King Abdullah University of Science and Technology (KAUST) Base Research Fund [BAS/1/1606-01-01]

Link to this page

King Abdullah University of Science and Technology (KAUST) Base Research Fund [BAS/1/1606-01-01]

Authors

Publications

Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease

Bajić, Vladan P.; Van Neste, Christophe; Obradović, Milan M.; Zafirović, Sonja; Radak, Đorđe J.; Bajić, Vladimir B.; Essack, Magbubah; Isenović, Esma R.

(2019)

TY  - JOUR
AU  - Bajić, Vladan P.
AU  - Van Neste, Christophe
AU  - Obradović, Milan M.
AU  - Zafirović, Sonja
AU  - Radak, Đorđe J.
AU  - Bajić, Vladimir B.
AU  - Essack, Magbubah
AU  - Isenović, Esma R.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8375
AB  - More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired “redox homeostasis,” which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity associated with cardiac dysfunction.
T2  - Oxidative Medicine and Cellular Longevity
T1  - Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease
VL  - 2019
SP  - 5028181
DO  - 10.1155/2019/5028181
ER  - 
@article{
author = "Bajić, Vladan P. and Van Neste, Christophe and Obradović, Milan M. and Zafirović, Sonja and Radak, Đorđe J. and Bajić, Vladimir B. and Essack, Magbubah and Isenović, Esma R.",
year = "2019",
abstract = "More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired “redox homeostasis,” which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity associated with cardiac dysfunction.",
journal = "Oxidative Medicine and Cellular Longevity",
title = "Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease",
volume = "2019",
pages = "5028181",
doi = "10.1155/2019/5028181"
}
Bajić, V. P., Van Neste, C., Obradović, M. M., Zafirović, S., Radak, Đ. J., Bajić, V. B., Essack, M.,& Isenović, E. R.. (2019). Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease. in Oxidative Medicine and Cellular Longevity, 2019, 5028181.
https://doi.org/10.1155/2019/5028181
Bajić VP, Van Neste C, Obradović MM, Zafirović S, Radak ĐJ, Bajić VB, Essack M, Isenović ER. Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease. in Oxidative Medicine and Cellular Longevity. 2019;2019:5028181.
doi:10.1155/2019/5028181 .
Bajić, Vladan P., Van Neste, Christophe, Obradović, Milan M., Zafirović, Sonja, Radak, Đorđe J., Bajić, Vladimir B., Essack, Magbubah, Isenović, Esma R., "Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease" in Oxidative Medicine and Cellular Longevity, 2019 (2019):5028181,
https://doi.org/10.1155/2019/5028181 . .
2
89
38
90

Literature-Based Enrichment Insights into Redox Control of Vascular Biology

Essack, Magbubah; Salhi, Adil; Stanimirović, Julijana; Tifratene, Faroug; Bin Raies, Arwa; Hungler, Arnaud; Uludag, Mahmut; Van Neste, Christophe; Trpković, Andreja; Bajić, Vladan P.; Bajić, Vladimir B.; Isenović, Esma R.

(2019)

TY  - JOUR
AU  - Essack, Magbubah
AU  - Salhi, Adil
AU  - Stanimirović, Julijana
AU  - Tifratene, Faroug
AU  - Bin Raies, Arwa
AU  - Hungler, Arnaud
AU  - Uludag, Mahmut
AU  - Van Neste, Christophe
AU  - Trpković, Andreja
AU  - Bajić, Vladan P.
AU  - Bajić, Vladimir B.
AU  - Isenović, Esma R.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8389
AB  - In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.
T2  - Oxidative Medicine and Cellular Longevity
T1  - Literature-Based Enrichment Insights into Redox Control of Vascular Biology
VL  - 2019
SP  - 1769437
DO  - 10.1155/2019/1769437
ER  - 
@article{
author = "Essack, Magbubah and Salhi, Adil and Stanimirović, Julijana and Tifratene, Faroug and Bin Raies, Arwa and Hungler, Arnaud and Uludag, Mahmut and Van Neste, Christophe and Trpković, Andreja and Bajić, Vladan P. and Bajić, Vladimir B. and Isenović, Esma R.",
year = "2019",
abstract = "In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.",
journal = "Oxidative Medicine and Cellular Longevity",
title = "Literature-Based Enrichment Insights into Redox Control of Vascular Biology",
volume = "2019",
pages = "1769437",
doi = "10.1155/2019/1769437"
}
Essack, M., Salhi, A., Stanimirović, J., Tifratene, F., Bin Raies, A., Hungler, A., Uludag, M., Van Neste, C., Trpković, A., Bajić, V. P., Bajić, V. B.,& Isenović, E. R.. (2019). Literature-Based Enrichment Insights into Redox Control of Vascular Biology. in Oxidative Medicine and Cellular Longevity, 2019, 1769437.
https://doi.org/10.1155/2019/1769437
Essack M, Salhi A, Stanimirović J, Tifratene F, Bin Raies A, Hungler A, Uludag M, Van Neste C, Trpković A, Bajić VP, Bajić VB, Isenović ER. Literature-Based Enrichment Insights into Redox Control of Vascular Biology. in Oxidative Medicine and Cellular Longevity. 2019;2019:1769437.
doi:10.1155/2019/1769437 .
Essack, Magbubah, Salhi, Adil, Stanimirović, Julijana, Tifratene, Faroug, Bin Raies, Arwa, Hungler, Arnaud, Uludag, Mahmut, Van Neste, Christophe, Trpković, Andreja, Bajić, Vladan P., Bajić, Vladimir B., Isenović, Esma R., "Literature-Based Enrichment Insights into Redox Control of Vascular Biology" in Oxidative Medicine and Cellular Longevity, 2019 (2019):1769437,
https://doi.org/10.1155/2019/1769437 . .
8
3
8