Lithium-ion batteries and fuel cells - research and development

Link to this page

info:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45014/RS//

Lithium-ion batteries and fuel cells - research and development (en)
Литијум-јон батерије и горивне ћелије-истраживање и развој (sr)
Litijum-jon baterije i gorivne ćelije-istraživanje i razvoj (sr_RS)
Authors

Publications

Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid

Mravik, Željko; Bajuk-Bogdanović, Danica V.; Mraković, Ana Đ.; Vukosavljević, Ljubiša; Trajić, Ivan; Kovač, Janez; Peruško, Davor; Gavrilov, Nemanja; Jovanović, Zoran M.

(2021)

TY  - JOUR
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica V.
AU  - Mraković, Ana Đ.
AU  - Vukosavljević, Ljubiša
AU  - Trajić, Ivan
AU  - Kovač, Janez
AU  - Peruško, Davor
AU  - Gavrilov, Nemanja
AU  - Jovanović, Zoran M.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9150
AB  - In recent years polyoxometalates (POMs) have attracted significant research interest due to versatile properties. These properties are determined by the size, structure and elemental composition of POMs and hence play an important role in their application. In the present study, the ion beam irradiation (10 keV C+ ions, 5 × 1014–2.5 × 1015 ions/cm2) has been utilized for modification of physicochemical properties of 120 nm-thick layer of 12-tungstophosphoric acid (WPA). Scanning electron microscopy analysis of irradiated films showed change of morphology i.e. an increase of WPA grain size with irradiation and coalescence of grains at the highest fluence. This was accompanied by structural changes. Attenuated total reflectance Fourier transform infrared analysis revealed that vibration bands of Keggin anion became less pronounced as fluence increased, while Raman spectra appeared as strongly modified. The effect of irradiation with 1.25 × 1015 ions/cm2 on the structure of WPA was similar to the effect of thermal treatment at 600 °C. Irradiation of WPA led to decrease of the band gap (from 4.07 to 3.92 eV), which was correlated to transformation Keggin anions into a network of WO6 octahedra and PO4 tetrahedra. This is in line with increased number of W=Od bonds observed by UV–Visible diffuse reflectance spectroscopy. Beside transformation to bronzes a reduction of WPA was observed by X-ray Photoelectron Spectroscopy (shift to lower binding energy) and Raman methods, whereas the Raman spectra of irradiated samples were similar to heteropoly blue. The electrochemical properties of irradiated WPA were also assessed. Cyclic voltammetry measurements showed that at up to 1.25 × 1015 ions/cm2 lithiation capacity of WPA increases and activity for hydrogen evolution reaction (HER) improves. The highest fluence caused interconnection of WO6 octahedra, closing of lithiation pathways and decrease in the number of active sites for HER. Our results provide a novel insight into the effects of ion beam irradiation on WPA and demonstrate high potential for tuning of physicochemical properties of POMs that are relevant in wide range of applications. © 2021 Elsevier Ltd
T2  - Radiation Physics and Chemistry
T1  - Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid
VL  - 183
SP  - 109422
DO  - 10.1016/j.radphyschem.2021.109422
ER  - 
@article{
author = "Mravik, Željko and Bajuk-Bogdanović, Danica V. and Mraković, Ana Đ. and Vukosavljević, Ljubiša and Trajić, Ivan and Kovač, Janez and Peruško, Davor and Gavrilov, Nemanja and Jovanović, Zoran M.",
year = "2021",
abstract = "In recent years polyoxometalates (POMs) have attracted significant research interest due to versatile properties. These properties are determined by the size, structure and elemental composition of POMs and hence play an important role in their application. In the present study, the ion beam irradiation (10 keV C+ ions, 5 × 1014–2.5 × 1015 ions/cm2) has been utilized for modification of physicochemical properties of 120 nm-thick layer of 12-tungstophosphoric acid (WPA). Scanning electron microscopy analysis of irradiated films showed change of morphology i.e. an increase of WPA grain size with irradiation and coalescence of grains at the highest fluence. This was accompanied by structural changes. Attenuated total reflectance Fourier transform infrared analysis revealed that vibration bands of Keggin anion became less pronounced as fluence increased, while Raman spectra appeared as strongly modified. The effect of irradiation with 1.25 × 1015 ions/cm2 on the structure of WPA was similar to the effect of thermal treatment at 600 °C. Irradiation of WPA led to decrease of the band gap (from 4.07 to 3.92 eV), which was correlated to transformation Keggin anions into a network of WO6 octahedra and PO4 tetrahedra. This is in line with increased number of W=Od bonds observed by UV–Visible diffuse reflectance spectroscopy. Beside transformation to bronzes a reduction of WPA was observed by X-ray Photoelectron Spectroscopy (shift to lower binding energy) and Raman methods, whereas the Raman spectra of irradiated samples were similar to heteropoly blue. The electrochemical properties of irradiated WPA were also assessed. Cyclic voltammetry measurements showed that at up to 1.25 × 1015 ions/cm2 lithiation capacity of WPA increases and activity for hydrogen evolution reaction (HER) improves. The highest fluence caused interconnection of WO6 octahedra, closing of lithiation pathways and decrease in the number of active sites for HER. Our results provide a novel insight into the effects of ion beam irradiation on WPA and demonstrate high potential for tuning of physicochemical properties of POMs that are relevant in wide range of applications. © 2021 Elsevier Ltd",
journal = "Radiation Physics and Chemistry",
title = "Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid",
volume = "183",
pages = "109422",
doi = "10.1016/j.radphyschem.2021.109422"
}
Mravik, Ž., Bajuk-Bogdanović, D. V., Mraković, A. Đ., Vukosavljević, L., Trajić, I., Kovač, J., Peruško, D., Gavrilov, N.,& Jovanović, Z. M.. (2021). Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid. in Radiation Physics and Chemistry, 183, 109422.
https://doi.org/10.1016/j.radphyschem.2021.109422
Mravik Ž, Bajuk-Bogdanović DV, Mraković AĐ, Vukosavljević L, Trajić I, Kovač J, Peruško D, Gavrilov N, Jovanović ZM. Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid. in Radiation Physics and Chemistry. 2021;183:109422.
doi:10.1016/j.radphyschem.2021.109422 .
Mravik, Željko, Bajuk-Bogdanović, Danica V., Mraković, Ana Đ., Vukosavljević, Ljubiša, Trajić, Ivan, Kovač, Janez, Peruško, Davor, Gavrilov, Nemanja, Jovanović, Zoran M., "Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid" in Radiation Physics and Chemistry, 183 (2021):109422,
https://doi.org/10.1016/j.radphyschem.2021.109422 . .
4
4

Composition, structure and potential energy application of nitrogen doped carbon cryogels

Kalijadis, Ana; Gavrilov, Nemanja M.; Jokić, Bojan M.; Gilić, Martina; Krstić, Aleksandar D.; Pašti, Igor A.; Babić, Biljana M.

(2020)

TY  - JOUR
AU  - Kalijadis, Ana
AU  - Gavrilov, Nemanja M.
AU  - Jokić, Bojan M.
AU  - Gilić, Martina
AU  - Krstić, Aleksandar D.
AU  - Pašti, Igor A.
AU  - Babić, Biljana M.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8495
AB  - Resorcinol–formaldehyde (RF) cryogels were synthesized by sol–gel polycondensation of resorcinol with formaldehyde and freeze-drying was carried out with t-butanol. Carbon cryogel (CC) was obtained by pyrolyzing RF cryogels in an inert atmosphere to 950 °C. Nitrogen doped CCs (CCN) were synthesized by introducing melamine into RF precursor mixture solution to obtain nitrogen concentration 2, 6 and 10 wt.%. Material was characterized by elemental analysis, nitrogen adsorption– desorption measurements, scanning electron microscopy (SEM), Raman spectroscopy, FT-IR Spectroscopy. Cyclic voltammetry (CV) was used to investigate capacitive and electrocatalytic properties. Conductivity measurement was also performed. Elemental analysis results confirmed presence of nitrogen in CCN samples in the range from 0.45 to 1.15 wt.%. Raman spectroscopy of the samples showed increase of D and G peak integrated intensity ratio (ID/IG) with nitrogen doping suggesting that the structural disorder as well as edge plane density increase, but according to similar ID/IG values for CCN samples, their share is not directly related to the amount of incorporated N. Characterization by nitrogen adsorption showed that overall specific surface and maximum mesopores are achieved in CCN sample with medium nitrogen concentration. Results of cyclic voltammetry experiments demonstrated maximum capacitance for CCN sample with smallest N wt.% indicating that narrow pore size distribution and high specific surface area are dominant factors to achieve good capacitive behavior. The relatively low doping level of nitrogen reached in CCN samples may be the reason for the incomplete reduction of oxygen to hydroxide and furthermore it turned out that presence of N in the structure of CC had a negligible effect on the otherwise relatively high conductivity of CC. © 2019 Elsevier B.V.
T2  - Materials Chemistry and Physics
T1  - Composition, structure and potential energy application of nitrogen doped carbon cryogels
VL  - 239
SP  - 122120
DO  - 10.1016/j.matchemphys.2019.122120
ER  - 
@article{
author = "Kalijadis, Ana and Gavrilov, Nemanja M. and Jokić, Bojan M. and Gilić, Martina and Krstić, Aleksandar D. and Pašti, Igor A. and Babić, Biljana M.",
year = "2020",
abstract = "Resorcinol–formaldehyde (RF) cryogels were synthesized by sol–gel polycondensation of resorcinol with formaldehyde and freeze-drying was carried out with t-butanol. Carbon cryogel (CC) was obtained by pyrolyzing RF cryogels in an inert atmosphere to 950 °C. Nitrogen doped CCs (CCN) were synthesized by introducing melamine into RF precursor mixture solution to obtain nitrogen concentration 2, 6 and 10 wt.%. Material was characterized by elemental analysis, nitrogen adsorption– desorption measurements, scanning electron microscopy (SEM), Raman spectroscopy, FT-IR Spectroscopy. Cyclic voltammetry (CV) was used to investigate capacitive and electrocatalytic properties. Conductivity measurement was also performed. Elemental analysis results confirmed presence of nitrogen in CCN samples in the range from 0.45 to 1.15 wt.%. Raman spectroscopy of the samples showed increase of D and G peak integrated intensity ratio (ID/IG) with nitrogen doping suggesting that the structural disorder as well as edge plane density increase, but according to similar ID/IG values for CCN samples, their share is not directly related to the amount of incorporated N. Characterization by nitrogen adsorption showed that overall specific surface and maximum mesopores are achieved in CCN sample with medium nitrogen concentration. Results of cyclic voltammetry experiments demonstrated maximum capacitance for CCN sample with smallest N wt.% indicating that narrow pore size distribution and high specific surface area are dominant factors to achieve good capacitive behavior. The relatively low doping level of nitrogen reached in CCN samples may be the reason for the incomplete reduction of oxygen to hydroxide and furthermore it turned out that presence of N in the structure of CC had a negligible effect on the otherwise relatively high conductivity of CC. © 2019 Elsevier B.V.",
journal = "Materials Chemistry and Physics",
title = "Composition, structure and potential energy application of nitrogen doped carbon cryogels",
volume = "239",
pages = "122120",
doi = "10.1016/j.matchemphys.2019.122120"
}
Kalijadis, A., Gavrilov, N. M., Jokić, B. M., Gilić, M., Krstić, A. D., Pašti, I. A.,& Babić, B. M.. (2020). Composition, structure and potential energy application of nitrogen doped carbon cryogels. in Materials Chemistry and Physics, 239, 122120.
https://doi.org/10.1016/j.matchemphys.2019.122120
Kalijadis A, Gavrilov NM, Jokić BM, Gilić M, Krstić AD, Pašti IA, Babić BM. Composition, structure and potential energy application of nitrogen doped carbon cryogels. in Materials Chemistry and Physics. 2020;239:122120.
doi:10.1016/j.matchemphys.2019.122120 .
Kalijadis, Ana, Gavrilov, Nemanja M., Jokić, Bojan M., Gilić, Martina, Krstić, Aleksandar D., Pašti, Igor A., Babić, Biljana M., "Composition, structure and potential energy application of nitrogen doped carbon cryogels" in Materials Chemistry and Physics, 239 (2020):122120,
https://doi.org/10.1016/j.matchemphys.2019.122120 . .
8
2
9

Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite

Jovanović, Zoran M.; Mravik, Željko; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Marković, Smilja; Vujković, Milica; Kovač, Janez; Vengust, Damjan; Uskoković-Marković, Snežana; Holclajtner-Antunović, Ivanka D.

(2020)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Vujković, Milica
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Uskoković-Marković, Snežana
AU  - Holclajtner-Antunović, Ivanka D.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8520
AB  - In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole. © 2019 Elsevier Ltd
T2  - Carbon
T1  - Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite
VL  - 156
SP  - 166
EP  - 178
DO  - 10.1016/j.carbon.2019.09.072
ER  - 
@article{
author = "Jovanović, Zoran M. and Mravik, Željko and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Marković, Smilja and Vujković, Milica and Kovač, Janez and Vengust, Damjan and Uskoković-Marković, Snežana and Holclajtner-Antunović, Ivanka D.",
year = "2020",
abstract = "In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole. © 2019 Elsevier Ltd",
journal = "Carbon",
title = "Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite",
volume = "156",
pages = "166-178",
doi = "10.1016/j.carbon.2019.09.072"
}
Jovanović, Z. M., Mravik, Ž., Bajuk-Bogdanović, D. V., Jovanović, S., Marković, S., Vujković, M., Kovač, J., Vengust, D., Uskoković-Marković, S.,& Holclajtner-Antunović, I. D.. (2020). Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. in Carbon, 156, 166-178.
https://doi.org/10.1016/j.carbon.2019.09.072
Jovanović ZM, Mravik Ž, Bajuk-Bogdanović DV, Jovanović S, Marković S, Vujković M, Kovač J, Vengust D, Uskoković-Marković S, Holclajtner-Antunović ID. Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. in Carbon. 2020;156:166-178.
doi:10.1016/j.carbon.2019.09.072 .
Jovanović, Zoran M., Mravik, Željko, Bajuk-Bogdanović, Danica V., Jovanović, Sonja, Marković, Smilja, Vujković, Milica, Kovač, Janez, Vengust, Damjan, Uskoković-Marković, Snežana, Holclajtner-Antunović, Ivanka D., "Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite" in Carbon, 156 (2020):166-178,
https://doi.org/10.1016/j.carbon.2019.09.072 . .
8
4
7

Pt/C catalyst impregnated with tungsten-oxide – Hydrogen oxidation reaction vs. CO tolerance

Brković, Snežana M.; Nikolić, Vladimir M.; Marčeta Kaninski, Milica; Pašti, Igor A.

