Science and Technology Planning Project of Guangzhou City [201704030020]

Link to this page

Science and Technology Planning Project of Guangzhou City [201704030020]

Authors

Publications

Single‐Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for wLEDs

Wang, Zhengliang; Yang, Zhiyu; Wang, Nan; Zhou, Qiang; Zhou, Jianbang; Ma, Li; Wang, Xiaojun; Xu, Yiqing; Brik, Mikhail G.; Dramićanin, Miroslav; Wu, Mingmei

(2020)

TY  - JOUR
AU  - Wang, Zhengliang
AU  - Yang, Zhiyu
AU  - Wang, Nan
AU  - Zhou, Qiang
AU  - Zhou, Jianbang
AU  - Ma, Li
AU  - Wang, Xiaojun
AU  - Xu, Yiqing
AU  - Brik, Mikhail G.
AU  - Dramićanin, Miroslav
AU  - Wu, Mingmei
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8791
AB  - Crystal phosphors have many unique advantages compared with powdery ones. Herein, room-temperature-grown millimeter-sized single-crystal phosphors of Cs2XF6:Mn4+ (X = Ge, Si, and Ti) with remarkably higher external quantum efficiency than the corresponding powdery samples are reported. In addition, as compared with the powdery ones, the crystal samples exhibit much better stability toward water under different pH conditions. The red light-emitting diodes (LEDs) based on Cs2XF6:Mn4+ crystals show significantly improved luminous efficiency than those based on their corresponding powders. An assembled white LED device composed of the two layers of phosphors, i.e., the crystal (such as Cs2GeF6:Mn4+) and commercial Y3Al5O12:Ce3+, on a blue chip exhibits intense warm white light with high luminous efficiency (up to 193 lm W−1), high color rendering indexes (88), and low correlated color temperatures (3107 K). Hence, these crystals with greatly improved efficiency and stability can be potentially applied in high-quality LED backlighting display and white LED lighting, especially inside the micro-LED devices. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - Advanced Optical Materials
T1  - Single‐Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for wLEDs
VL  - 8
IS  - 6
SP  - 1901512
DO  - 10.1002/adom.201901512
ER  - 
@article{
author = "Wang, Zhengliang and Yang, Zhiyu and Wang, Nan and Zhou, Qiang and Zhou, Jianbang and Ma, Li and Wang, Xiaojun and Xu, Yiqing and Brik, Mikhail G. and Dramićanin, Miroslav and Wu, Mingmei",
year = "2020",
abstract = "Crystal phosphors have many unique advantages compared with powdery ones. Herein, room-temperature-grown millimeter-sized single-crystal phosphors of Cs2XF6:Mn4+ (X = Ge, Si, and Ti) with remarkably higher external quantum efficiency than the corresponding powdery samples are reported. In addition, as compared with the powdery ones, the crystal samples exhibit much better stability toward water under different pH conditions. The red light-emitting diodes (LEDs) based on Cs2XF6:Mn4+ crystals show significantly improved luminous efficiency than those based on their corresponding powders. An assembled white LED device composed of the two layers of phosphors, i.e., the crystal (such as Cs2GeF6:Mn4+) and commercial Y3Al5O12:Ce3+, on a blue chip exhibits intense warm white light with high luminous efficiency (up to 193 lm W−1), high color rendering indexes (88), and low correlated color temperatures (3107 K). Hence, these crystals with greatly improved efficiency and stability can be potentially applied in high-quality LED backlighting display and white LED lighting, especially inside the micro-LED devices. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "Advanced Optical Materials",
title = "Single‐Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for wLEDs",
volume = "8",
number = "6",
pages = "1901512",
doi = "10.1002/adom.201901512"
}
Wang, Z., Yang, Z., Wang, N., Zhou, Q., Zhou, J., Ma, L., Wang, X., Xu, Y., Brik, M. G., Dramićanin, M.,& Wu, M.. (2020). Single‐Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for wLEDs. in Advanced Optical Materials, 8(6), 1901512.
https://doi.org/10.1002/adom.201901512
Wang Z, Yang Z, Wang N, Zhou Q, Zhou J, Ma L, Wang X, Xu Y, Brik MG, Dramićanin M, Wu M. Single‐Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for wLEDs. in Advanced Optical Materials. 2020;8(6):1901512.
doi:10.1002/adom.201901512 .
Wang, Zhengliang, Yang, Zhiyu, Wang, Nan, Zhou, Qiang, Zhou, Jianbang, Ma, Li, Wang, Xiaojun, Xu, Yiqing, Brik, Mikhail G., Dramićanin, Miroslav, Wu, Mingmei, "Single‐Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for wLEDs" in Advanced Optical Materials, 8, no. 6 (2020):1901512,
https://doi.org/10.1002/adom.201901512 . .
50
24
49

Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors

Li, Xiaohui; Zhou, Lei; Hong, Junyu; He, Shiman; Jing, Xiping; Dramićanin, Miroslav; Shi, Jianxin; Wu, Mingmei

(2020)

TY  - JOUR
AU  - Li, Xiaohui
AU  - Zhou, Lei
AU  - Hong, Junyu
AU  - He, Shiman
AU  - Jing, Xiping
AU  - Dramićanin, Miroslav
AU  - Shi, Jianxin
AU  - Wu, Mingmei
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9016
AB  - Modulation of structural order-disorder transition and structural oxygen defects can provide fundamental insights in the optimization of luminescence performances of phosphors. In this study, the luminescence of Ba3ZnTa2O9(BZT) was systematically elucidated, including the emission arising from the charge transfer (Nb5+/Ta5+ O2-) and anti-site oxygen defect emission due to the B-site disordering (defect type: [2ZnNb3-+ 3Vo2+]), as corroborated by the electronic structural calculations and detailed experiments. We present a two-step design for the optimization of luminescence properties of Ba3ZnTa2O9phosphor. In the first step, the B-site equivalent doping (Ta5+substituted by Nb5+) was used to modulate the B-site atomic arrangement, which induced the formation of the cubic phase with B-site full disordering. In the second step, the A-site nonequivalent doping (Ba2+substituted by Eu3+) was used to decrease the oxygen defect concentration. After the two-step optimization, the photoluminescence excitation spectrum of Ba3-yEuyZnNb2O9(y= 0.1) shows a broad band excitation (300-400 nm), which is a good match with the near-UV LED chip emission. Even more importantly, the emission spectrum covers the entire visible spectral region and exhibits a remarkably enhanced emission intensity (a 40 times enhancement when compared to that of the intrinsic BZT). The fabricated LED device comprising an n-UV chip (= 370 nm) and a single-component Ba3-yEuyZnNb2O9(y= 0.1) phosphor coating emits a warm white light with a low correlated color temperature (CCT = 4813 K) and a good color rendering index (Ra= 82.36).
T2  - Journal of Materials Chemistry C
T1  - Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors
VL  - 8
IS  - 20
SP  - 6715
EP  - 6723
DO  - 10.1039/D0TC01201G
ER  - 
@article{
author = "Li, Xiaohui and Zhou, Lei and Hong, Junyu and He, Shiman and Jing, Xiping and Dramićanin, Miroslav and Shi, Jianxin and Wu, Mingmei",
year = "2020",
abstract = "Modulation of structural order-disorder transition and structural oxygen defects can provide fundamental insights in the optimization of luminescence performances of phosphors. In this study, the luminescence of Ba3ZnTa2O9(BZT) was systematically elucidated, including the emission arising from the charge transfer (Nb5+/Ta5+ O2-) and anti-site oxygen defect emission due to the B-site disordering (defect type: [2ZnNb3-+ 3Vo2+]), as corroborated by the electronic structural calculations and detailed experiments. We present a two-step design for the optimization of luminescence properties of Ba3ZnTa2O9phosphor. In the first step, the B-site equivalent doping (Ta5+substituted by Nb5+) was used to modulate the B-site atomic arrangement, which induced the formation of the cubic phase with B-site full disordering. In the second step, the A-site nonequivalent doping (Ba2+substituted by Eu3+) was used to decrease the oxygen defect concentration. After the two-step optimization, the photoluminescence excitation spectrum of Ba3-yEuyZnNb2O9(y= 0.1) shows a broad band excitation (300-400 nm), which is a good match with the near-UV LED chip emission. Even more importantly, the emission spectrum covers the entire visible spectral region and exhibits a remarkably enhanced emission intensity (a 40 times enhancement when compared to that of the intrinsic BZT). The fabricated LED device comprising an n-UV chip (= 370 nm) and a single-component Ba3-yEuyZnNb2O9(y= 0.1) phosphor coating emits a warm white light with a low correlated color temperature (CCT = 4813 K) and a good color rendering index (Ra= 82.36).",
journal = "Journal of Materials Chemistry C",
title = "Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors",
volume = "8",
number = "20",
pages = "6715-6723",
doi = "10.1039/D0TC01201G"
}
Li, X., Zhou, L., Hong, J., He, S., Jing, X., Dramićanin, M., Shi, J.,& Wu, M.. (2020). Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors. in Journal of Materials Chemistry C, 8(20), 6715-6723.
https://doi.org/10.1039/D0TC01201G
Li X, Zhou L, Hong J, He S, Jing X, Dramićanin M, Shi J, Wu M. Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors. in Journal of Materials Chemistry C. 2020;8(20):6715-6723.
doi:10.1039/D0TC01201G .
Li, Xiaohui, Zhou, Lei, Hong, Junyu, He, Shiman, Jing, Xiping, Dramićanin, Miroslav, Shi, Jianxin, Wu, Mingmei, "Structural modulation induced intensity enhancement of full color spectra: A case of Ba3ZnTa2-xNbxO9:Eu3+phosphors" in Journal of Materials Chemistry C, 8, no. 20 (2020):6715-6723,
https://doi.org/10.1039/D0TC01201G . .
12
10
11

