contribute to their possible application in biomedicine especially as antibacterial and antibiofouling coatings. Fluorescent hydrophobic carbon quantum dots are synthesized by bottom-up condensation method and used for deposition of uniform and homogeneous Langmuir-Blodgett thin films on different substrates. It is found that this kind of quantum dots generates singlet oxygen under blue light irradiation. Antibacterial and antibiofouling testing on four different bacteria strains (Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa) reveals enhanced antibacterial and antibiofouling activity of hydrophobic carbon dots thin films under blue light irradiation. Moreover, hydrophobic quantum dots show noncytotoxic effect on mouse fibroblast cell line. These properties enable potential usage of hydrophobic carbon quantum dots thin films as excellent antibacterial and antibiofouling coatings for different biomedical applications.",
journal = "ACS Sustainable Chemistry and Engineering",
title = "Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films",
volume = "6",
number = "3",
pages = "4154-4163",
doi = "10.1021/acssuschemeng.7b04566"
}
Stanković, N. K., Bodik, M., Šiffalovič, P., Kotlar, M., Mičušik, M., Špitalsky, Z., Danko, M., Milivojević, D., Kleinova, A., Kubat, P., Capakova, Z., Humpoliček, P., Lehocky, M., Todorović-Marković, B.,& Marković, Z. M.. (2018). Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films. in ACS Sustainable Chemistry and Engineering, 6(3), 4154-4163.
https://doi.org/10.1021/acssuschemeng.7b04566
Stanković NK, Bodik M, Šiffalovič P, Kotlar M, Mičušik M, Špitalsky Z, Danko M, Milivojević D, Kleinova A, Kubat P, Capakova Z, Humpoliček P, Lehocky M, Todorović-Marković B, Marković ZM. Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films. in ACS Sustainable Chemistry and Engineering. 2018;6(3):4154-4163.
doi:10.1021/acssuschemeng.7b04566 .
Stanković, Nenad K., Bodik, Michal, Šiffalovič, Peter, Kotlar, Mario, Mičušik, Matej, Špitalsky, Zdenko, Danko, Martin, Milivojević, Dušan, Kleinova, Angela, Kubat, Pavel, Capakova, Zdenka, Humpoliček, Petr, Lehocky, Marian, Todorović-Marković, Biljana, Marković, Zoran M., "Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films" in ACS Sustainable Chemistry and Engineering, 6, no. 3 (2018):4154-4163,
https://doi.org/10.1021/acssuschemeng.7b04566 . .
111
57
96

Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria

Marković, Zoran M.; Jovanović, Svetlana P.; Mašković, Pavle Z.; Danko, Martin; Mičušik, Matej; Pavlović, Vladimir B.; Milivojević, Dušan; Kleinova, Angela; Špitalsky, Zdenko; Todorović-Marković, Biljana

(2018)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Mašković, Pavle Z.
AU  - Danko, Martin
AU  - Mičušik, Matej
AU  - Pavlović, Vladimir B.
AU  - Milivojević, Dušan
AU  - Kleinova, Angela
AU  - Špitalsky, Zdenko
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7880
AB  - Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.
T2  - RSC Advances
T1  - Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria
VL  - 8
IS  - 55
SP  - 31337
EP  - 31347
DO  - 10.1039/C8RA04664F
ER  - 
@article{
author = "Marković, Zoran M. and Jovanović, Svetlana P. and Mašković, Pavle Z. and Danko, Martin and Mičušik, Matej and Pavlović, Vladimir B. and Milivojević, Dušan and Kleinova, Angela and Špitalsky, Zdenko and Todorović-Marković, Biljana",
year = "2018",
abstract = "Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.",
journal = "RSC Advances",
title = "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria",
volume = "8",
number = "55",
pages = "31337-31347",
doi = "10.1039/C8RA04664F"
}
Marković, Z. M., Jovanović, S. P., Mašković, P. Z., Danko, M., Mičušik, M., Pavlović, V. B., Milivojević, D., Kleinova, A., Špitalsky, Z.,& Todorović-Marković, B.. (2018). Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances, 8(55), 31337-31347.
https://doi.org/10.1039/C8RA04664F
Marković ZM, Jovanović SP, Mašković PZ, Danko M, Mičušik M, Pavlović VB, Milivojević D, Kleinova A, Špitalsky Z, Todorović-Marković B. Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances. 2018;8(55):31337-31347.
doi:10.1039/C8RA04664F .
Marković, Zoran M., Jovanović, Svetlana P., Mašković, Pavle Z., Danko, Martin, Mičušik, Matej, Pavlović, Vladimir B., Milivojević, Dušan, Kleinova, Angela, Špitalsky, Zdenko, Todorović-Marković, Biljana, "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria" in RSC Advances, 8, no. 55 (2018):31337-31347,
https://doi.org/10.1039/C8RA04664F . .
1
71
25
66