(2019)

TY  - JOUR
AU  - Brković, Snežana M.
AU  - Nikolić, Vladimir M.
AU  - Marčeta Kaninski, Milica
AU  - Pašti, Igor A.
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0360319919313576
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8150
AB  - Hydrogen Oxidation Reaction (HOR) is anode reaction in Proton exchange membrane fuel cells (PEMFCs) and it has very fast kinetics. However, the purity of fuel (H 2 ) is very important and can slow down HOR kinetics, affecting the overall PEMFC performance. The performance of commercial Pt/C catalyst impregnated with WO x, as a catalyst for HOR, was investigated using a set of electrochemical methods (cyclic voltammetry, linear scan voltammetry and rotating disk electrode voltammetry). In order to deepen the understanding how WO x species can contribute CO tolerance of Pt/C, a particular attention was paid to CO poisoning. In the absence of CO, HOR is under diffusion limitations and HOR kinetics is not affected by WO x species. Appreciable HOR current on the electrodes pre-saturated with CO ads at potentials above 0.3 V vs. RHE, which is not observed for pure Pt/C, was discussed in details. HOR liming diffusion currents for higher concentrations of W are reached at high anodic potentials. The obtained results were explained by donation of OH ads by WO x phase for CO ads removal in the mid potential region and reduced reactivity of Pt surface sites in the vicinity of the Pt|WO x interface. The obtained results can provide guidelines for development of novel CO tolerant PEMFC anode catalysts. © 2019 Hydrogen Energy Publications LLC
T2  - International Journal of Hydrogen Energy
T1  - Pt/C catalyst impregnated with tungsten-oxide – Hydrogen oxidation reaction vs. CO tolerance
VL  - 44
IS  - 26
SP  - 13364
EP  - 13372
DO  - 10.1016/j.ijhydene.2019.03.270
ER  - 
@article{
author = "Brković, Snežana M. and Nikolić, Vladimir M. and Marčeta Kaninski, Milica and Pašti, Igor A.",
year = "2019",
abstract = "Hydrogen Oxidation Reaction (HOR) is anode reaction in Proton exchange membrane fuel cells (PEMFCs) and it has very fast kinetics. However, the purity of fuel (H 2 ) is very important and can slow down HOR kinetics, affecting the overall PEMFC performance. The performance of commercial Pt/C catalyst impregnated with WO x, as a catalyst for HOR, was investigated using a set of electrochemical methods (cyclic voltammetry, linear scan voltammetry and rotating disk electrode voltammetry). In order to deepen the understanding how WO x species can contribute CO tolerance of Pt/C, a particular attention was paid to CO poisoning. In the absence of CO, HOR is under diffusion limitations and HOR kinetics is not affected by WO x species. Appreciable HOR current on the electrodes pre-saturated with CO ads at potentials above 0.3 V vs. RHE, which is not observed for pure Pt/C, was discussed in details. HOR liming diffusion currents for higher concentrations of W are reached at high anodic potentials. The obtained results were explained by donation of OH ads by WO x phase for CO ads removal in the mid potential region and reduced reactivity of Pt surface sites in the vicinity of the Pt|WO x interface. The obtained results can provide guidelines for development of novel CO tolerant PEMFC anode catalysts. © 2019 Hydrogen Energy Publications LLC",
journal = "International Journal of Hydrogen Energy",
title = "Pt/C catalyst impregnated with tungsten-oxide – Hydrogen oxidation reaction vs. CO tolerance",
volume = "44",
number = "26",
pages = "13364-13372",
doi = "10.1016/j.ijhydene.2019.03.270"
}
Brković, S. M., Nikolić, V. M., Marčeta Kaninski, M.,& Pašti, I. A.. (2019). Pt/C catalyst impregnated with tungsten-oxide – Hydrogen oxidation reaction vs. CO tolerance. in International Journal of Hydrogen Energy, 44(26), 13364-13372.
https://doi.org/10.1016/j.ijhydene.2019.03.270
Brković SM, Nikolić VM, Marčeta Kaninski M, Pašti IA. Pt/C catalyst impregnated with tungsten-oxide – Hydrogen oxidation reaction vs. CO tolerance. in International Journal of Hydrogen Energy. 2019;44(26):13364-13372.
doi:10.1016/j.ijhydene.2019.03.270 .
Brković, Snežana M., Nikolić, Vladimir M., Marčeta Kaninski, Milica, Pašti, Igor A., "Pt/C catalyst impregnated with tungsten-oxide – Hydrogen oxidation reaction vs. CO tolerance" in International Journal of Hydrogen Energy, 44, no. 26 (2019):13364-13372,
https://doi.org/10.1016/j.ijhydene.2019.03.270 . .
18
12
19

Developing an advanced electrocatalyst derived from triangular silver nanoplates@polyvinylpyrrolidone-polyaniline nanocomposites

Stamenović, Una; Vodnik, Vesna; Gavrilov, Nemanja M.; Pašti, Igor A.; Otončar, Mojca; Mitrić, Miodrag; Škapin, Srečo Davor

(2019)

TY  - JOUR
AU  - Stamenović, Una
AU  - Vodnik, Vesna
AU  - Gavrilov, Nemanja M.
AU  - Pašti, Igor A.
AU  - Otončar, Mojca
AU  - Mitrić, Miodrag
AU  - Škapin, Srečo Davor
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8512
AB  - There is a need for developing new and perspective materials for oxygen reduction reaction (ORR) as one of the most essential reactions in the life processes, energy storage, and conversion, in order to exchange the most often used materials based on platinum supported/unsupported substrates, especially carbon supports. Herein, we present low-cost alternative electrode materials consisting of two silver@polyvinylpyrrolidone-polyaniline (Ag@PVP-PANI) nanocomposites that showed great potential as Pt-free ORR electrocatalysts. Simple and effective polymerization processes of aniline in the methanol, using PVP as shape-mediated stabilizator and stimulator of its oxidation by silver ions, led to the formation of nanocomposites with truncated triangular silver nanoparticles dispersed throughout granular and wrinkle-like surfaces of PANI matrix. The behavior of PVP chains in acidic conditions showed great influence on nanocomposites’ conductivities, regardless of the high silver content. Electrocatalytic survey of nanocomposites examined in alkaline media toward ORR pointed out their appreciable activities with high ORR onset potentials. Moreover, for the nanocomposite with lower silver content (18.9 wt. %), the four-electron ORR pathway was evidenced. © 2019 Elsevier B.V.
T2  - Synthetic Metals
T1  - Developing an advanced electrocatalyst derived from triangular silver nanoplates@polyvinylpyrrolidone-polyaniline nanocomposites
VL  - 257
SP  - 116173
DO  - 10.1016/j.synthmet.2019.116173
ER  - 
@article{
author = "Stamenović, Una and Vodnik, Vesna and Gavrilov, Nemanja M. and Pašti, Igor A. and Otončar, Mojca and Mitrić, Miodrag and Škapin, Srečo Davor",
year = "2019",
abstract = "There is a need for developing new and perspective materials for oxygen reduction reaction (ORR) as one of the most essential reactions in the life processes, energy storage, and conversion, in order to exchange the most often used materials based on platinum supported/unsupported substrates, especially carbon supports. Herein, we present low-cost alternative electrode materials consisting of two silver@polyvinylpyrrolidone-polyaniline (Ag@PVP-PANI) nanocomposites that showed great potential as Pt-free ORR electrocatalysts. Simple and effective polymerization processes of aniline in the methanol, using PVP as shape-mediated stabilizator and stimulator of its oxidation by silver ions, led to the formation of nanocomposites with truncated triangular silver nanoparticles dispersed throughout granular and wrinkle-like surfaces of PANI matrix. The behavior of PVP chains in acidic conditions showed great influence on nanocomposites’ conductivities, regardless of the high silver content. Electrocatalytic survey of nanocomposites examined in alkaline media toward ORR pointed out their appreciable activities with high ORR onset potentials. Moreover, for the nanocomposite with lower silver content (18.9 wt. %), the four-electron ORR pathway was evidenced. © 2019 Elsevier B.V.",
journal = "Synthetic Metals",
title = "Developing an advanced electrocatalyst derived from triangular silver nanoplates@polyvinylpyrrolidone-polyaniline nanocomposites",
volume = "257",
pages = "116173",
doi = "10.1016/j.synthmet.2019.116173"
}
Stamenović, U., Vodnik, V., Gavrilov, N. M., Pašti, I. A., Otončar, M., Mitrić, M.,& Škapin, S. D.. (2019). Developing an advanced electrocatalyst derived from triangular silver nanoplates@polyvinylpyrrolidone-polyaniline nanocomposites. in Synthetic Metals, 257, 116173.
https://doi.org/10.1016/j.synthmet.2019.116173
Stamenović U, Vodnik V, Gavrilov NM, Pašti IA, Otončar M, Mitrić M, Škapin SD. Developing an advanced electrocatalyst derived from triangular silver nanoplates@polyvinylpyrrolidone-polyaniline nanocomposites. in Synthetic Metals. 2019;257:116173.
doi:10.1016/j.synthmet.2019.116173 .
Stamenović, Una, Vodnik, Vesna, Gavrilov, Nemanja M., Pašti, Igor A., Otončar, Mojca, Mitrić, Miodrag, Škapin, Srečo Davor, "Developing an advanced electrocatalyst derived from triangular silver nanoplates@polyvinylpyrrolidone-polyaniline nanocomposites" in Synthetic Metals, 257 (2019):116173,
https://doi.org/10.1016/j.synthmet.2019.116173 . .
7
3
6

Detection of Dimethoate Pesticide using Layer by Layer Deposition of PDAC/GO on Ag electrode

Ega, Tharun K; Al-Hamry, Ammar; Kanoun, Olfa; Lazarević-Pašti, Tamara; Bogdanović, Danica B.; Pašti, Igor A.; Rodriguez, Raul D.; Sheremet, Evgeniya; Paterno, Leonardo G.

(IEEE, 2019)

TY  - CONF
AU  - Ega, Tharun K
AU  - Al-Hamry, Ammar
AU  - Kanoun, Olfa
AU  - Lazarević-Pašti, Tamara
AU  - Bogdanović, Danica B.
AU  - Pašti, Igor A.
AU  - Rodriguez, Raul D.
AU  - Sheremet, Evgeniya
AU  - Paterno, Leonardo G.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8665
AB  - Dimethoate (DMT) is an organophosphate pesticide (OP), which is widely used against insects and mites and their control in agriculture. As other OPs, DMT is also an inhibitor of acetylcholinesterase, which is responsible for the disabling of cholinesterase required for the functioning of the central nervous system. This pesticide can invade living cells of the human body through contact or ingestion. We report an electrochemical sensor based on a layer by layer deposition of PDAC/GO on silver electrodes. The sensor fabrication, physical characterization i.e. Raman spectroscopy and scanning electron microscopy of PDAC/GO based films, and its electrochemical characterization are discussed. The detection of DMT by analyzing electrochemical measurements including cyclic voltammetry and impedance spectroscopy shows that functionalization using layer by layer deposition improves electrochemical response and presents a basis for detection of DMT. The highest response is observed in the case of only one PDAC/GO layer which is attributed to the properly balanced interaction between DMT and PDAC/GO layer, and the increase of electrical resistivity of the PDAC/GO layer with its thickness. © 2019 IEEE.
PB  - IEEE
C3  - 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD)
C3  - 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD)
T1  - Detection of Dimethoate Pesticide using Layer by Layer Deposition of PDAC/GO on Ag electrode
SP  - 621
EP  - 625
DO  - 10.1109/SSD.2019.8893253
ER  - 
@conference{
author = "Ega, Tharun K and Al-Hamry, Ammar and Kanoun, Olfa and Lazarević-Pašti, Tamara and Bogdanović, Danica B. and Pašti, Igor A. and Rodriguez, Raul D. and Sheremet, Evgeniya and Paterno, Leonardo G.",
year = "2019",
abstract = "Dimethoate (DMT) is an organophosphate pesticide (OP), which is widely used against insects and mites and their control in agriculture. As other OPs, DMT is also an inhibitor of acetylcholinesterase, which is responsible for the disabling of cholinesterase required for the functioning of the central nervous system. This pesticide can invade living cells of the human body through contact or ingestion. We report an electrochemical sensor based on a layer by layer deposition of PDAC/GO on silver electrodes. The sensor fabrication, physical characterization i.e. Raman spectroscopy and scanning electron microscopy of PDAC/GO based films, and its electrochemical characterization are discussed. The detection of DMT by analyzing electrochemical measurements including cyclic voltammetry and impedance spectroscopy shows that functionalization using layer by layer deposition improves electrochemical response and presents a basis for detection of DMT. The highest response is observed in the case of only one PDAC/GO layer which is attributed to the properly balanced interaction between DMT and PDAC/GO layer, and the increase of electrical resistivity of the PDAC/GO layer with its thickness. © 2019 IEEE.",
publisher = "IEEE",
journal = "2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD)",
title = "Detection of Dimethoate Pesticide using Layer by Layer Deposition of PDAC/GO on Ag electrode",
pages = "621-625",
doi = "10.1109/SSD.2019.8893253"
}
Ega, T. K., Al-Hamry, A., Kanoun, O., Lazarević-Pašti, T., Bogdanović, D. B., Pašti, I. A., Rodriguez, R. D., Sheremet, E.,& Paterno, L. G.. (2019). Detection of Dimethoate Pesticide using Layer by Layer Deposition of PDAC/GO on Ag electrode. in 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD)
IEEE., 621-625.
https://doi.org/10.1109/SSD.2019.8893253
Ega TK, Al-Hamry A, Kanoun O, Lazarević-Pašti T, Bogdanović DB, Pašti IA, Rodriguez RD, Sheremet E, Paterno LG. Detection of Dimethoate Pesticide using Layer by Layer Deposition of PDAC/GO on Ag electrode. in 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD). 2019;:621-625.
doi:10.1109/SSD.2019.8893253 .
Ega, Tharun K, Al-Hamry, Ammar, Kanoun, Olfa, Lazarević-Pašti, Tamara, Bogdanović, Danica B., Pašti, Igor A., Rodriguez, Raul D., Sheremet, Evgeniya, Paterno, Leonardo G., "Detection of Dimethoate Pesticide using Layer by Layer Deposition of PDAC/GO on Ag electrode" in 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD) (2019):621-625,
https://doi.org/10.1109/SSD.2019.8893253 . .
6
3

