project NSF CREST [HRD-0833184], project NASA [NNX09AV07A]

Link to this page

project NSF CREST [HRD-0833184], project NASA [NNX09AV07A]

Authors

Publications

Structural properties of composites of polyvinylidene fluoride and mechanically activated BaTiO3 particles

Pavlović, Vera P.; Pavlović, Vladimir B.; Vlahović, Branislav; Božanić, Dušan K.; Pajović, Jelena D.; Dojčilović, Radovan; Đoković, Vladimir

(2013)

TY  - JOUR
AU  - Pavlović, Vera P.
AU  - Pavlović, Vladimir B.
AU  - Vlahović, Branislav
AU  - Božanić, Dušan K.
AU  - Pajović, Jelena D.
AU  - Dojčilović, Radovan
AU  - Đoković, Vladimir
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7015
AB  - Nanocomposites of electroactive ceramics and ferroelectric polymers exploit favorable features of the matrix polymer and the nanostructured filler to produce new functional materials for pressure and IR sensors. In this study, the influence of mechanical activation of barium titanate (BaTiO3) particles on the structural properties of BaTiO3/polyvinylidene fluoride (PVDF) nanocomposites was investigated. Nanocomposite films were prepared by the solution casting method and characterized by scanning electron microscopy, x-ray diffraction and Raman spectroscopy. It was found that mechanically activated fillers promote the formation of a ferroelectric beta-phase during crystallization of PVDF.
T2  - Physica Scripta
T1  - Structural properties of composites of polyvinylidene fluoride and mechanically activated BaTiO3 particles
VL  - T157
DO  - 10.1088/0031-8949/2013/T157/014006
ER  - 
@article{
author = "Pavlović, Vera P. and Pavlović, Vladimir B. and Vlahović, Branislav and Božanić, Dušan K. and Pajović, Jelena D. and Dojčilović, Radovan and Đoković, Vladimir",
year = "2013",
abstract = "Nanocomposites of electroactive ceramics and ferroelectric polymers exploit favorable features of the matrix polymer and the nanostructured filler to produce new functional materials for pressure and IR sensors. In this study, the influence of mechanical activation of barium titanate (BaTiO3) particles on the structural properties of BaTiO3/polyvinylidene fluoride (PVDF) nanocomposites was investigated. Nanocomposite films were prepared by the solution casting method and characterized by scanning electron microscopy, x-ray diffraction and Raman spectroscopy. It was found that mechanically activated fillers promote the formation of a ferroelectric beta-phase during crystallization of PVDF.",
journal = "Physica Scripta",
title = "Structural properties of composites of polyvinylidene fluoride and mechanically activated BaTiO3 particles",
volume = "T157",
doi = "10.1088/0031-8949/2013/T157/014006"
}
Pavlović, V. P., Pavlović, V. B., Vlahović, B., Božanić, D. K., Pajović, J. D., Dojčilović, R.,& Đoković, V.. (2013). Structural properties of composites of polyvinylidene fluoride and mechanically activated BaTiO3 particles. in Physica Scripta, T157.
https://doi.org/10.1088/0031-8949/2013/T157/014006
Pavlović VP, Pavlović VB, Vlahović B, Božanić DK, Pajović JD, Dojčilović R, Đoković V. Structural properties of composites of polyvinylidene fluoride and mechanically activated BaTiO3 particles. in Physica Scripta. 2013;T157.
doi:10.1088/0031-8949/2013/T157/014006 .
Pavlović, Vera P., Pavlović, Vladimir B., Vlahović, Branislav, Božanić, Dušan K., Pajović, Jelena D., Dojčilović, Radovan, Đoković, Vladimir, "Structural properties of composites of polyvinylidene fluoride and mechanically activated BaTiO3 particles" in Physica Scripta, T157 (2013),
https://doi.org/10.1088/0031-8949/2013/T157/014006 . .
1
36
22
33