Eu3+-Activated Sr3ZnTa2O9 single-component white light phosphors: emission intensity enhancement and color rendering improvement

Li, Xiaohui; Milićević, Bojana R.; Dramićanin, Miroslav; Jing, Xiping; Tang, Qiang; Shi, Jianxin; Wu, Mingmei

(2019)

TY  - JOUR
AU  - Li, Xiaohui
AU  - Milićević, Bojana R.
AU  - Dramićanin, Miroslav
AU  - Jing, Xiping
AU  - Tang, Qiang
AU  - Shi, Jianxin
AU  - Wu, Mingmei
PY  - 2019
UR  - http://xlink.rsc.org/?DOI=C9TC00159J
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8087
AB  - Single-component white light phosphors with a broad and full color spectrum are urgently required to overcome residual problems with commercial phosphors. In this paper, we describe how Eu3+, as the dopant of Sr3ZnTa2O9 (SZT), plays an important role in structural modulation (including structural order-disorder and intrinsic oxygen defects), as demonstrated by electronic structural calculations and systematic experiments. Furthermore, D-5(0) F-7(2) emission of Eu3+ provides the red component of the emission spectrum and increases the color rendering index of SZT:Eu3+ phosphors. Consequently, the resulting phosphor SZT:10%Eu3+ shows significantly enhanced emission intensity, and its broadband emission covers the entire visible region from 400 nm to 720 nm. A fabricated LED device using a near-ultraviolet 370 nm chip coated with a single-component, the SZT:10%Eu3+ phosphor, shows warm white emission with a high color rendering index (R-a = 82).
T2  - Journal of Materials Chemistry C
T1  - Eu3+-Activated Sr3ZnTa2O9 single-component white light phosphors: emission intensity enhancement and color rendering improvement
VL  - 7
IS  - 9
SP  - 2596
EP  - 2603
DO  - 10.1039/C9TC00159J
ER  - 
@article{
author = "Li, Xiaohui and Milićević, Bojana R. and Dramićanin, Miroslav and Jing, Xiping and Tang, Qiang and Shi, Jianxin and Wu, Mingmei",
year = "2019",
abstract = "Single-component white light phosphors with a broad and full color spectrum are urgently required to overcome residual problems with commercial phosphors. In this paper, we describe how Eu3+, as the dopant of Sr3ZnTa2O9 (SZT), plays an important role in structural modulation (including structural order-disorder and intrinsic oxygen defects), as demonstrated by electronic structural calculations and systematic experiments. Furthermore, D-5(0) F-7(2) emission of Eu3+ provides the red component of the emission spectrum and increases the color rendering index of SZT:Eu3+ phosphors. Consequently, the resulting phosphor SZT:10%Eu3+ shows significantly enhanced emission intensity, and its broadband emission covers the entire visible region from 400 nm to 720 nm. A fabricated LED device using a near-ultraviolet 370 nm chip coated with a single-component, the SZT:10%Eu3+ phosphor, shows warm white emission with a high color rendering index (R-a = 82).",
journal = "Journal of Materials Chemistry C",
title = "Eu3+-Activated Sr3ZnTa2O9 single-component white light phosphors: emission intensity enhancement and color rendering improvement",
volume = "7",
number = "9",
pages = "2596-2603",
doi = "10.1039/C9TC00159J"
}
Li, X., Milićević, B. R., Dramićanin, M., Jing, X., Tang, Q., Shi, J.,& Wu, M.. (2019). Eu3+-Activated Sr3ZnTa2O9 single-component white light phosphors: emission intensity enhancement and color rendering improvement. in Journal of Materials Chemistry C, 7(9), 2596-2603.
https://doi.org/10.1039/C9TC00159J
Li X, Milićević BR, Dramićanin M, Jing X, Tang Q, Shi J, Wu M. Eu3+-Activated Sr3ZnTa2O9 single-component white light phosphors: emission intensity enhancement and color rendering improvement. in Journal of Materials Chemistry C. 2019;7(9):2596-2603.
doi:10.1039/C9TC00159J .
Li, Xiaohui, Milićević, Bojana R., Dramićanin, Miroslav, Jing, Xiping, Tang, Qiang, Shi, Jianxin, Wu, Mingmei, "Eu3+-Activated Sr3ZnTa2O9 single-component white light phosphors: emission intensity enhancement and color rendering improvement" in Journal of Materials Chemistry C, 7, no. 9 (2019):2596-2603,
https://doi.org/10.1039/C9TC00159J . .
2
64
41
61