Electrochemical Sensor based on Reduced Graphene Oxide/PDAC for Dimethoate Pesticide Detection

Al-Hamry, A.; Ega, Tharun K.; Pašti, Igor A.; Bajuk-Bogdanović, Danica V.; Lazarević-Pašti, Tamara; Rodriguez, Raul D.; Sheremet, Evgeniya; Kanoun, Olfa

(2019)

TY  - CONF
AU  - Al-Hamry, A.
AU  - Ega, Tharun K.
AU  - Pašti, Igor A.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Lazarević-Pašti, Tamara
AU  - Rodriguez, Raul D.
AU  - Sheremet, Evgeniya
AU  - Kanoun, Olfa
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9764
AB  - Extensive use of pesticides and their accumulation in the environment requires swift actions in terms of their removal, detection, and quantification. Currently, golden standard methods used for quantification of pesticides require expensive instrumentation and are not suitable for quick measurements outside of properly equipped laboratory. Here we investigate the detection of dimethoate (DMT) using PDAC/reduced graphene oxide (rGO)-modified Ag electrodes. The sensor performance depends on the temperature used for the reduction of graphene oxide (GO) in PDAC/GO bi-layer on Ag electrode. Using this combination of nanomaterials, we show the quantification of DMT with either voltammetry or impedance spectroscopies. The former approach relies on direct electrochemical transformations of DMT which are observed at relatively high anodic potential around 0.3 V vs. saturated calomel electrode. Impedance spectroscopy shows complex behavior with increasing DMT concentration, but seems to be rather sensitive to low DMT concentrations. These results present a possible direction to the development of highly efficient electrochemical sensors for pesticide detection. © 2019 IEEE.
C3  - 5th International Conference on Nanotechnology for Instrumentation and Measurement, NanofIM 2019
T1  - Electrochemical Sensor based on Reduced Graphene Oxide/PDAC for Dimethoate Pesticide Detection
DO  - 10.1109/NanofIM49467.2019.9233479
ER  - 
@conference{
author = "Al-Hamry, A. and Ega, Tharun K. and Pašti, Igor A. and Bajuk-Bogdanović, Danica V. and Lazarević-Pašti, Tamara and Rodriguez, Raul D. and Sheremet, Evgeniya and Kanoun, Olfa",
year = "2019",
abstract = "Extensive use of pesticides and their accumulation in the environment requires swift actions in terms of their removal, detection, and quantification. Currently, golden standard methods used for quantification of pesticides require expensive instrumentation and are not suitable for quick measurements outside of properly equipped laboratory. Here we investigate the detection of dimethoate (DMT) using PDAC/reduced graphene oxide (rGO)-modified Ag electrodes. The sensor performance depends on the temperature used for the reduction of graphene oxide (GO) in PDAC/GO bi-layer on Ag electrode. Using this combination of nanomaterials, we show the quantification of DMT with either voltammetry or impedance spectroscopies. The former approach relies on direct electrochemical transformations of DMT which are observed at relatively high anodic potential around 0.3 V vs. saturated calomel electrode. Impedance spectroscopy shows complex behavior with increasing DMT concentration, but seems to be rather sensitive to low DMT concentrations. These results present a possible direction to the development of highly efficient electrochemical sensors for pesticide detection. © 2019 IEEE.",
journal = "5th International Conference on Nanotechnology for Instrumentation and Measurement, NanofIM 2019",
title = "Electrochemical Sensor based on Reduced Graphene Oxide/PDAC for Dimethoate Pesticide Detection",
doi = "10.1109/NanofIM49467.2019.9233479"
}
Al-Hamry, A., Ega, T. K., Pašti, I. A., Bajuk-Bogdanović, D. V., Lazarević-Pašti, T., Rodriguez, R. D., Sheremet, E.,& Kanoun, O.. (2019). Electrochemical Sensor based on Reduced Graphene Oxide/PDAC for Dimethoate Pesticide Detection. in 5th International Conference on Nanotechnology for Instrumentation and Measurement, NanofIM 2019.
https://doi.org/10.1109/NanofIM49467.2019.9233479
Al-Hamry A, Ega TK, Pašti IA, Bajuk-Bogdanović DV, Lazarević-Pašti T, Rodriguez RD, Sheremet E, Kanoun O. Electrochemical Sensor based on Reduced Graphene Oxide/PDAC for Dimethoate Pesticide Detection. in 5th International Conference on Nanotechnology for Instrumentation and Measurement, NanofIM 2019. 2019;.
doi:10.1109/NanofIM49467.2019.9233479 .
Al-Hamry, A., Ega, Tharun K., Pašti, Igor A., Bajuk-Bogdanović, Danica V., Lazarević-Pašti, Tamara, Rodriguez, Raul D., Sheremet, Evgeniya, Kanoun, Olfa, "Electrochemical Sensor based on Reduced Graphene Oxide/PDAC for Dimethoate Pesticide Detection" in 5th International Conference on Nanotechnology for Instrumentation and Measurement, NanofIM 2019 (2019),
https://doi.org/10.1109/NanofIM49467.2019.9233479 . .
3
2

Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?

Bajuk-Bogdanović, Danica V.; Holclajtner-Antunović, Ivanka D.; Jovanović, Zoran M.; Mravik, Željko; Krstić, Jugoslav B.; Uskoković-Marković, Snežana; Vujković, Milica

(2019)

TY  - JOUR
AU  - Bajuk-Bogdanović, Danica V.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Jovanović, Zoran M.
AU  - Mravik, Željko
AU  - Krstić, Jugoslav B.
AU  - Uskoković-Marković, Snežana
AU  - Vujković, Milica
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8500
AB  - The synergistic effects between two Keggin-type heteropoly acids (HPAs) and carbon surface were examined and elucidated. An improved high rate capability (and potential high capacitor electrode for supercapacitors) of the hybrid materials, obtained by anchoring of α-dodecamolybdophosphoric (MoPA), α-dodecatungstophosphoric (WPA), and their mixture to activated carbon (AC), was achieved through the different mechanism of interaction. In order to elaborate this, a detailed analysis of AC-HPA composites has been performed by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, temperature-programmed desorption (TPD), Fourier-transform infrared spectroscopy (FTIR), micro Raman spectroscopy, and zeta potential measurements. The zeta potential measurements revealed positive charge of carbon surface thus indicating attractive interactions with negatively charged Keggin anion. The surface analysis has shown that WPA spontaneously reduces the carbon surface, while interaction with MoPA leads to its oxidation. As the consequence of the tailoring of the functional groups at carbon surface through HPAs’ action, the distortion of cyclic voltammograms (CVs) decreased in the following order: AC-MoPA, AC-MoPA-WPA, and AC-WPA. A prominent rectangular shape of AC-WPA, even at an extremely high scan rate of 400 mVs−1, was measured, which is rarely demonstrated for carbon-based composites. By applying the theory of electrode potentials, the HPA-AC synergistic effect was explained and discussed in terms of charge storage improvement of HPA-modified carbon. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
T2  - Journal of Solid State Electrochemistry
T1  - Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?
VL  - 23
IS  - 9
SP  - 2747
EP  - 2758
DO  - 10.1007/s10008-019-04369-4
ER  - 
@article{
author = "Bajuk-Bogdanović, Danica V. and Holclajtner-Antunović, Ivanka D. and Jovanović, Zoran M. and Mravik, Željko and Krstić, Jugoslav B. and Uskoković-Marković, Snežana and Vujković, Milica",
year = "2019",
abstract = "The synergistic effects between two Keggin-type heteropoly acids (HPAs) and carbon surface were examined and elucidated. An improved high rate capability (and potential high capacitor electrode for supercapacitors) of the hybrid materials, obtained by anchoring of α-dodecamolybdophosphoric (MoPA), α-dodecatungstophosphoric (WPA), and their mixture to activated carbon (AC), was achieved through the different mechanism of interaction. In order to elaborate this, a detailed analysis of AC-HPA composites has been performed by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, temperature-programmed desorption (TPD), Fourier-transform infrared spectroscopy (FTIR), micro Raman spectroscopy, and zeta potential measurements. The zeta potential measurements revealed positive charge of carbon surface thus indicating attractive interactions with negatively charged Keggin anion. The surface analysis has shown that WPA spontaneously reduces the carbon surface, while interaction with MoPA leads to its oxidation. As the consequence of the tailoring of the functional groups at carbon surface through HPAs’ action, the distortion of cyclic voltammograms (CVs) decreased in the following order: AC-MoPA, AC-MoPA-WPA, and AC-WPA. A prominent rectangular shape of AC-WPA, even at an extremely high scan rate of 400 mVs−1, was measured, which is rarely demonstrated for carbon-based composites. By applying the theory of electrode potentials, the HPA-AC synergistic effect was explained and discussed in terms of charge storage improvement of HPA-modified carbon. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.",
journal = "Journal of Solid State Electrochemistry",
title = "Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?",
volume = "23",
number = "9",
pages = "2747-2758",
doi = "10.1007/s10008-019-04369-4"
}
Bajuk-Bogdanović, D. V., Holclajtner-Antunović, I. D., Jovanović, Z. M., Mravik, Ž., Krstić, J. B., Uskoković-Marković, S.,& Vujković, M.. (2019). Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?. in Journal of Solid State Electrochemistry, 23(9), 2747-2758.
https://doi.org/10.1007/s10008-019-04369-4
Bajuk-Bogdanović DV, Holclajtner-Antunović ID, Jovanović ZM, Mravik Ž, Krstić JB, Uskoković-Marković S, Vujković M. Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?. in Journal of Solid State Electrochemistry. 2019;23(9):2747-2758.
doi:10.1007/s10008-019-04369-4 .
Bajuk-Bogdanović, Danica V., Holclajtner-Antunović, Ivanka D., Jovanović, Zoran M., Mravik, Željko, Krstić, Jugoslav B., Uskoković-Marković, Snežana, Vujković, Milica, "Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?" in Journal of Solid State Electrochemistry, 23, no. 9 (2019):2747-2758,
https://doi.org/10.1007/s10008-019-04369-4 . .
3
2
3

The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites

Kuzmanović, Bojana; Vujković, Milica; Tomić, Nataša M.; Bajuk-Bogdanović, Danica V.; Lazović, Vladimir M.; Šljukić, Biljana; Ivanović, Nenad; Mentus, Slavko V.

(2019)

