Czech Science Foundation 707 [Project No. 21-20110K]

Link to this page

Czech Science Foundation 707 [Project No. 21-20110K]

Authors

Publications

Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting

Ho, Hsin-Chia; Smiljanić, Milutin; Jovanović, Zoran M.; Čekada, Miha; Kovač, Janez; Koster, Gertjan; Hlinka, Jiří; Hodnik, Nejc; Spreitzer, Matjaž

(2023)

TY  - JOUR
AU  - Ho, Hsin-Chia
AU  - Smiljanić, Milutin
AU  - Jovanović, Zoran M.
AU  - Čekada, Miha
AU  - Kovač, Janez
AU  - Koster, Gertjan
AU  - Hlinka, Jiří
AU  - Hodnik, Nejc
AU  - Spreitzer, Matjaž
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11587
AB  - Development of a robust photocathode using lowcost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device.
T2  - ACS Applied Materials & Interfaces
T1  - Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting
VL  - 15
IS  - 37
SP  - 44482
EP  - 44492
DO  - 10.1021/acsami.3c07747
ER  - 
@article{
author = "Ho, Hsin-Chia and Smiljanić, Milutin and Jovanović, Zoran M. and Čekada, Miha and Kovač, Janez and Koster, Gertjan and Hlinka, Jiří and Hodnik, Nejc and Spreitzer, Matjaž",
year = "2023",
abstract = "Development of a robust photocathode using lowcost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device.",
journal = "ACS Applied Materials & Interfaces",
title = "Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting",
volume = "15",
number = "37",
pages = "44482-44492",
doi = "10.1021/acsami.3c07747"
}
Ho, H., Smiljanić, M., Jovanović, Z. M., Čekada, M., Kovač, J., Koster, G., Hlinka, J., Hodnik, N.,& Spreitzer, M.. (2023). Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting. in ACS Applied Materials & Interfaces, 15(37), 44482-44492.
https://doi.org/10.1021/acsami.3c07747
Ho H, Smiljanić M, Jovanović ZM, Čekada M, Kovač J, Koster G, Hlinka J, Hodnik N, Spreitzer M. Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting. in ACS Applied Materials & Interfaces. 2023;15(37):44482-44492.
doi:10.1021/acsami.3c07747 .
Ho, Hsin-Chia, Smiljanić, Milutin, Jovanović, Zoran M., Čekada, Miha, Kovač, Janez, Koster, Gertjan, Hlinka, Jiří, Hodnik, Nejc, Spreitzer, Matjaž, "Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting" in ACS Applied Materials & Interfaces, 15, no. 37 (2023):44482-44492,
https://doi.org/10.1021/acsami.3c07747 . .
1
2
1