Antibacterial potential of electrochemically exfoliated graphene sheets

Marković, Zoran M.; Matijašević, Danka; Pavlović, Vladimir B.; Jovanović, Svetlana P.; Holclajtner-Antunović, Ivanka D.; Špitalsky, Zdenko; Mičušik, Matej; Dramićanin, Miroslav; Milivojević, Dušan; Nikšić, Miomir P.; Todorović-Marković, Biljana

(2017)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Matijašević, Danka
AU  - Pavlović, Vladimir B.
AU  - Jovanović, Svetlana P.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Špitalsky, Zdenko
AU  - Mičušik, Matej
AU  - Dramićanin, Miroslav
AU  - Milivojević, Dušan
AU  - Nikšić, Miomir P.
AU  - Todorović-Marković, Biljana
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1576
AB  - Electrochemically exfoliated graphene is functionalized graphene with potential application in biomedicine. Two most relevant biological features of this material are its electrical conductivity and excellent water dispersibility. In this study we have tried to establish the correlation between graphene structure and its antibacterial properties. The exfoliation process was performed in a two electrode-highly oriented pyrolytic graphite electrochemical cell. Solution of ammonium persulfate was used as an electrolyte. Exfoliated graphene sheets were dispersed in aqueous media and characterized by atomic force microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X photoelectron spectroscopy, X-ray diffraction, electron paramagnetic resonance, zeta potential, contact angle measurements and surface energy. Antibacterial assays have shown lack of the significant antibacterial activity. Major effect on bacteria was slight change of bacteria morphology. Membrane remained intact despite significant change of chemical content of membrane components. (C) 2017 Elsevier Inc. All rights reserved.
T2  - Journal of Colloid and Interface Science
T1  - Antibacterial potential of electrochemically exfoliated graphene sheets
VL  - 500
SP  - 30
EP  - 43
DO  - 10.1016/j.jcis.2017.03.110
ER  - 
@article{
author = "Marković, Zoran M. and Matijašević, Danka and Pavlović, Vladimir B. and Jovanović, Svetlana P. and Holclajtner-Antunović, Ivanka D. and Špitalsky, Zdenko and Mičušik, Matej and Dramićanin, Miroslav and Milivojević, Dušan and Nikšić, Miomir P. and Todorović-Marković, Biljana",
year = "2017",
abstract = "Electrochemically exfoliated graphene is functionalized graphene with potential application in biomedicine. Two most relevant biological features of this material are its electrical conductivity and excellent water dispersibility. In this study we have tried to establish the correlation between graphene structure and its antibacterial properties. The exfoliation process was performed in a two electrode-highly oriented pyrolytic graphite electrochemical cell. Solution of ammonium persulfate was used as an electrolyte. Exfoliated graphene sheets were dispersed in aqueous media and characterized by atomic force microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X photoelectron spectroscopy, X-ray diffraction, electron paramagnetic resonance, zeta potential, contact angle measurements and surface energy. Antibacterial assays have shown lack of the significant antibacterial activity. Major effect on bacteria was slight change of bacteria morphology. Membrane remained intact despite significant change of chemical content of membrane components. (C) 2017 Elsevier Inc. All rights reserved.",
journal = "Journal of Colloid and Interface Science",
title = "Antibacterial potential of electrochemically exfoliated graphene sheets",
volume = "500",
pages = "30-43",
doi = "10.1016/j.jcis.2017.03.110"
}
Marković, Z. M., Matijašević, D., Pavlović, V. B., Jovanović, S. P., Holclajtner-Antunović, I. D., Špitalsky, Z., Mičušik, M., Dramićanin, M., Milivojević, D., Nikšić, M. P.,& Todorović-Marković, B.. (2017). Antibacterial potential of electrochemically exfoliated graphene sheets. in Journal of Colloid and Interface Science, 500, 30-43.
https://doi.org/10.1016/j.jcis.2017.03.110
Marković ZM, Matijašević D, Pavlović VB, Jovanović SP, Holclajtner-Antunović ID, Špitalsky Z, Mičušik M, Dramićanin M, Milivojević D, Nikšić MP, Todorović-Marković B. Antibacterial potential of electrochemically exfoliated graphene sheets. in Journal of Colloid and Interface Science. 2017;500:30-43.
doi:10.1016/j.jcis.2017.03.110 .
Marković, Zoran M., Matijašević, Danka, Pavlović, Vladimir B., Jovanović, Svetlana P., Holclajtner-Antunović, Ivanka D., Špitalsky, Zdenko, Mičušik, Matej, Dramićanin, Miroslav, Milivojević, Dušan, Nikšić, Miomir P., Todorović-Marković, Biljana, "Antibacterial potential of electrochemically exfoliated graphene sheets" in Journal of Colloid and Interface Science, 500 (2017):30-43,
https://doi.org/10.1016/j.jcis.2017.03.110 . .
9
32
22
33