TY  - JOUR
AU  - Kuzmanović, Bojana
AU  - Vujković, Milica
AU  - Tomić, Nataša M.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Lazović, Vladimir M.
AU  - Šljukić, Biljana
AU  - Ivanović, Nenad
AU  - Mentus, Slavko V.
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0013468619305584
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8135
AB  - Cerium oxide (CeO 2-δ ) ultrafine nanoparticles, with the lower (CeO 2-δ -HT) and higher (CeO 2-δ -SS) fraction of oxygen vacancies, were used as anchoring sites for the polymerization of aniline in acidic medium. As a result, polyaniline-emeraldine salt (PANI-ES)-based composites (PANI-ES@CeO 2-δ -HT and PANI-ES@CeO 2-δ -SS) were obtained. The interaction between CeO 2-δ and PANI was examined by FTIR and Raman spectroscopy. The PANI polymerization is initiated via electrostatic interaction of anilinium cation and Cl − ions (adsorbed at the protonated hydroxyl groups of CeO 2-δ ), and proceeds with hydrogen and nitrogen interaction with oxide nanoparticles. Tailoring the oxygen vacancy population of oxide offers the possibility to control the type of PANI-cerium oxide interaction, and consequently structural, electrical, thermal, electronic and charge storage properties of composite. A high capacitance of synthesized materials, reaching ∼294 F g −1 (PANI-ES), ∼299 F g −1 (PANI-ES@CeO 2-δ -HT) and ∼314 F g −1 (PANI-ES@CeO 2-δ -SS), was measured in 1 M HCl, at a common scan rate of 20 mV s −1 . The high adhesion of PANI with cerium oxide prevents the oxide from its slow dissolution in 1MHCl thus providing the stability of this composite in an acidic solution. The rate of electrochemical oxidation of emeraldine salt into pernigraniline was also found to depend on CeO 2-δ characteristics. © 2019 Elsevier Ltd
T2  - Electrochimica Acta
T1  - The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites
VL  - 306
SP  - 506
EP  - 515
DO  - 10.1016/j.electacta.2019.03.135
ER  - 
@article{
author = "Kuzmanović, Bojana and Vujković, Milica and Tomić, Nataša M. and Bajuk-Bogdanović, Danica V. and Lazović, Vladimir M. and Šljukić, Biljana and Ivanović, Nenad and Mentus, Slavko V.",
year = "2019",
abstract = "Cerium oxide (CeO 2-δ ) ultrafine nanoparticles, with the lower (CeO 2-δ -HT) and higher (CeO 2-δ -SS) fraction of oxygen vacancies, were used as anchoring sites for the polymerization of aniline in acidic medium. As a result, polyaniline-emeraldine salt (PANI-ES)-based composites (PANI-ES@CeO 2-δ -HT and PANI-ES@CeO 2-δ -SS) were obtained. The interaction between CeO 2-δ and PANI was examined by FTIR and Raman spectroscopy. The PANI polymerization is initiated via electrostatic interaction of anilinium cation and Cl − ions (adsorbed at the protonated hydroxyl groups of CeO 2-δ ), and proceeds with hydrogen and nitrogen interaction with oxide nanoparticles. Tailoring the oxygen vacancy population of oxide offers the possibility to control the type of PANI-cerium oxide interaction, and consequently structural, electrical, thermal, electronic and charge storage properties of composite. A high capacitance of synthesized materials, reaching ∼294 F g −1 (PANI-ES), ∼299 F g −1 (PANI-ES@CeO 2-δ -HT) and ∼314 F g −1 (PANI-ES@CeO 2-δ -SS), was measured in 1 M HCl, at a common scan rate of 20 mV s −1 . The high adhesion of PANI with cerium oxide prevents the oxide from its slow dissolution in 1MHCl thus providing the stability of this composite in an acidic solution. The rate of electrochemical oxidation of emeraldine salt into pernigraniline was also found to depend on CeO 2-δ characteristics. © 2019 Elsevier Ltd",
journal = "Electrochimica Acta",
title = "The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites",
volume = "306",
pages = "506-515",
doi = "10.1016/j.electacta.2019.03.135"
}
Kuzmanović, B., Vujković, M., Tomić, N. M., Bajuk-Bogdanović, D. V., Lazović, V. M., Šljukić, B., Ivanović, N.,& Mentus, S. V.. (2019). The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites. in Electrochimica Acta, 306, 506-515.
https://doi.org/10.1016/j.electacta.2019.03.135
Kuzmanović B, Vujković M, Tomić NM, Bajuk-Bogdanović DV, Lazović VM, Šljukić B, Ivanović N, Mentus SV. The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites. in Electrochimica Acta. 2019;306:506-515.
doi:10.1016/j.electacta.2019.03.135 .
Kuzmanović, Bojana, Vujković, Milica, Tomić, Nataša M., Bajuk-Bogdanović, Danica V., Lazović, Vladimir M., Šljukić, Biljana, Ivanović, Nenad, Mentus, Slavko V., "The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites" in Electrochimica Acta, 306 (2019):506-515,
https://doi.org/10.1016/j.electacta.2019.03.135 . .
10
3
10

Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells

Milikić, Jadranka; Stamenović, Una; Vodnik, Vesna; Ahrenkiel, Scott Phillip; Šljukić, Biljana

(2019)

TY  - JOUR
AU  - Milikić, Jadranka
AU  - Stamenović, Una
AU  - Vodnik, Vesna
AU  - Ahrenkiel, Scott Phillip
AU  - Šljukić, Biljana
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8609
AB  - Two gold nanorod-polyaniline (Au-PANI) composites with different contents of Au were prepared by two methods. An ex situ method, in the presence of preformed gold nanorods (AuNRs) and in situ one, when an AuNRs and PANI matrix is produced simultaneously, were used. Both methods were performed in immiscible water/toluene biphasic system as a simple interfacial polymerization process. Optical, structural and morphological characteristics of the formed nanocomposites were identified. It was found that AuNRs are embedded in the conducting emeraldine salt form of PANI. Nanocomposites containing 2.0 and 28.9 wt% of Au were subsequently systematically studied for borohydride oxidation reaction (BOR) for potential application in direct borohydride-peroxide fuel cell (DBPFC). Reaction parameters: number of electrons exchanged, order of reaction and activation energy, were evaluated. Both Au-PANI nanocomposites showed activity for BOR. A laboratory DBPFC was tested reaching specific peak power density of 184 Wg(-1) at 65 degrees C with Au-PANI 1 nanocomposite (containing only 2.0 wt% of Au) as anode.
T2  - Electrochimica Acta
T1  - Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells
VL  - 328
SP  - 135115
DO  - 10.1016/j.electacta.2019.135115
ER  - 
@article{
author = "Milikić, Jadranka and Stamenović, Una and Vodnik, Vesna and Ahrenkiel, Scott Phillip and Šljukić, Biljana",
year = "2019",
abstract = "Two gold nanorod-polyaniline (Au-PANI) composites with different contents of Au were prepared by two methods. An ex situ method, in the presence of preformed gold nanorods (AuNRs) and in situ one, when an AuNRs and PANI matrix is produced simultaneously, were used. Both methods were performed in immiscible water/toluene biphasic system as a simple interfacial polymerization process. Optical, structural and morphological characteristics of the formed nanocomposites were identified. It was found that AuNRs are embedded in the conducting emeraldine salt form of PANI. Nanocomposites containing 2.0 and 28.9 wt% of Au were subsequently systematically studied for borohydride oxidation reaction (BOR) for potential application in direct borohydride-peroxide fuel cell (DBPFC). Reaction parameters: number of electrons exchanged, order of reaction and activation energy, were evaluated. Both Au-PANI nanocomposites showed activity for BOR. A laboratory DBPFC was tested reaching specific peak power density of 184 Wg(-1) at 65 degrees C with Au-PANI 1 nanocomposite (containing only 2.0 wt% of Au) as anode.",
journal = "Electrochimica Acta",
title = "Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells",
volume = "328",
pages = "135115",
doi = "10.1016/j.electacta.2019.135115"
}
Milikić, J., Stamenović, U., Vodnik, V., Ahrenkiel, S. P.,& Šljukić, B.. (2019). Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells. in Electrochimica Acta, 328, 135115.
https://doi.org/10.1016/j.electacta.2019.135115
Milikić J, Stamenović U, Vodnik V, Ahrenkiel SP, Šljukić B. Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells. in Electrochimica Acta. 2019;328:135115.
doi:10.1016/j.electacta.2019.135115 .
Milikić, Jadranka, Stamenović, Una, Vodnik, Vesna, Ahrenkiel, Scott Phillip, Šljukić, Biljana, "Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells" in Electrochimica Acta, 328 (2019):135115,
https://doi.org/10.1016/j.electacta.2019.135115 . .
22
9
20

The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution

Georgijević, Radovan; Vujković, Milica; Gutić, Sanjin J.; Aliefendić, Meho; Jugović, Dragana; Mitrić, Miodrag; Đokić, Veljko R.; Mentus, Slavko V.

(2019)

TY  - JOUR
AU  - Georgijević, Radovan
AU  - Vujković, Milica
AU  - Gutić, Sanjin J.
AU  - Aliefendić, Meho
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Đokić, Veljko R.
AU  - Mentus, Slavko V.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7936
AB  - To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g−1 at 5 mV s−1). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g−1 at 1 mV s−1.
T2  - Journal of Alloys and Compounds
T1  - The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution
VL  - 776
SP  - 475
EP  - 485
DO  - 10.1016/j.jallcom.2018.10.246
ER  - 
@article{
author = "Georgijević, Radovan and Vujković, Milica and Gutić, Sanjin J. and Aliefendić, Meho and Jugović, Dragana and Mitrić, Miodrag and Đokić, Veljko R. and Mentus, Slavko V.",
year = "2019",
abstract = "To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g−1 at 5 mV s−1). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g−1 at 1 mV s−1.",
journal = "Journal of Alloys and Compounds",
title = "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution",
volume = "776",
pages = "475-485",
doi = "10.1016/j.jallcom.2018.10.246"
}
Georgijević, R., Vujković, M., Gutić, S. J., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V. R.,& Mentus, S. V.. (2019). The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. in Journal of Alloys and Compounds, 776, 475-485.
https://doi.org/10.1016/j.jallcom.2018.10.246
Georgijević R, Vujković M, Gutić SJ, Aliefendić M, Jugović D, Mitrić M, Đokić VR, Mentus SV. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. in Journal of Alloys and Compounds. 2019;776:475-485.
doi:10.1016/j.jallcom.2018.10.246 .
Georgijević, Radovan, Vujković, Milica, Gutić, Sanjin J., Aliefendić, Meho, Jugović, Dragana, Mitrić, Miodrag, Đokić, Veljko R., Mentus, Slavko V., "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution" in Journal of Alloys and Compounds, 776 (2019):475-485,
https://doi.org/10.1016/j.jallcom.2018.10.246 . .
8
8
8

Atmospheric Solids Analysis Probe with Mass Spectrometry for Chlorpyrifos and Chlorpyrifos-Oxon Determination in Apples

Cvijović, Mirjana R.; Di Marco, Valerio; Stanković, Srboljub; Nedić, Zoran P.; Joksović, Ljubinka G.; Mihailović, Nevena R.

(2019)

TY  - JOUR
AU  - Cvijović, Mirjana R.
AU  - Di Marco, Valerio
AU  - Stanković, Srboljub
AU  - Nedić, Zoran P.
AU  - Joksović, Ljubinka G.
AU  - Mihailović, Nevena R.
PY  - 2019
UR  - https://journals.matheo.si/index.php/ACSi/article/view/4468
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8088
AB  - Chlorpyrifos (CPS) is a toxic pesticide present in several pesticide formulations, with low degradability by natural processes. The degradation leads to the toxic metabolite chlorpyrifos-oxon (CPO). The analytical techniques used for the CPS and CPO analysis, like UPLC-PDA and GC-MS, are accurate but also expensive and time consuming, and they need sample pretreatment. In the search of a more rapid and simple analytical procedure, atmospheric solids analysis probe with mass spectrometry (ASAP-MS) was optimized for the determination of CPS and CPO in apples (Malus domestica „Idared”). The identification of the analytes was based on protonated ion and isotopic pattern, while the quantification was based on peak intensities. The obtained results were confirmed by re-validated UPLC-PDA and GC-MS techniques. CPS and CPO concentrations determined by ASAP-MS and UPLC-PDA showed moderate discrepancies (on average by 10–20%), thus demonstrating that ASAP-MS can be a semiquantitative tool for the quantification of these compounds. As additional goal of this work, the efficiency of a gamma irradiation treatment to remove CPS and CPO from apples was tested by analyzing their content before and after the irradiation: 89–99% of CPS and CPO were degraded with doses of 3.5–3.8 kGy and 66–72 h of irradiation per sample. Identical degradation results were obtained by UPLC-PDA and ASAP-MS, indicating that the latter technique is well suitable to rapidly check pesticide degradation in apples. © 2019 Slovensko Kemijsko Drustvo. All Rights Reserved.
T2  - Acta Chimica Slovenica
T1  - Atmospheric Solids Analysis Probe with Mass Spectrometry for Chlorpyrifos and Chlorpyrifos-Oxon Determination in Apples
VL  - 66
IS  - 1
SP  - 70
EP  - 77
DO  - 10.17344/acsi.2018.4468
ER  - 
@article{
author = "Cvijović, Mirjana R. and Di Marco, Valerio and Stanković, Srboljub and Nedić, Zoran P. and Joksović, Ljubinka G. and Mihailović, Nevena R.",
year = "2019",
abstract = "Chlorpyrifos (CPS) is a toxic pesticide present in several pesticide formulations, with low degradability by natural processes. The degradation leads to the toxic metabolite chlorpyrifos-oxon (CPO). The analytical techniques used for the CPS and CPO analysis, like UPLC-PDA and GC-MS, are accurate but also expensive and time consuming, and they need sample pretreatment. In the search of a more rapid and simple analytical procedure, atmospheric solids analysis probe with mass spectrometry (ASAP-MS) was optimized for the determination of CPS and CPO in apples (Malus domestica „Idared”). The identification of the analytes was based on protonated ion and isotopic pattern, while the quantification was based on peak intensities. The obtained results were confirmed by re-validated UPLC-PDA and GC-MS techniques. CPS and CPO concentrations determined by ASAP-MS and UPLC-PDA showed moderate discrepancies (on average by 10–20%), thus demonstrating that ASAP-MS can be a semiquantitative tool for the quantification of these compounds. As additional goal of this work, the efficiency of a gamma irradiation treatment to remove CPS and CPO from apples was tested by analyzing their content before and after the irradiation: 89–99% of CPS and CPO were degraded with doses of 3.5–3.8 kGy and 66–72 h of irradiation per sample. Identical degradation results were obtained by UPLC-PDA and ASAP-MS, indicating that the latter technique is well suitable to rapidly check pesticide degradation in apples. © 2019 Slovensko Kemijsko Drustvo. All Rights Reserved.",
journal = "Acta Chimica Slovenica",
title = "Atmospheric Solids Analysis Probe with Mass Spectrometry for Chlorpyrifos and Chlorpyrifos-Oxon Determination in Apples",
volume = "66",
number = "1",
pages = "70-77",
doi = "10.17344/acsi.2018.4468"
}
Cvijović, M. R., Di Marco, V., Stanković, S., Nedić, Z. P., Joksović, L. G.,& Mihailović, N. R.. (2019). Atmospheric Solids Analysis Probe with Mass Spectrometry for Chlorpyrifos and Chlorpyrifos-Oxon Determination in Apples. in Acta Chimica Slovenica, 66(1), 70-77.
https://doi.org/10.17344/acsi.2018.4468
Cvijović MR, Di Marco V, Stanković S, Nedić ZP, Joksović LG, Mihailović NR. Atmospheric Solids Analysis Probe with Mass Spectrometry for Chlorpyrifos and Chlorpyrifos-Oxon Determination in Apples. in Acta Chimica Slovenica. 2019;66(1):70-77.
doi:10.17344/acsi.2018.4468 .
Cvijović, Mirjana R., Di Marco, Valerio, Stanković, Srboljub, Nedić, Zoran P., Joksović, Ljubinka G., Mihailović, Nevena R., "Atmospheric Solids Analysis Probe with Mass Spectrometry for Chlorpyrifos and Chlorpyrifos-Oxon Determination in Apples" in Acta Chimica Slovenica, 66, no. 1 (2019):70-77,
https://doi.org/10.17344/acsi.2018.4468 . .
6
2
6

Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer

Zdolšek, Nikola; Rocha, Raquel P.; Krstić, Jugoslav B.; Trtić-Petrović, Tatjana M.; Šljukić, Biljana; Figueiredo, Jose L.; Vujković, Milica

(2019)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Rocha, Raquel P.
AU  - Krstić, Jugoslav B.
AU  - Trtić-Petrović, Tatjana M.
AU  - Šljukić, Biljana
AU  - Figueiredo, Jose L.
AU  - Vujković, Milica
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0013468618328482
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8023
AB  - This work shows the potential application of carbon materials prepared by three different ionic liquid-based methods, using 1-butyl-3-methylimidazolium methanesulfonate [bmim][MeSO3], for electrochemical supercapacitors. The effects of [bmim][MeSO3] on morphology, texture and surface chemistry of prepared materials has been explored by SEM/TEM, N2/CO2 adsorption measurements and XPS. The results indicate the possibility of synthesis of carbon materials with tunable physicochemical properties using ionic liquid based methods. The charge storage behavior of all materials was studied in three different pH aqueous electrolytes. The pseudocapacitive and double layer contributions were estimated and discussed from the aspect of the textural changes and the changes of the chemical composition of surface functional groups containing heteroatoms. C[dbnd]O type functional groups, with the contribution of COOH groups, were found to be responsible for a different amount of charge, which could be stored in alkaline and acidic electrolytic solution. The material prepared by direct carbonization of [bmim][MeSO3], showed the best electrochemical performance in alkaline electrolyte with a capacitance of 187 F g−1 at 5 mV s−1 (or 148 F g−1 at 1 A g−1), due to the contribution of both electric-double layer capacitance and pseudocapacitance which arises from oxygen, nitrogen and sulfur functional groups. © 2018 Elsevier Ltd
T2  - Electrochimica Acta
T1  - Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer
VL  - 298
SP  - 541
EP  - 551
DO  - 10.1016/j.electacta.2018.12.129
ER  - 
@article{
author = "Zdolšek, Nikola and Rocha, Raquel P. and Krstić, Jugoslav B. and Trtić-Petrović, Tatjana M. and Šljukić, Biljana and Figueiredo, Jose L. and Vujković, Milica",
year = "2019",
abstract = "This work shows the potential application of carbon materials prepared by three different ionic liquid-based methods, using 1-butyl-3-methylimidazolium methanesulfonate [bmim][MeSO3], for electrochemical supercapacitors. The effects of [bmim][MeSO3] on morphology, texture and surface chemistry of prepared materials has been explored by SEM/TEM, N2/CO2 adsorption measurements and XPS. The results indicate the possibility of synthesis of carbon materials with tunable physicochemical properties using ionic liquid based methods. The charge storage behavior of all materials was studied in three different pH aqueous electrolytes. The pseudocapacitive and double layer contributions were estimated and discussed from the aspect of the textural changes and the changes of the chemical composition of surface functional groups containing heteroatoms. C[dbnd]O type functional groups, with the contribution of COOH groups, were found to be responsible for a different amount of charge, which could be stored in alkaline and acidic electrolytic solution. The material prepared by direct carbonization of [bmim][MeSO3], showed the best electrochemical performance in alkaline electrolyte with a capacitance of 187 F g−1 at 5 mV s−1 (or 148 F g−1 at 1 A g−1), due to the contribution of both electric-double layer capacitance and pseudocapacitance which arises from oxygen, nitrogen and sulfur functional groups. © 2018 Elsevier Ltd",
journal = "Electrochimica Acta",
title = "Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer",
volume = "298",
pages = "541-551",
doi = "10.1016/j.electacta.2018.12.129"
}
Zdolšek, N., Rocha, R. P., Krstić, J. B., Trtić-Petrović, T. M., Šljukić, B., Figueiredo, J. L.,& Vujković, M.. (2019). Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer. in Electrochimica Acta, 298, 541-551.
https://doi.org/10.1016/j.electacta.2018.12.129
Zdolšek N, Rocha RP, Krstić JB, Trtić-Petrović TM, Šljukić B, Figueiredo JL, Vujković M. Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer. in Electrochimica Acta. 2019;298:541-551.
doi:10.1016/j.electacta.2018.12.129 .
Zdolšek, Nikola, Rocha, Raquel P., Krstić, Jugoslav B., Trtić-Petrović, Tatjana M., Šljukić, Biljana, Figueiredo, Jose L., Vujković, Milica, "Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer" in Electrochimica Acta, 298 (2019):541-551,
https://doi.org/10.1016/j.electacta.2018.12.129 . .
32
22
32

Synthesis and Characterization of Na0.4MnO2 as a Positive Electrode Material for an Aqueous Electrolyte Sodium-ion Energy Storage Device

Rakočević, Lazar; Novaković, Mirjana M.; Potočnik, Jelena; Jugović, Dragana; Stojković-Simatović, Ivana

(Belgrade : Serbian Academy of Sciences and Arts, 2018)

TY  - CONF
AU  - Rakočević, Lazar
AU  - Novaković, Mirjana M.
AU  - Potočnik, Jelena
AU  - Jugović, Dragana
AU  - Stojković-Simatović, Ivana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8734
AB  - Due to the increasing use of batteries in everyday life and in industry, there is a need for developing cheaper batteries than the widely used lithium ion batteries. Lower price and higher abundance of sodium compared to lithium mineral resources intensified the development of Na-ion batteries. Aqueous lithium/ sodium rechargeable batteries have attracted considerable attention for energy storage because they do not contain flammable organic electrolytes as commercial batteries do, the ionic conductivity of the aqueous electrolyte is about two orders of magnitude higher than in non-aqueous electrolyte and the electrolyte salt and solvent are cheaper. Various materials such as manganese oxides, vanadium oxide and phosphates have been used as electrode materials (cathodic and anodic) in sodium batteries due to high sodium intercalation ability in both, organic and aqueous electrolytes. The most frequently used type of manganese oxides are Li–Mn–O or Na–Mn–O systems due to their tunnel or layered crystal structures which facilitate the lithium/sodium intercalation-deintercalation. In this work, a glycine-nitrate method (GNM) was applied for the synthesis of cathode material Na0.4MnO2.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
T1  - Synthesis and Characterization of Na0.4MnO2 as a Positive Electrode Material for an Aqueous Electrolyte Sodium-ion Energy Storage Device
SP  - 154
EP  - 156
UR  - https://hdl.handle.net/21.15107/rcub_vinar_8734
ER  - 
@conference{
author = "Rakočević, Lazar and Novaković, Mirjana M. and Potočnik, Jelena and Jugović, Dragana and Stojković-Simatović, Ivana",
year = "2018",
abstract = "Due to the increasing use of batteries in everyday life and in industry, there is a need for developing cheaper batteries than the widely used lithium ion batteries. Lower price and higher abundance of sodium compared to lithium mineral resources intensified the development of Na-ion batteries. Aqueous lithium/ sodium rechargeable batteries have attracted considerable attention for energy storage because they do not contain flammable organic electrolytes as commercial batteries do, the ionic conductivity of the aqueous electrolyte is about two orders of magnitude higher than in non-aqueous electrolyte and the electrolyte salt and solvent are cheaper. Various materials such as manganese oxides, vanadium oxide and phosphates have been used as electrode materials (cathodic and anodic) in sodium batteries due to high sodium intercalation ability in both, organic and aqueous electrolytes. The most frequently used type of manganese oxides are Li–Mn–O or Na–Mn–O systems due to their tunnel or layered crystal structures which facilitate the lithium/sodium intercalation-deintercalation. In this work, a glycine-nitrate method (GNM) was applied for the synthesis of cathode material Na0.4MnO2.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia",
title = "Synthesis and Characterization of Na0.4MnO2 as a Positive Electrode Material for an Aqueous Electrolyte Sodium-ion Energy Storage Device",
pages = "154-156",
url = "https://hdl.handle.net/21.15107/rcub_vinar_8734"
}
Rakočević, L., Novaković, M. M., Potočnik, J., Jugović, D.,& Stojković-Simatović, I.. (2018). Synthesis and Characterization of Na0.4MnO2 as a Positive Electrode Material for an Aqueous Electrolyte Sodium-ion Energy Storage Device. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
Belgrade : Serbian Academy of Sciences and Arts., 154-156.
https://hdl.handle.net/21.15107/rcub_vinar_8734
Rakočević L, Novaković MM, Potočnik J, Jugović D, Stojković-Simatović I. Synthesis and Characterization of Na0.4MnO2 as a Positive Electrode Material for an Aqueous Electrolyte Sodium-ion Energy Storage Device. in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia. 2018;:154-156.
https://hdl.handle.net/21.15107/rcub_vinar_8734 .
Rakočević, Lazar, Novaković, Mirjana M., Potočnik, Jelena, Jugović, Dragana, Stojković-Simatović, Ivana, "Synthesis and Characterization of Na0.4MnO2 as a Positive Electrode Material for an Aqueous Electrolyte Sodium-ion Energy Storage Device" in Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia (2018):154-156,
https://hdl.handle.net/21.15107/rcub_vinar_8734 .

One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction

Stamenović, Una; Gavrilov, Nemanja M.; Pašti, Igor A.; Otoničar, Mojca; Ćirić-Marjanović, Gordana N.; Škapin, Srečo Davor; Mitrić, Miodrag; Vodnik, Vesna

(2018)

TY  - JOUR
AU  - Stamenović, Una
AU  - Gavrilov, Nemanja M.
AU  - Pašti, Igor A.
AU  - Otoničar, Mojca
AU  - Ćirić-Marjanović, Gordana N.
AU  - Škapin, Srečo Davor
AU  - Mitrić, Miodrag
AU  - Vodnik, Vesna
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0013468618312799
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7717
AB  - A facile and fast aqueous phase-based strategy to synthesize silver-polyaniline-polyvinylpyrrolidone (Ag-PANI-PVP) nanocomposites, via chemical oxidative polymerization method is presented. In the presence of polyvinylpyrrolidone (PVP), which has an accelerating effect on the oxidation of aniline with silver nitrate, Ag nanoparticles (AgNPs) were in situ generated in aqueous solution during simultaneous formation of polyaniline (PANI), without any additional reducing agent or complicated treatment. We have demonstrated synthesis of three stabile Ag-PANI-PVP nanocomposites with different content, size, and morphology of Ag nanoparticles by varying the experimental parameters, such as pH and PVP concentration. As a result, this led to different Ag nanostructures (spherical and polyhedral NPs), and, consequently, different morphology of formed nanocomposites (granular and nanosheets). The physicochemical properties of nanocomposites were examined by using different analytical techniques (UV–Vis, TEM, FESEM, FT-IR, XRD, and Raman). It is found that optical properties, electrical conductivity and the content of Ag in the composites vary depending on the synthetic conditions. The electrocatalytic behavior of Ag-PANI-PVP nanocomposites was examined towards the oxygen reduction reaction in acidic and alkaline media. All tested nanocomposites showed high electrocatalytic activity, while the most active catalyst is the one with the highest electrical conductivity (≈0.6 S cm−1) and the lowest Ag content (3.4 wt%), synthesized in the solution without added acid. The simplicity of synthesis and good electrocatalytic efficiency of prepared nanocomposites combined with large-scale availability make them attractive as Pt-free electrocatalysts.
T2  - Electrochimica Acta
T1  - One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction
VL  - 281
SP  - 549
EP  - 561
DO  - 10.1016/j.electacta.2018.05.202
ER  - 
@article{
author = "Stamenović, Una and Gavrilov, Nemanja M. and Pašti, Igor A. and Otoničar, Mojca and Ćirić-Marjanović, Gordana N. and Škapin, Srečo Davor and Mitrić, Miodrag and Vodnik, Vesna",
year = "2018",
abstract = "A facile and fast aqueous phase-based strategy to synthesize silver-polyaniline-polyvinylpyrrolidone (Ag-PANI-PVP) nanocomposites, via chemical oxidative polymerization method is presented. In the presence of polyvinylpyrrolidone (PVP), which has an accelerating effect on the oxidation of aniline with silver nitrate, Ag nanoparticles (AgNPs) were in situ generated in aqueous solution during simultaneous formation of polyaniline (PANI), without any additional reducing agent or complicated treatment. We have demonstrated synthesis of three stabile Ag-PANI-PVP nanocomposites with different content, size, and morphology of Ag nanoparticles by varying the experimental parameters, such as pH and PVP concentration. As a result, this led to different Ag nanostructures (spherical and polyhedral NPs), and, consequently, different morphology of formed nanocomposites (granular and nanosheets). The physicochemical properties of nanocomposites were examined by using different analytical techniques (UV–Vis, TEM, FESEM, FT-IR, XRD, and Raman). It is found that optical properties, electrical conductivity and the content of Ag in the composites vary depending on the synthetic conditions. The electrocatalytic behavior of Ag-PANI-PVP nanocomposites was examined towards the oxygen reduction reaction in acidic and alkaline media. All tested nanocomposites showed high electrocatalytic activity, while the most active catalyst is the one with the highest electrical conductivity (≈0.6 S cm−1) and the lowest Ag content (3.4 wt%), synthesized in the solution without added acid. The simplicity of synthesis and good electrocatalytic efficiency of prepared nanocomposites combined with large-scale availability make them attractive as Pt-free electrocatalysts.",
journal = "Electrochimica Acta",
title = "One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction",
volume = "281",
pages = "549-561",
doi = "10.1016/j.electacta.2018.05.202"
}
Stamenović, U., Gavrilov, N. M., Pašti, I. A., Otoničar, M., Ćirić-Marjanović, G. N., Škapin, S. D., Mitrić, M.,& Vodnik, V.. (2018). One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction. in Electrochimica Acta, 281, 549-561.
https://doi.org/10.1016/j.electacta.2018.05.202
Stamenović U, Gavrilov NM, Pašti IA, Otoničar M, Ćirić-Marjanović GN, Škapin SD, Mitrić M, Vodnik V. One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction. in Electrochimica Acta. 2018;281:549-561.
doi:10.1016/j.electacta.2018.05.202 .
Stamenović, Una, Gavrilov, Nemanja M., Pašti, Igor A., Otoničar, Mojca, Ćirić-Marjanović, Gordana N., Škapin, Srečo Davor, Mitrić, Miodrag, Vodnik, Vesna, "One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction" in Electrochimica Acta, 281 (2018):549-561,
https://doi.org/10.1016/j.electacta.2018.05.202 . .
15
10
14

A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media

Gavrilov, Nemanja M.; Momčilović, Milan Z.; Dobrota, Ana S.; Stanković, Dalibor M.; Jokić, Bojan M.; Babić, Biljana M.; Skorodumova, Natalia V.; Mentus, Slavko V.; Pašti, Igor A.

