Chongqing University of Posts and Telecommunications (CQUPT) - National High-end Foreign Experts Recruitment Program [Grant GDT20185200479]

Link to this page

Chongqing University of Posts and Telecommunications (CQUPT) - National High-end Foreign Experts Recruitment Program [Grant GDT20185200479]

Authors

Publications

Luminescence Thermometry Using Dy3+-Activated Na0.25K0.25Bi0.5TiO3 Powders

Kuzman, Sanja; Medić, Mina M.; Đorđević, Vesna R.; Zeković, Ivana Lj.; Ristić, Zoran; Đačanin Far, Ljubica; Dramićanin, Miroslav

(2020)

TY  - JOUR
AU  - Kuzman, Sanja
AU  - Medić, Mina M.
AU  - Đorđević, Vesna R.
AU  - Zeković, Ivana Lj.
AU  - Ristić, Zoran
AU  - Đačanin Far, Ljubica
AU  - Dramićanin, Miroslav
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8936
AB  - When activated by Dy3+, Na0.25K0.25Bi0.50TiO3 (NKBT), piezoelectric powders show strong luminescence in the blue and yellow spectral range. Emissions of this material can be effectively utilized for both luminescence intensity ratio and lifetime-based readouts of temperature. Photoluminescence measurements over a temperature range of 293–483 K show that the luminescence intensity ratio temperature readout has maximal relative sensitivity of 1.93% K−1 at 380 K, while the relative sensitivity of the lifetime temperature readout reaches 1.1% K−1 at 480 K. For this study, materials were synthesized by a solid-state reaction using TiO2, Bi2O3, Na2CO3, K2CO3 and Dy2O3 as precursors. X-ray diffraction measurements showed that the NKBT sample crystallized in the A-site substituted distorted perovskite rhombohedral structure (R3c symmetry). The photoluminescence spectra showed characteristic emission bands of Dy3+ ions centered at 457 nm (4I15/2 → 6H15/2), 478 nm (4F9/2 → 6H15/2), 574 nm (4F9/2 → 6H13/2) and 663 nm (4F9/2 → 6H11/2). The ratio of emissions from 4F9/2 and 4I15/2 excited states to the 6H15/2 ground state was used as a luminescence intensity ratio indicator of temperature, while the decay of emission from 4F9/2 → 6H13/2 transition was used as a lifetime indicator of temperature. CIE coordinates x = 0.326 and y = 0.361 calculated from room temperature emission spectra show the perspective of this material for use in white light emission devices.
T2  - Journal of Electronic Materials
T1  - Luminescence Thermometry Using Dy3+-Activated Na0.25K0.25Bi0.5TiO3 Powders
VL  - 49
IS  - 6
SP  - 4002
EP  - 4009
DO  - 10.1007/s11664-020-08109-7
ER  - 
@article{
author = "Kuzman, Sanja and Medić, Mina M. and Đorđević, Vesna R. and Zeković, Ivana Lj. and Ristić, Zoran and Đačanin Far, Ljubica and Dramićanin, Miroslav",
year = "2020",
abstract = "When activated by Dy3+, Na0.25K0.25Bi0.50TiO3 (NKBT), piezoelectric powders show strong luminescence in the blue and yellow spectral range. Emissions of this material can be effectively utilized for both luminescence intensity ratio and lifetime-based readouts of temperature. Photoluminescence measurements over a temperature range of 293–483 K show that the luminescence intensity ratio temperature readout has maximal relative sensitivity of 1.93% K−1 at 380 K, while the relative sensitivity of the lifetime temperature readout reaches 1.1% K−1 at 480 K. For this study, materials were synthesized by a solid-state reaction using TiO2, Bi2O3, Na2CO3, K2CO3 and Dy2O3 as precursors. X-ray diffraction measurements showed that the NKBT sample crystallized in the A-site substituted distorted perovskite rhombohedral structure (R3c symmetry). The photoluminescence spectra showed characteristic emission bands of Dy3+ ions centered at 457 nm (4I15/2 → 6H15/2), 478 nm (4F9/2 → 6H15/2), 574 nm (4F9/2 → 6H13/2) and 663 nm (4F9/2 → 6H11/2). The ratio of emissions from 4F9/2 and 4I15/2 excited states to the 6H15/2 ground state was used as a luminescence intensity ratio indicator of temperature, while the decay of emission from 4F9/2 → 6H13/2 transition was used as a lifetime indicator of temperature. CIE coordinates x = 0.326 and y = 0.361 calculated from room temperature emission spectra show the perspective of this material for use in white light emission devices.",
journal = "Journal of Electronic Materials",
title = "Luminescence Thermometry Using Dy3+-Activated Na0.25K0.25Bi0.5TiO3 Powders",
volume = "49",
number = "6",
pages = "4002-4009",
doi = "10.1007/s11664-020-08109-7"
}
Kuzman, S., Medić, M. M., Đorđević, V. R., Zeković, I. Lj., Ristić, Z., Đačanin Far, L.,& Dramićanin, M.. (2020). Luminescence Thermometry Using Dy3+-Activated Na0.25K0.25Bi0.5TiO3 Powders. in Journal of Electronic Materials, 49(6), 4002-4009.
https://doi.org/10.1007/s11664-020-08109-7
Kuzman S, Medić MM, Đorđević VR, Zeković IL, Ristić Z, Đačanin Far L, Dramićanin M. Luminescence Thermometry Using Dy3+-Activated Na0.25K0.25Bi0.5TiO3 Powders. in Journal of Electronic Materials. 2020;49(6):4002-4009.
doi:10.1007/s11664-020-08109-7 .
Kuzman, Sanja, Medić, Mina M., Đorđević, Vesna R., Zeković, Ivana Lj., Ristić, Zoran, Đačanin Far, Ljubica, Dramićanin, Miroslav, "Luminescence Thermometry Using Dy3+-Activated Na0.25K0.25Bi0.5TiO3 Powders" in Journal of Electronic Materials, 49, no. 6 (2020):4002-4009,
https://doi.org/10.1007/s11664-020-08109-7 . .
5
1
4