(2018)

TY  - JOUR
AU  - Gavrilov, Nemanja M.
AU  - Momčilović, Milan Z.
AU  - Dobrota, Ana S.
AU  - Stanković, Dalibor M.
AU  - Jokić, Bojan M.
AU  - Babić, Biljana M.
AU  - Skorodumova, Natalia V.
AU  - Mentus, Slavko V.
AU  - Pašti, Igor A.
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0257897218305838
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7727
AB  - The incorporation of trace amounts (<0.2%) of Co and Ni noticeably enhanced the catalytic activity of nitrogen-free ordered mesoporous carbon (OMC) towards oxygen reduction reaction (ORR). (Co,Ni)-doped OMCs were characterized by N2-adsorption measurements, X-ray powder diffraction, field emission scanning electron microscopy and Raman spectroscopy methods, and their ORR activity was estimated by voltammetry on rotating disk electrode in acidic and alkaline media. (Co,Ni)-doped OMCs show modest activities in acidic media, while the catalytic activity in alkaline media is rather high. The measured activities are compared to the Pt-based and Pt-free ORR catalysts reported in the literature. The number of electrons consumed per O2in metal-doped OMCs was found to vary between 2 and 4, which is advantageous in comparison to metal-free OMC. Also, the mass activities of metal-doped OMCs were found to be up to 2.5 times higher compared to that of metal-free OMC. We suggest that the ORR activity is governed by a balance between (i) textural properties, which determine the electrochemically accessible surface of the catalyst and which are influenced by the addition of a metal precursor, and (ii) novel active sites formed upon the introduction of metals into the carbon structure. In particular, our Density Functional Theory calculations suggest that Co and Ni atoms embedded into the single vacancies of graphene can activate the O2molecule and contribute to the decomposition of peroxide.
T2  - Surface and Coatings Technology
T1  - A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media
VL  - 349
SP  - 511
EP  - 521
DO  - 10.1016/j.surfcoat.2018.06.008
ER  - 
@article{
author = "Gavrilov, Nemanja M. and Momčilović, Milan Z. and Dobrota, Ana S. and Stanković, Dalibor M. and Jokić, Bojan M. and Babić, Biljana M. and Skorodumova, Natalia V. and Mentus, Slavko V. and Pašti, Igor A.",
year = "2018",
abstract = "The incorporation of trace amounts (<0.2%) of Co and Ni noticeably enhanced the catalytic activity of nitrogen-free ordered mesoporous carbon (OMC) towards oxygen reduction reaction (ORR). (Co,Ni)-doped OMCs were characterized by N2-adsorption measurements, X-ray powder diffraction, field emission scanning electron microscopy and Raman spectroscopy methods, and their ORR activity was estimated by voltammetry on rotating disk electrode in acidic and alkaline media. (Co,Ni)-doped OMCs show modest activities in acidic media, while the catalytic activity in alkaline media is rather high. The measured activities are compared to the Pt-based and Pt-free ORR catalysts reported in the literature. The number of electrons consumed per O2in metal-doped OMCs was found to vary between 2 and 4, which is advantageous in comparison to metal-free OMC. Also, the mass activities of metal-doped OMCs were found to be up to 2.5 times higher compared to that of metal-free OMC. We suggest that the ORR activity is governed by a balance between (i) textural properties, which determine the electrochemically accessible surface of the catalyst and which are influenced by the addition of a metal precursor, and (ii) novel active sites formed upon the introduction of metals into the carbon structure. In particular, our Density Functional Theory calculations suggest that Co and Ni atoms embedded into the single vacancies of graphene can activate the O2molecule and contribute to the decomposition of peroxide.",
journal = "Surface and Coatings Technology",
title = "A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media",
volume = "349",
pages = "511-521",
doi = "10.1016/j.surfcoat.2018.06.008"
}
Gavrilov, N. M., Momčilović, M. Z., Dobrota, A. S., Stanković, D. M., Jokić, B. M., Babić, B. M., Skorodumova, N. V., Mentus, S. V.,& Pašti, I. A.. (2018). A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media. in Surface and Coatings Technology, 349, 511-521.
https://doi.org/10.1016/j.surfcoat.2018.06.008
Gavrilov NM, Momčilović MZ, Dobrota AS, Stanković DM, Jokić BM, Babić BM, Skorodumova NV, Mentus SV, Pašti IA. A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media. in Surface and Coatings Technology. 2018;349:511-521.
doi:10.1016/j.surfcoat.2018.06.008 .
Gavrilov, Nemanja M., Momčilović, Milan Z., Dobrota, Ana S., Stanković, Dalibor M., Jokić, Bojan M., Babić, Biljana M., Skorodumova, Natalia V., Mentus, Slavko V., Pašti, Igor A., "A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media" in Surface and Coatings Technology, 349 (2018):511-521,
https://doi.org/10.1016/j.surfcoat.2018.06.008 . .
23
16
24

Electrochemical tuning of capacitive response of graphene oxide

Gutić, Sanjin J.; Kozlica, Dževad K.; Korać, Fehim; Bajuk-Bogdanović, Danica V.; Mitrić, Miodrag; Mirsky, Vladimir M.; Mentus, Slavko V.; Pašti, Igor A.

(2018)

TY  - JOUR
AU  - Gutić, Sanjin J.
AU  - Kozlica, Dževad K.
AU  - Korać, Fehim
AU  - Bajuk-Bogdanović, Danica V.
AU  - Mitrić, Miodrag
AU  - Mirsky, Vladimir M.
AU  - Mentus, Slavko V.
AU  - Pašti, Igor A.
PY  - 2018
UR  - http://xlink.rsc.org/?DOI=C8CP03631D
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7877
AB  - The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.
T2  - Physical Chemistry Chemical Physics
T1  - Electrochemical tuning of capacitive response of graphene oxide
VL  - 20
IS  - 35
SP  - 22698
EP  - 22709
DO  - 10.1039/C8CP03631D
ER  - 
@article{
author = "Gutić, Sanjin J. and Kozlica, Dževad K. and Korać, Fehim and Bajuk-Bogdanović, Danica V. and Mitrić, Miodrag and Mirsky, Vladimir M. and Mentus, Slavko V. and Pašti, Igor A.",
year = "2018",
abstract = "The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.",
journal = "Physical Chemistry Chemical Physics",
title = "Electrochemical tuning of capacitive response of graphene oxide",
volume = "20",
number = "35",
pages = "22698-22709",
doi = "10.1039/C8CP03631D"
}
Gutić, S. J., Kozlica, D. K., Korać, F., Bajuk-Bogdanović, D. V., Mitrić, M., Mirsky, V. M., Mentus, S. V.,& Pašti, I. A.. (2018). Electrochemical tuning of capacitive response of graphene oxide. in Physical Chemistry Chemical Physics, 20(35), 22698-22709.
https://doi.org/10.1039/C8CP03631D
Gutić SJ, Kozlica DK, Korać F, Bajuk-Bogdanović DV, Mitrić M, Mirsky VM, Mentus SV, Pašti IA. Electrochemical tuning of capacitive response of graphene oxide. in Physical Chemistry Chemical Physics. 2018;20(35):22698-22709.
doi:10.1039/C8CP03631D .
Gutić, Sanjin J., Kozlica, Dževad K., Korać, Fehim, Bajuk-Bogdanović, Danica V., Mitrić, Miodrag, Mirsky, Vladimir M., Mentus, Slavko V., Pašti, Igor A., "Electrochemical tuning of capacitive response of graphene oxide" in Physical Chemistry Chemical Physics, 20, no. 35 (2018):22698-22709,
https://doi.org/10.1039/C8CP03631D . .
1
13
9
12

Electrochemical tuning of capacitive response of graphene oxide

Gutić, Sanjin J.; Kozlica, Dževad K.; Korać, Fehim; Bajuk-Bogdanović, Danica V.; Mitrić, Miodrag; Mirsky, Vladimir M.; Mentus, Slavko V.; Pašti, Igor A.

(2018)

TY  - JOUR
AU  - Gutić, Sanjin J.
AU  - Kozlica, Dževad K.
AU  - Korać, Fehim
AU  - Bajuk-Bogdanović, Danica V.
AU  - Mitrić, Miodrag
AU  - Mirsky, Vladimir M.
AU  - Mentus, Slavko V.
AU  - Pašti, Igor A.
PY  - 2018
UR  - http://xlink.rsc.org/?DOI=C8CP03631D
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7887
AB  - The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.
T2  - Physical Chemistry Chemical Physics
T1  - Electrochemical tuning of capacitive response of graphene oxide
VL  - 20
IS  - 35
SP  - 22698
EP  - 22709
DO  - 10.1039/C8CP03631D
ER  - 
@article{
author = "Gutić, Sanjin J. and Kozlica, Dževad K. and Korać, Fehim and Bajuk-Bogdanović, Danica V. and Mitrić, Miodrag and Mirsky, Vladimir M. and Mentus, Slavko V. and Pašti, Igor A.",
year = "2018",
abstract = "The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.",
journal = "Physical Chemistry Chemical Physics",
title = "Electrochemical tuning of capacitive response of graphene oxide",
volume = "20",
number = "35",
pages = "22698-22709",
doi = "10.1039/C8CP03631D"
}
Gutić, S. J., Kozlica, D. K., Korać, F., Bajuk-Bogdanović, D. V., Mitrić, M., Mirsky, V. M., Mentus, S. V.,& Pašti, I. A.. (2018). Electrochemical tuning of capacitive response of graphene oxide. in Physical Chemistry Chemical Physics, 20(35), 22698-22709.
https://doi.org/10.1039/C8CP03631D
Gutić SJ, Kozlica DK, Korać F, Bajuk-Bogdanović DV, Mitrić M, Mirsky VM, Mentus SV, Pašti IA. Electrochemical tuning of capacitive response of graphene oxide. in Physical Chemistry Chemical Physics. 2018;20(35):22698-22709.
doi:10.1039/C8CP03631D .
Gutić, Sanjin J., Kozlica, Dževad K., Korać, Fehim, Bajuk-Bogdanović, Danica V., Mitrić, Miodrag, Mirsky, Vladimir M., Mentus, Slavko V., Pašti, Igor A., "Electrochemical tuning of capacitive response of graphene oxide" in Physical Chemistry Chemical Physics, 20, no. 35 (2018):22698-22709,
https://doi.org/10.1039/C8CP03631D . .
1
13
9
12

Radioactivity level and concentration of metals in waters around power plants application of potential method for pollution assessment

Sarap, Nataša; Senćanski, Jelena; Pagnacco, Maja C.; Janković, Marija M.; Todorović, Dragana; Majstorović, Divna M.

(2018)

TY  - JOUR
AU  - Sarap, Nataša
AU  - Senćanski, Jelena
AU  - Pagnacco, Maja C.
AU  - Janković, Marija M.
AU  - Todorović, Dragana
AU  - Majstorović, Divna M.
PY  - 2018
UR  - http://www.doiserbia.nb.rs/Article.aspx?ID=1451-39941801117S
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7783
AB  - Human activities may lead to increased levels of naturally occurring radioactive material and heavy metals in waters relative to undisturbed natural environment, consequently to reduced safety of environment. Therefore, evaluation of water quality from coal-fired power plants is essential to both environmental protection and protection of the human health. In this paper the concentrations of metals (K, Sr, and Pb) and corresponding radionuclides (K-40, Sr-90, and Pb-210) for 22 water samples in the vicinity of five coal-fired power plants in Serbia were determined. The total metal concentrations were measured using an atomic absorption spectrometer. The activities of radionuclides K-40 and Pb-210 were determined by gamma spectrometry using HPGe detector, while the activity of Sr-90 was determined by radiochemical analytical method and measured using low-level gas proportional counter. The water pollution status was assessed by the prospective method that is defined in this study. The preliminary results indicated that operation of the coal-fired power plants has no significant impact on the surrounding environment with regard to the radiological characteristics and content of metals of the investigated waters that can be used for suitable in future applications.
T2  - Nuclear Technology and Radiation Protection
T1  - Radioactivity level and concentration of metals in waters around power plants application of potential method for pollution assessment
VL  - 33
IS  - 1
SP  - 117
EP  - 124
DO  - 10.2298/NTRP1801117S
ER  - 
@article{
author = "Sarap, Nataša and Senćanski, Jelena and Pagnacco, Maja C. and Janković, Marija M. and Todorović, Dragana and Majstorović, Divna M.",
year = "2018",
abstract = "Human activities may lead to increased levels of naturally occurring radioactive material and heavy metals in waters relative to undisturbed natural environment, consequently to reduced safety of environment. Therefore, evaluation of water quality from coal-fired power plants is essential to both environmental protection and protection of the human health. In this paper the concentrations of metals (K, Sr, and Pb) and corresponding radionuclides (K-40, Sr-90, and Pb-210) for 22 water samples in the vicinity of five coal-fired power plants in Serbia were determined. The total metal concentrations were measured using an atomic absorption spectrometer. The activities of radionuclides K-40 and Pb-210 were determined by gamma spectrometry using HPGe detector, while the activity of Sr-90 was determined by radiochemical analytical method and measured using low-level gas proportional counter. The water pollution status was assessed by the prospective method that is defined in this study. The preliminary results indicated that operation of the coal-fired power plants has no significant impact on the surrounding environment with regard to the radiological characteristics and content of metals of the investigated waters that can be used for suitable in future applications.",
journal = "Nuclear Technology and Radiation Protection",
title = "Radioactivity level and concentration of metals in waters around power plants application of potential method for pollution assessment",
volume = "33",
number = "1",
pages = "117-124",
doi = "10.2298/NTRP1801117S"
}
Sarap, N., Senćanski, J., Pagnacco, M. C., Janković, M. M., Todorović, D.,& Majstorović, D. M.. (2018). Radioactivity level and concentration of metals in waters around power plants application of potential method for pollution assessment. in Nuclear Technology and Radiation Protection, 33(1), 117-124.
https://doi.org/10.2298/NTRP1801117S
Sarap N, Senćanski J, Pagnacco MC, Janković MM, Todorović D, Majstorović DM. Radioactivity level and concentration of metals in waters around power plants application of potential method for pollution assessment. in Nuclear Technology and Radiation Protection. 2018;33(1):117-124.
doi:10.2298/NTRP1801117S .
Sarap, Nataša, Senćanski, Jelena, Pagnacco, Maja C., Janković, Marija M., Todorović, Dragana, Majstorović, Divna M., "Radioactivity level and concentration of metals in waters around power plants application of potential method for pollution assessment" in Nuclear Technology and Radiation Protection, 33, no. 1 (2018):117-124,
https://doi.org/10.2298/NTRP1801117S . .
1

Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction

Zdolšek, Nikola; Dimitrijević, Aleksandra; Bendova, Magdalena; Krstić, Jugoslav B.; Rocha, Raquel P.; Figueiredo, Jose L.; Bajuk-Bogdanović, Danica V.; Trtić-Petrović, Tatjana M.; Šljukić, Biljana

(2018)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Dimitrijević, Aleksandra
AU  - Bendova, Magdalena
AU  - Krstić, Jugoslav B.
AU  - Rocha, Raquel P.
AU  - Figueiredo, Jose L.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Trtić-Petrović, Tatjana M.
AU  - Šljukić, Biljana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9881
AB  - Carbon materials, prepared by using different methods with ionic liquids, are compared as electrocatalysts for the oxygen reduction reaction (ORR). Materials were synthesized through the hydrothermal carbonization of glucose and by using the same method in the presence of 1-butyl-3-methylimidazolium methanesulfonate [bmim][MeSO3] as an additive. Another two carbon-based materials were prepared by using ionic-liquid-based methods: ionothermal carbonization of glucose using [bmim][MeSO3] as a recyclable medium for the carbonization reaction and by direct carbonization of the ionic liquid in a one-step method using [bmim][MeSO3] as the precursor for N- and S-doped porous carbon (Carb-IL). Characterization results showed the possibility of morphology and porosity control by using [bmim][MeSO3]. All materials were subsequently tested for the ORR in alkaline media. Carb-IL showed enhanced and stable electrocatalytic ORR activity, even in the presence of methanol, ethanol, and borohydride, opening the possibility for its application in fuel cells.
T2  - ChemElectroChem
T1  - Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction
VL  - 5
IS  - 7
SP  - 1037
EP  - 1046
DO  - 10.1002/celc.201701369
ER  - 
@article{
author = "Zdolšek, Nikola and Dimitrijević, Aleksandra and Bendova, Magdalena and Krstić, Jugoslav B. and Rocha, Raquel P. and Figueiredo, Jose L. and Bajuk-Bogdanović, Danica V. and Trtić-Petrović, Tatjana M. and Šljukić, Biljana",
year = "2018",
abstract = "Carbon materials, prepared by using different methods with ionic liquids, are compared as electrocatalysts for the oxygen reduction reaction (ORR). Materials were synthesized through the hydrothermal carbonization of glucose and by using the same method in the presence of 1-butyl-3-methylimidazolium methanesulfonate [bmim][MeSO3] as an additive. Another two carbon-based materials were prepared by using ionic-liquid-based methods: ionothermal carbonization of glucose using [bmim][MeSO3] as a recyclable medium for the carbonization reaction and by direct carbonization of the ionic liquid in a one-step method using [bmim][MeSO3] as the precursor for N- and S-doped porous carbon (Carb-IL). Characterization results showed the possibility of morphology and porosity control by using [bmim][MeSO3]. All materials were subsequently tested for the ORR in alkaline media. Carb-IL showed enhanced and stable electrocatalytic ORR activity, even in the presence of methanol, ethanol, and borohydride, opening the possibility for its application in fuel cells.",
journal = "ChemElectroChem",
title = "Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction",
volume = "5",
number = "7",
pages = "1037-1046",
doi = "10.1002/celc.201701369"
}
Zdolšek, N., Dimitrijević, A., Bendova, M., Krstić, J. B., Rocha, R. P., Figueiredo, J. L., Bajuk-Bogdanović, D. V., Trtić-Petrović, T. M.,& Šljukić, B.. (2018). Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction. in ChemElectroChem, 5(7), 1037-1046.
https://doi.org/10.1002/celc.201701369
Zdolšek N, Dimitrijević A, Bendova M, Krstić JB, Rocha RP, Figueiredo JL, Bajuk-Bogdanović DV, Trtić-Petrović TM, Šljukić B. Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction. in ChemElectroChem. 2018;5(7):1037-1046.
doi:10.1002/celc.201701369 .
Zdolšek, Nikola, Dimitrijević, Aleksandra, Bendova, Magdalena, Krstić, Jugoslav B., Rocha, Raquel P., Figueiredo, Jose L., Bajuk-Bogdanović, Danica V., Trtić-Petrović, Tatjana M., Šljukić, Biljana, "Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction" in ChemElectroChem, 5, no. 7 (2018):1037-1046,
https://doi.org/10.1002/celc.201701369 . .
1
22
16
22

Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions

Vujković, Milica; Bajuk-Bogdanović, Danica V.; Matović, Ljiljana; Stojmenović, Marija; Mentus, Slavko V.

(2018)

TY  - JOUR
AU  - Vujković, Milica
AU  - Bajuk-Bogdanović, Danica V.
AU  - Matović, Ljiljana
AU  - Stojmenović, Marija
AU  - Mentus, Slavko V.
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0008622318307036
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7872
AB  - Coulombic capacity of zeolite-templated carbon (ZTC) measured in alkaline solution was roughly doubled by a previous potentiodynamic treatment in sulfuric acidic solution. In order to explain the reasons of this capacity improvement, the changes in chemical composition of ZTC surface during its pretreatment in sulfuric acid either by simple immersion, or by potentiodynamic polarization, and during subsequent potentiodynamic polarization in KOH solutions, were studied by means of TG/DTA, FTIR spectroscopy and Raman spectroscopy. The results of this study open some novel insights in understanding of very peculiar carbon electrochemistry. The observed changes in surface chemistry include i) fast adsorption of H2O and formation of OH− and epoxide groups on immersion in sulfuric acid, ii) the multiplication of concentration of H2O/OH− and epoxide groups during potentiodynamic cycling in sulfuric acid and iii) the ring-opening of epoxide groups (formed during potentiodynamic cycling in acidic solution) upon its potentiodynamic cycling in alkaline solution, according to a SN2 type mechanism, which results in the formation of aromatic OH-containing diol compounds. © 2018 Elsevier Ltd
T2  - Carbon
T1  - Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions
VL  - 138
SP  - 369
EP  - 378
DO  - 10.1016/j.carbon.2018.07.053
ER  - 
@article{
author = "Vujković, Milica and Bajuk-Bogdanović, Danica V. and Matović, Ljiljana and Stojmenović, Marija and Mentus, Slavko V.",
year = "2018",
abstract = "Coulombic capacity of zeolite-templated carbon (ZTC) measured in alkaline solution was roughly doubled by a previous potentiodynamic treatment in sulfuric acidic solution. In order to explain the reasons of this capacity improvement, the changes in chemical composition of ZTC surface during its pretreatment in sulfuric acid either by simple immersion, or by potentiodynamic polarization, and during subsequent potentiodynamic polarization in KOH solutions, were studied by means of TG/DTA, FTIR spectroscopy and Raman spectroscopy. The results of this study open some novel insights in understanding of very peculiar carbon electrochemistry. The observed changes in surface chemistry include i) fast adsorption of H2O and formation of OH− and epoxide groups on immersion in sulfuric acid, ii) the multiplication of concentration of H2O/OH− and epoxide groups during potentiodynamic cycling in sulfuric acid and iii) the ring-opening of epoxide groups (formed during potentiodynamic cycling in acidic solution) upon its potentiodynamic cycling in alkaline solution, according to a SN2 type mechanism, which results in the formation of aromatic OH-containing diol compounds. © 2018 Elsevier Ltd",
journal = "Carbon",
title = "Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions",
volume = "138",
pages = "369-378",
doi = "10.1016/j.carbon.2018.07.053"
}
Vujković, M., Bajuk-Bogdanović, D. V., Matović, L., Stojmenović, M.,& Mentus, S. V.. (2018). Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions. in Carbon, 138, 369-378.
https://doi.org/10.1016/j.carbon.2018.07.053
Vujković M, Bajuk-Bogdanović DV, Matović L, Stojmenović M, Mentus SV. Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions. in Carbon. 2018;138:369-378.
doi:10.1016/j.carbon.2018.07.053 .
Vujković, Milica, Bajuk-Bogdanović, Danica V., Matović, Ljiljana, Stojmenović, Marija, Mentus, Slavko V., "Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions" in Carbon, 138 (2018):369-378,
https://doi.org/10.1016/j.carbon.2018.07.053 . .
13
9
12

Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction

Zdolšek, Nikola; Dimitrijević, Aleksandra; Bendova, Magdalena; Krstić, Jugoslav B.; Rocha, Raquel P.; Figueiredo, Jose L.; Bajuk-Bogdanović, Danica V.; Trtić-Petrović, Tatjana M.; Šljukić, Biljana

(2018)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Dimitrijević, Aleksandra
AU  - Bendova, Magdalena
AU  - Krstić, Jugoslav B.
AU  - Rocha, Raquel P.
AU  - Figueiredo, Jose L.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Trtić-Petrović, Tatjana M.
AU  - Šljukić, Biljana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7672
AB  - Carbon materials, prepared by using different methods with ionicliquids, are compared as electrocatalysts for the oxygen reductionreaction (ORR). Materials were synthesized through the hydrothermalcarbonization of glucose and by using the same method in the presence of1-butyl-3-methylimidazolium methanesulfonate {[}bmim]{[}MeSO3] as anadditive. Another two carbon-based materials were prepared by usingionic-liquid-based methods: ionothermal carbonization of glucose using{[}bmim]{[}MeSO3] as a recyclable medium for the carbonization reactionand by direct carbonization of the ionic liquid in a one-step methodusing {[}bmim]{[}MeSO3] as the precursor for N- and S-doped porouscarbon (Carb-IL). Characterization results showed the possibility ofmorphology and porosity control by using {[}bmim]{[}MeSO3]. Allmaterials were subsequently tested for the ORR in alkaline media.Carb-IL showed enhanced and stable electrocatalytic ORR activity, evenin the presence of methanol, ethanol, and borohydride, opening thepossibility for its application in fuel cells.
T2  - ChemElectroChem
T1  - Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction
VL  - 5
IS  - 7
SP  - 1037
EP  - 1046
DO  - 10.1002/celc.201701369
ER  - 
@article{
author = "Zdolšek, Nikola and Dimitrijević, Aleksandra and Bendova, Magdalena and Krstić, Jugoslav B. and Rocha, Raquel P. and Figueiredo, Jose L. and Bajuk-Bogdanović, Danica V. and Trtić-Petrović, Tatjana M. and Šljukić, Biljana",
year = "2018",
abstract = "Carbon materials, prepared by using different methods with ionicliquids, are compared as electrocatalysts for the oxygen reductionreaction (ORR). Materials were synthesized through the hydrothermalcarbonization of glucose and by using the same method in the presence of1-butyl-3-methylimidazolium methanesulfonate {[}bmim]{[}MeSO3] as anadditive. Another two carbon-based materials were prepared by usingionic-liquid-based methods: ionothermal carbonization of glucose using{[}bmim]{[}MeSO3] as a recyclable medium for the carbonization reactionand by direct carbonization of the ionic liquid in a one-step methodusing {[}bmim]{[}MeSO3] as the precursor for N- and S-doped porouscarbon (Carb-IL). Characterization results showed the possibility ofmorphology and porosity control by using {[}bmim]{[}MeSO3]. Allmaterials were subsequently tested for the ORR in alkaline media.Carb-IL showed enhanced and stable electrocatalytic ORR activity, evenin the presence of methanol, ethanol, and borohydride, opening thepossibility for its application in fuel cells.",
journal = "ChemElectroChem",
title = "Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction",
volume = "5",
number = "7",
pages = "1037-1046",
doi = "10.1002/celc.201701369"
}
Zdolšek, N., Dimitrijević, A., Bendova, M., Krstić, J. B., Rocha, R. P., Figueiredo, J. L., Bajuk-Bogdanović, D. V., Trtić-Petrović, T. M.,& Šljukić, B.. (2018). Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction. in ChemElectroChem, 5(7), 1037-1046.
https://doi.org/10.1002/celc.201701369
Zdolšek N, Dimitrijević A, Bendova M, Krstić JB, Rocha RP, Figueiredo JL, Bajuk-Bogdanović DV, Trtić-Petrović TM, Šljukić B. Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction. in ChemElectroChem. 2018;5(7):1037-1046.
doi:10.1002/celc.201701369 .
Zdolšek, Nikola, Dimitrijević, Aleksandra, Bendova, Magdalena, Krstić, Jugoslav B., Rocha, Raquel P., Figueiredo, Jose L., Bajuk-Bogdanović, Danica V., Trtić-Petrović, Tatjana M., Šljukić, Biljana, "Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction" in ChemElectroChem, 5, no. 7 (2018):1037-1046,
https://doi.org/10.1002/celc.201701369 . .
1
22
16
22

Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite

Jovanović, Zoran M.; Holclajtner-Antunović, Ivanka D.; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Mravik, Željko; Vujković, Milica

(2017)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Mravik, Željko
AU  - Vujković, Milica
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1737
AB  - The influence of thermal treatment in an inert atmosphere on the charge storage properties of graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposite was examined. The transmission electron microscopy analysis revealed high dispersion of WPA on GO matrix, while the surface analysis showed thermal activation of structural changes of WPA and desorption of oxygen functional groups from GO and GO/WPA nanocomposite. Initial GO/WPA nanocomposite had approximately two times higher capacitance compared to initial GO. The thermal treatment of initial GO and GO/WPA to 500 degrees C induced twofold increase of capacitance of GO and 40% increase of GO/WPA, accompanied with significant increase of operating voltage compared to GO (for 300 mV). Above 500 degrees C, a decrease of capacitance of both GO and GO/WPA was observed. The results suggest that understanding of structural changes of components and their interaction is crucial for improvement of electrochemical properties of considered composite.
T2  - Electrochemistry Communications
T1  - Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite
VL  - 83
SP  - 36
EP  - 40
DO  - 10.1016/j.elecom.2017.08.017
ER  - 
@article{
author = "Jovanović, Zoran M. and Holclajtner-Antunović, Ivanka D. and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Mravik, Željko and Vujković, Milica",
year = "2017",
abstract = "The influence of thermal treatment in an inert atmosphere on the charge storage properties of graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposite was examined. The transmission electron microscopy analysis revealed high dispersion of WPA on GO matrix, while the surface analysis showed thermal activation of structural changes of WPA and desorption of oxygen functional groups from GO and GO/WPA nanocomposite. Initial GO/WPA nanocomposite had approximately two times higher capacitance compared to initial GO. The thermal treatment of initial GO and GO/WPA to 500 degrees C induced twofold increase of capacitance of GO and 40% increase of GO/WPA, accompanied with significant increase of operating voltage compared to GO (for 300 mV). Above 500 degrees C, a decrease of capacitance of both GO and GO/WPA was observed. The results suggest that understanding of structural changes of components and their interaction is crucial for improvement of electrochemical properties of considered composite.",
journal = "Electrochemistry Communications",
title = "Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite",
volume = "83",
pages = "36-40",
doi = "10.1016/j.elecom.2017.08.017"
}
Jovanović, Z. M., Holclajtner-Antunović, I. D., Bajuk-Bogdanović, D. V., Jovanović, S., Mravik, Ž.,& Vujković, M.. (2017). Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite. in Electrochemistry Communications, 83, 36-40.
https://doi.org/10.1016/j.elecom.2017.08.017
Jovanović ZM, Holclajtner-Antunović ID, Bajuk-Bogdanović DV, Jovanović S, Mravik Ž, Vujković M. Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite. in Electrochemistry Communications. 2017;83:36-40.
doi:10.1016/j.elecom.2017.08.017 .
Jovanović, Zoran M., Holclajtner-Antunović, Ivanka D., Bajuk-Bogdanović, Danica V., Jovanović, Sonja, Mravik, Željko, Vujković, Milica, "Effect of thermal treatment on the charge storage properties of graphene oxide/12-tungstophosphoric acid nanocomposite" in Electrochemistry Communications, 83 (2017):36-40,
https://doi.org/10.1016/j.elecom.2017.08.017 . .
16
11
15

The role of surface chemistry in the charge storage properties of graphene oxide

Jovanović, Zoran M.; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Mravik, Željko; Kovač, Janez; Holclajtner-Antunović, Ivanka D.; Vujković, Milica

(2017)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Mravik, Željko
AU  - Kovač, Janez
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Vujković, Milica
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1879
AB  - In the present study we have evaluated the contribution of particular oxygen functional groups in the charge storage properties of graphene oxide (GO). This was achieved by a gradual thermal reduction of GO in an inert atmosphere (up to 800 degrees C) and thorough examination of functional groups which remained after each de-functionalization step. After identification of functional groups, the character of additional cyclovoltammetric peak, less pronounced than the main redox quinone/hydroquinone pair, and overall charge storage properties of GO were discussed from the perspective of different thermal stability of its surface groups. The results indicated three-stage deoxidation process of GO, each comprising of specific surface chemistry, structural changes and electrochemical behavior. The low capacitance, similar to 50 F g(-1), at T LT = 300 degrees C was attributed to the presence of epoxy and carboxyl groups. The highest capacitance (120-130 F g(-1)) was observed in the case of GO reduced at 400 and 500 degrees C, which we attributed to positive effects of phenol and carbonyl/quinone groups, while at high temperatures (T GT = 600 degrees C, similar to 30 F g(-1)) the extensive desorption of functional groups and structural changes were emphasized as the main reasons for additional decrease of capacitance. Our results highlight the cases where the duality of interpretation of surface functional groups is likely to happen and indicate that not all functional groups play a positive role in charge storage behavior of graphene oxide. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Electrochimica Acta
T1  - The role of surface chemistry in the charge storage properties of graphene oxide
VL  - 258
SP  - 1228
EP  - 1243
DO  - 10.1016/j.electacta.2017.11.178
ER  - 
@article{
author = "Jovanović, Zoran M. and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Mravik, Željko and Kovač, Janez and Holclajtner-Antunović, Ivanka D. and Vujković, Milica",
year = "2017",
abstract = "In the present study we have evaluated the contribution of particular oxygen functional groups in the charge storage properties of graphene oxide (GO). This was achieved by a gradual thermal reduction of GO in an inert atmosphere (up to 800 degrees C) and thorough examination of functional groups which remained after each de-functionalization step. After identification of functional groups, the character of additional cyclovoltammetric peak, less pronounced than the main redox quinone/hydroquinone pair, and overall charge storage properties of GO were discussed from the perspective of different thermal stability of its surface groups. The results indicated three-stage deoxidation process of GO, each comprising of specific surface chemistry, structural changes and electrochemical behavior. The low capacitance, similar to 50 F g(-1), at T LT = 300 degrees C was attributed to the presence of epoxy and carboxyl groups. The highest capacitance (120-130 F g(-1)) was observed in the case of GO reduced at 400 and 500 degrees C, which we attributed to positive effects of phenol and carbonyl/quinone groups, while at high temperatures (T GT = 600 degrees C, similar to 30 F g(-1)) the extensive desorption of functional groups and structural changes were emphasized as the main reasons for additional decrease of capacitance. Our results highlight the cases where the duality of interpretation of surface functional groups is likely to happen and indicate that not all functional groups play a positive role in charge storage behavior of graphene oxide. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Electrochimica Acta",
title = "The role of surface chemistry in the charge storage properties of graphene oxide",
volume = "258",
pages = "1228-1243",
doi = "10.1016/j.electacta.2017.11.178"
}
Jovanović, Z. M., Bajuk-Bogdanović, D. V., Jovanović, S., Mravik, Ž., Kovač, J., Holclajtner-Antunović, I. D.,& Vujković, M.. (2017). The role of surface chemistry in the charge storage properties of graphene oxide. in Electrochimica Acta, 258, 1228-1243.
https://doi.org/10.1016/j.electacta.2017.11.178
Jovanović ZM, Bajuk-Bogdanović DV, Jovanović S, Mravik Ž, Kovač J, Holclajtner-Antunović ID, Vujković M. The role of surface chemistry in the charge storage properties of graphene oxide. in Electrochimica Acta. 2017;258:1228-1243.
doi:10.1016/j.electacta.2017.11.178 .
Jovanović, Zoran M., Bajuk-Bogdanović, Danica V., Jovanović, Sonja, Mravik, Željko, Kovač, Janez, Holclajtner-Antunović, Ivanka D., Vujković, Milica, "The role of surface chemistry in the charge storage properties of graphene oxide" in Electrochimica Acta, 258 (2017):1228-1243,
https://doi.org/10.1016/j.electacta.2017.11.178 . .
38
21
34

Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite

Matović, Branko; Branković, Zorica; Bučevac, Dušan; Srdić, Vladimir; Luković, Miloljub D.; Nikolić, Maria Vesna; Balaz, Nelu; Milutinov, Miodrag; Vasiljević, Zorka; Labus, Nebojša; Aleksić, Obrad S.

(Belgrade : Institute for Multidisciplinary Research of the University of Belgrade, 2017)

TY  - CONF
AU  - Luković, Miloljub D.
AU  - Nikolić, Maria Vesna
AU  - Balaz, Nelu
AU  - Milutinov, Miodrag
AU  - Vasiljević, Zorka
AU  - Labus, Nebojša
AU  - Aleksić, Obrad S.
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15430
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7557
AB  - Starting hematite (Fe2O3), zinc oxide (ZnO) and manganese carbonate (MnCO3) powders were homogenized in a planetary ball mill in stainless steel bowls with stainless steel balls for 15 min, calcined in air at 1000 C for 2 h, milled in a planetary ball mill for 30 minutes, followed by 4 h in an aghate mill, sieved through a 325 mesh to form four starting powders: MnFe2O4, ZnFe2O4, Mn0.5Zn0.5Fe2O4 and a two-phase mixture of zinc and manganese ferrite. Structural properties of the obtained powders were analyzed using XRD, SEM and EDS. Electrical properties of disk shaped samples were measured at room temperature on an impedance analyzer in the frequency range 100 to 40 MHz, enabling determination and comparison of dielectric permittivity and complex impedance. Complex relative permeability of toroid shaped samples was measured on an impedance analyzer in the frequency range from 1 MHz to 500 MHz.
PB  - Belgrade : Institute for Multidisciplinary Research of the University of Belgrade
C3  - Programme and the Book of Abstracts / 4th Conference of The Serbian Society for Ceramic Materials, 4CSCS-2017, June 14-16, 2017, Belgrade, Serbia
T1  - Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite
SP  - 102
EP  - 102
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7557
ER  - 
@conference{
editor = "Matović, Branko, Branković, Zorica, Bučevac, Dušan, Srdić, Vladimir",
author = "Luković, Miloljub D. and Nikolić, Maria Vesna and Balaz, Nelu and Milutinov, Miodrag and Vasiljević, Zorka and Labus, Nebojša and Aleksić, Obrad S.",
year = "2017",
abstract = "Starting hematite (Fe2O3), zinc oxide (ZnO) and manganese carbonate (MnCO3) powders were homogenized in a planetary ball mill in stainless steel bowls with stainless steel balls for 15 min, calcined in air at 1000 C for 2 h, milled in a planetary ball mill for 30 minutes, followed by 4 h in an aghate mill, sieved through a 325 mesh to form four starting powders: MnFe2O4, ZnFe2O4, Mn0.5Zn0.5Fe2O4 and a two-phase mixture of zinc and manganese ferrite. Structural properties of the obtained powders were analyzed using XRD, SEM and EDS. Electrical properties of disk shaped samples were measured at room temperature on an impedance analyzer in the frequency range 100 to 40 MHz, enabling determination and comparison of dielectric permittivity and complex impedance. Complex relative permeability of toroid shaped samples was measured on an impedance analyzer in the frequency range from 1 MHz to 500 MHz.",
publisher = "Belgrade : Institute for Multidisciplinary Research of the University of Belgrade",
journal = "Programme and the Book of Abstracts / 4th Conference of The Serbian Society for Ceramic Materials, 4CSCS-2017, June 14-16, 2017, Belgrade, Serbia",
title = "Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite",
pages = "102-102",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7557"
}
Matović, B., Branković, Z., Bučevac, D., Srdić, V., Luković, M. D., Nikolić, M. V., Balaz, N., Milutinov, M., Vasiljević, Z., Labus, N.,& Aleksić, O. S.. (2017). Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite. in Programme and the Book of Abstracts / 4th Conference of The Serbian Society for Ceramic Materials, 4CSCS-2017, June 14-16, 2017, Belgrade, Serbia
Belgrade : Institute for Multidisciplinary Research of the University of Belgrade., 102-102.
https://hdl.handle.net/21.15107/rcub_vinar_7557
Matović B, Branković Z, Bučevac D, Srdić V, Luković MD, Nikolić MV, Balaz N, Milutinov M, Vasiljević Z, Labus N, Aleksić OS. Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite. in Programme and the Book of Abstracts / 4th Conference of The Serbian Society for Ceramic Materials, 4CSCS-2017, June 14-16, 2017, Belgrade, Serbia. 2017;:102-102.
https://hdl.handle.net/21.15107/rcub_vinar_7557 .
Matović, Branko, Branković, Zorica, Bučevac, Dušan, Srdić, Vladimir, Luković, Miloljub D., Nikolić, Maria Vesna, Balaz, Nelu, Milutinov, Miodrag, Vasiljević, Zorka, Labus, Nebojša, Aleksić, Obrad S., "Structural, electrical and magnetic properties of mechanically activated manganese and zinc ferrite" in Programme and the Book of Abstracts / 4th Conference of The Serbian Society for Ceramic Materials, 4CSCS-2017, June 14-16, 2017, Belgrade, Serbia (2017):102-102,
https://hdl.handle.net/21.15107/rcub_vinar_7557 .