Physics of Ordered Nanostructures and New Materials in Photonics

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/171005/RS//

Physics of Ordered Nanostructures and New Materials in Photonics (en)
Физика уређених наноструктура и нових материјала у фотоници (sr)
Fizika uređenih nanostruktura i novih materijala u fotonici (sr_RS)
Authors

Publications

Суб-микрометарске паралелне површинске структуре индуковане фемтосекундним ласерским снопом у форензици

Kovačević, Aleksander; Petrović, Suzana; Lekić, Marina; Vasić, Borislav; Salatić, Branislav; Potočnik, Jelena

(Belgrade : ETRAN Society, 2022)

TY  - CONF
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Lekić, Marina
AU  - Vasić, Borislav
AU  - Salatić, Branislav
AU  - Potočnik, Jelena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11857
AB  - Један од ефеката интеракције ултра-кратког ласерског снопа са материјалима је формирање паралелних структура на површини (laser-induced parallel surface structures - LIPSS), чији је период мањи од таласне дужине снопа. Уколико се ради о вишеслојним танким филмовима метала, квалитет формираних структура је бољи. Узорак од пет двослојних танких филмова Al и Ti на супстрату Si смо изложили фемтосекундном снопу и запазили формирање две врсте структура које се разликују по облику. Обе су врсте вероватно узроковане појавом површинског плазмонаполаритона на површини најгорњег слоја. Појава плазмона поларитона на површини танких металних филмова и наночестица може да ограничи простирање електромагнетног поља и да појача флуоресцентни сигнал из молекула хемикалије на површини. У зависности од структуре интерфејса за одређивање циљне хемикалије на металној површини флуоресценција побољшана плазмоном (plasmon-enhanced fluorescence, PEF) је привлачан метод за скраћење времена и појачање осетљивости разних аналитичких технологија које се користе у форензици.
AB  - One of the effects of the interaction of ultrashort laser beam with materials is the forming of laser-induced parallel surface structures (LIPSS), with period less than beam wavelength. For multilayer thin metal films, the quality of formed structures is better. The sample of five bilayers of Al and Ti on Si substrate was exposed to femtosecond beam and noticed the forming of of two types of structures different in shape. Both are most probably the product of surface Plasmon polariton on the surface of most top layer. The occurrence of Plasmon polariton on the surface of thin metal layers and nanoparticles can confine the propagation of electromagnetic field and to amplify the fluorescent signal from molecules of the chemical compound on the surface. Depending on the interface structure for determining the target chemical on metal surface, Plasmon enhanced fluorescence is an attractive method for shortening the time of detection and increasing the sensitivity of various analytical technologies used in forensics.
PB  - Belgrade : ETRAN Society
PB  - Belgrade : Academic Mind
C3  - 9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar
T1  - Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици
T1  - Sub-micrometer parallel surface structures induced by femtosecond laser beam in forensics
SP  - 901
EP  - 905
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11857
ER  - 
@conference{
author = "Kovačević, Aleksander and Petrović, Suzana and Lekić, Marina and Vasić, Borislav and Salatić, Branislav and Potočnik, Jelena",
year = "2022",
abstract = "Један од ефеката интеракције ултра-кратког ласерског снопа са материјалима је формирање паралелних структура на површини (laser-induced parallel surface structures - LIPSS), чији је период мањи од таласне дужине снопа. Уколико се ради о вишеслојним танким филмовима метала, квалитет формираних структура је бољи. Узорак од пет двослојних танких филмова Al и Ti на супстрату Si смо изложили фемтосекундном снопу и запазили формирање две врсте структура које се разликују по облику. Обе су врсте вероватно узроковане појавом површинског плазмонаполаритона на површини најгорњег слоја. Појава плазмона поларитона на површини танких металних филмова и наночестица може да ограничи простирање електромагнетног поља и да појача флуоресцентни сигнал из молекула хемикалије на површини. У зависности од структуре интерфејса за одређивање циљне хемикалије на металној површини флуоресценција побољшана плазмоном (plasmon-enhanced fluorescence, PEF) је привлачан метод за скраћење времена и појачање осетљивости разних аналитичких технологија које се користе у форензици., One of the effects of the interaction of ultrashort laser beam with materials is the forming of laser-induced parallel surface structures (LIPSS), with period less than beam wavelength. For multilayer thin metal films, the quality of formed structures is better. The sample of five bilayers of Al and Ti on Si substrate was exposed to femtosecond beam and noticed the forming of of two types of structures different in shape. Both are most probably the product of surface Plasmon polariton on the surface of most top layer. The occurrence of Plasmon polariton on the surface of thin metal layers and nanoparticles can confine the propagation of electromagnetic field and to amplify the fluorescent signal from molecules of the chemical compound on the surface. Depending on the interface structure for determining the target chemical on metal surface, Plasmon enhanced fluorescence is an attractive method for shortening the time of detection and increasing the sensitivity of various analytical technologies used in forensics.",
publisher = "Belgrade : ETRAN Society, Belgrade : Academic Mind",
journal = "9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar",
title = "Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици, Sub-micrometer parallel surface structures induced by femtosecond laser beam in forensics",
pages = "901-905",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11857"
}
Kovačević, A., Petrović, S., Lekić, M., Vasić, B., Salatić, B.,& Potočnik, J.. (2022). Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици. in 9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar
Belgrade : ETRAN Society., 901-905.
https://hdl.handle.net/21.15107/rcub_vinar_11857
Kovačević A, Petrović S, Lekić M, Vasić B, Salatić B, Potočnik J. Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици. in 9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar. 2022;:901-905.
https://hdl.handle.net/21.15107/rcub_vinar_11857 .
Kovačević, Aleksander, Petrović, Suzana, Lekić, Marina, Vasić, Borislav, Salatić, Branislav, Potočnik, Jelena, "Суб-микрометарске паралелне површинске
структуре индуковане фемтосекундним
ласерским снопом у форензици" in 9th International Conference IcETRAN and 66th ETRAN Conference : Proceedings ; June 6-9, 2022 ; Novi Pazar (2022):901-905,
https://hdl.handle.net/21.15107/rcub_vinar_11857 .

Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations

Kovačević, Aleksander; Petrović, Suzana; Salatić, Branislav; Lekić, Marina; Vasić, Borislav Z.; Gajić, Radoš; Pantelić, Dejan; Jelenković, Branislav

(2020)

TY  - JOUR
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Salatić, Branislav
AU  - Lekić, Marina
AU  - Vasić, Borislav Z.
AU  - Gajić, Radoš
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9015
AB  - The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications—due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of trenches or grooves, while for less accumulated energy the buildup of the material—probably due to pronounced oxidation—lead to LIPSS in the form of hills or ridges.
T2  - Optical and Quantum Electronics
T1  - Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations
VL  - 52
IS  - 6
SP  - 301
DO  - 10.1007/s11082-020-02398-2
ER  - 
@article{
author = "Kovačević, Aleksander and Petrović, Suzana and Salatić, Branislav and Lekić, Marina and Vasić, Borislav Z. and Gajić, Radoš and Pantelić, Dejan and Jelenković, Branislav",
year = "2020",
abstract = "The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications—due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of trenches or grooves, while for less accumulated energy the buildup of the material—probably due to pronounced oxidation—lead to LIPSS in the form of hills or ridges.",
journal = "Optical and Quantum Electronics",
title = "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations",
volume = "52",
number = "6",
pages = "301",
doi = "10.1007/s11082-020-02398-2"
}
Kovačević, A., Petrović, S., Salatić, B., Lekić, M., Vasić, B. Z., Gajić, R., Pantelić, D.,& Jelenković, B.. (2020). Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in Optical and Quantum Electronics, 52(6), 301.
https://doi.org/10.1007/s11082-020-02398-2
Kovačević A, Petrović S, Salatić B, Lekić M, Vasić BZ, Gajić R, Pantelić D, Jelenković B. Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in Optical and Quantum Electronics. 2020;52(6):301.
doi:10.1007/s11082-020-02398-2 .
Kovačević, Aleksander, Petrović, Suzana, Salatić, Branislav, Lekić, Marina, Vasić, Borislav Z., Gajić, Radoš, Pantelić, Dejan, Jelenković, Branislav, "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations" in Optical and Quantum Electronics, 52, no. 6 (2020):301,
https://doi.org/10.1007/s11082-020-02398-2 . .
3
3

Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations

Kovačević, Aleksander; Petrović, Suzana; Salatić, Branislav; Lekić, Marina; Vasić, Borislav Z.; Gajić, Radoš; Pantelić, Dejan; Jelenković, Branislav

(Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade, 2019)

TY  - CONF
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Salatić, Branislav
AU  - Lekić, Marina
AU  - Vasić, Borislav Z.
AU  - Gajić, Radoš
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11884
AB  - The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while [1]. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications – due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well [2, 3]. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. [4]. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of “trenches”, while for less accumulated energy the buildup of the material – probably due to pronounced oxidation – lead to LIPSS in the form of “hills”.
PB  - Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade
C3  - PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts
T1  - Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations
SP  - 160
EP  - 160
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11884
ER  - 
@conference{
author = "Kovačević, Aleksander and Petrović, Suzana and Salatić, Branislav and Lekić, Marina and Vasić, Borislav Z. and Gajić, Radoš and Pantelić, Dejan and Jelenković, Branislav",
year = "2019",
abstract = "The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while [1]. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications – due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well [2, 3]. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. [4]. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of “trenches”, while for less accumulated energy the buildup of the material – probably due to pronounced oxidation – lead to LIPSS in the form of “hills”.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade",
journal = "PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts",
title = "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations",
pages = "160-160",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11884"
}
Kovačević, A., Petrović, S., Salatić, B., Lekić, M., Vasić, B. Z., Gajić, R., Pantelić, D.,& Jelenković, B.. (2019). Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade., 160-160.
https://hdl.handle.net/21.15107/rcub_vinar_11884
Kovačević A, Petrović S, Salatić B, Lekić M, Vasić BZ, Gajić R, Pantelić D, Jelenković B. Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts. 2019;:160-160.
https://hdl.handle.net/21.15107/rcub_vinar_11884 .
Kovačević, Aleksander, Petrović, Suzana, Salatić, Branislav, Lekić, Marina, Vasić, Borislav Z., Gajić, Radoš, Pantelić, Dejan, Jelenković, Branislav, "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations" in PHOTONICA2019 : 7th International School and Conference on Photonics & Machine Learning with Photonics Symposium : Book of abstracts (2019):160-160,
https://hdl.handle.net/21.15107/rcub_vinar_11884 .

Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

Ralević, Uroš; Isic, Goran; Vasić Anićijević, Dragana D.; Laban, Bojana B.; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajic, Rados

(2018)

TY  - JOUR
AU  - Ralević, Uroš
AU  - Isic, Goran
AU  - Vasić Anićijević, Dragana D.
AU  - Laban, Bojana B.
AU  - Bogdanović, Una
AU  - Lazović, Vladimir M.
AU  - Vodnik, Vesna
AU  - Gajic, Rados
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1890
AB  - The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Applied Surface Science
T1  - Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters
VL  - 434
SP  - 540
EP  - 548
DO  - 10.1016/j.apsusc.2017.10.148
ER  - 
@article{
author = "Ralević, Uroš and Isic, Goran and Vasić Anićijević, Dragana D. and Laban, Bojana B. and Bogdanović, Una and Lazović, Vladimir M. and Vodnik, Vesna and Gajic, Rados",
year = "2018",
abstract = "The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Applied Surface Science",
title = "Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters",
volume = "434",
pages = "540-548",
doi = "10.1016/j.apsusc.2017.10.148"
}
Ralević, U., Isic, G., Vasić Anićijević, D. D., Laban, B. B., Bogdanović, U., Lazović, V. M., Vodnik, V.,& Gajic, R.. (2018). Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters. in Applied Surface Science, 434, 540-548.
https://doi.org/10.1016/j.apsusc.2017.10.148
Ralević U, Isic G, Vasić Anićijević DD, Laban BB, Bogdanović U, Lazović VM, Vodnik V, Gajic R. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters. in Applied Surface Science. 2018;434:540-548.
doi:10.1016/j.apsusc.2017.10.148 .
Ralević, Uroš, Isic, Goran, Vasić Anićijević, Dragana D., Laban, Bojana B., Bogdanović, Una, Lazović, Vladimir M., Vodnik, Vesna, Gajic, Rados, "Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters" in Applied Surface Science, 434 (2018):540-548,
https://doi.org/10.1016/j.apsusc.2017.10.148 . .
3
3
3
7

Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films

Kovačević, A. G.; Petrović, Suzana; Lekić, M.; Jelenković, B. M.

(Moscow : Lebedev Physical Institute, 2018)

TY  - CONF
AU  - Kovačević, A. G.
AU  - Petrović, Suzana
AU  - Lekić, M.
AU  - Jelenković, B. M.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12445
AB  - During interaction of femtosecond laser beam with metal surfaces, laser induced pe- riodic nanostructures, LIPSS can be formed, which may improve properties of materials. Having excellent mechanical properties, multilayer thin films, like 5x(Al/Ti)@Si, are con- venient for forming of high quality LIPSS [1] due to their multilayer structure. We have exposed the multilayer thin film metal systems 5x(Al/Ti)@Si with femtosecond beam from the laser system Coherent Mira 900 in NIR with various scanning configurations [2]. The irradiated samples have been analyzed by Tescan Mira3 SEM. The beam scanned over the surface of the samples with multi-pass and cross-directional scanning configurations with the change of polarization direction. The formation of LIPSS is most probably due to the occurence of surface plasmon polariton, which leads to the periodic distribution of energy on the sample surface. The orientation of the LIPSS is related to the direction of the beam polarization. During multi-pass scanning, LIPSS maintained its configuration. The preservation of structures occured to some extent. Depending on the accumulated energy, two forms of LIPSS were generated: “hills”, for less accumulation, and “trenches” for greater accumulation. “Hills” are non-ablative, probably are due to the build-up of the material and are parallel to the polarization direction. “Trenches” are formed by ablation and are perpendicular to the polarization direction. During cross-directional scanning, LIPSS of orthogonal directions have been generated. The value of the “hills” period was around 360 nm and the width was ∼285 nm. The values of “trenches” period fluctuated between 320 and 380 nm, while width was between 85 and 45 nm. Proposed mechanism is that, for less accumulated energy, “hills” formed, while more accumulated energy leads to the ablation and formation of “trenches”.
PB  - Moscow : Lebedev Physical Institute
C3  - UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts
T1  - Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films
SP  - 108
EP  - 108
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12445
ER  - 
@conference{
author = "Kovačević, A. G. and Petrović, Suzana and Lekić, M. and Jelenković, B. M.",
year = "2018",
abstract = "During interaction of femtosecond laser beam with metal surfaces, laser induced pe- riodic nanostructures, LIPSS can be formed, which may improve properties of materials. Having excellent mechanical properties, multilayer thin films, like 5x(Al/Ti)@Si, are con- venient for forming of high quality LIPSS [1] due to their multilayer structure. We have exposed the multilayer thin film metal systems 5x(Al/Ti)@Si with femtosecond beam from the laser system Coherent Mira 900 in NIR with various scanning configurations [2]. The irradiated samples have been analyzed by Tescan Mira3 SEM. The beam scanned over the surface of the samples with multi-pass and cross-directional scanning configurations with the change of polarization direction. The formation of LIPSS is most probably due to the occurence of surface plasmon polariton, which leads to the periodic distribution of energy on the sample surface. The orientation of the LIPSS is related to the direction of the beam polarization. During multi-pass scanning, LIPSS maintained its configuration. The preservation of structures occured to some extent. Depending on the accumulated energy, two forms of LIPSS were generated: “hills”, for less accumulation, and “trenches” for greater accumulation. “Hills” are non-ablative, probably are due to the build-up of the material and are parallel to the polarization direction. “Trenches” are formed by ablation and are perpendicular to the polarization direction. During cross-directional scanning, LIPSS of orthogonal directions have been generated. The value of the “hills” period was around 360 nm and the width was ∼285 nm. The values of “trenches” period fluctuated between 320 and 380 nm, while width was between 85 and 45 nm. Proposed mechanism is that, for less accumulated energy, “hills” formed, while more accumulated energy leads to the ablation and formation of “trenches”.",
publisher = "Moscow : Lebedev Physical Institute",
journal = "UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts",
title = "Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films",
pages = "108-108",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12445"
}
Kovačević, A. G., Petrović, S., Lekić, M.,& Jelenković, B. M.. (2018). Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films. in UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts
Moscow : Lebedev Physical Institute., 108-108.
https://hdl.handle.net/21.15107/rcub_vinar_12445
Kovačević AG, Petrović S, Lekić M, Jelenković BM. Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films. in UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts. 2018;:108-108.
https://hdl.handle.net/21.15107/rcub_vinar_12445 .
Kovačević, A. G., Petrović, Suzana, Lekić, M., Jelenković, B. M., "Inducing LIPSS by multi-pass and cross-directional scanning of femtosecond beam over surface of thin metal films" in UltrafastLight-2018 : International Conference on Ultrafast Optical Science : Book of Abstracts (2018):108-108,
https://hdl.handle.net/21.15107/rcub_vinar_12445 .

Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam

Kovačević, Aleksander; Petrović, Suzana; Lazović, Vladimir M.; Peruško, Davor; Pantelić, Dejan; Jelenković, Branislav

(2017)

TY  - JOUR
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Lazović, Vladimir M.
AU  - Peruško, Davor
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7165
AB  - During femtosecond interaction with surfaces, the processes of liquid and solid-state dewetting could be responsible for the generation and regrouping of nanoparticles and nanoparticle clusters. The occurrence of surface plasmon polariton most probably induces the LIPSS arrangement. We have used low-fluence scanning femtosecond beam to generate sub-wavelength periodic structures on multilayer Ni/Pd thin films on Si. The spatial period of LIPSS increases with the change of scanning directions in respect to the polarization direction due to the phase difference increase between the incoming and induced oscillations. (c) 2017 Elsevier B.V. All rights reserved.
T2  - Applied Surface Science
T1  - Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam
VL  - 417
SP  - 155
EP  - 159
DO  - 10.1016/j.apsusc.2017.03.141
ER  - 
@article{
author = "Kovačević, Aleksander and Petrović, Suzana and Lazović, Vladimir M. and Peruško, Davor and Pantelić, Dejan and Jelenković, Branislav",
year = "2017",
abstract = "During femtosecond interaction with surfaces, the processes of liquid and solid-state dewetting could be responsible for the generation and regrouping of nanoparticles and nanoparticle clusters. The occurrence of surface plasmon polariton most probably induces the LIPSS arrangement. We have used low-fluence scanning femtosecond beam to generate sub-wavelength periodic structures on multilayer Ni/Pd thin films on Si. The spatial period of LIPSS increases with the change of scanning directions in respect to the polarization direction due to the phase difference increase between the incoming and induced oscillations. (c) 2017 Elsevier B.V. All rights reserved.",
journal = "Applied Surface Science",
title = "Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam",
volume = "417",
pages = "155-159",
doi = "10.1016/j.apsusc.2017.03.141"
}
Kovačević, A., Petrović, S., Lazović, V. M., Peruško, D., Pantelić, D.,& Jelenković, B.. (2017). Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam. in Applied Surface Science, 417, 155-159.
https://doi.org/10.1016/j.apsusc.2017.03.141
Kovačević A, Petrović S, Lazović VM, Peruško D, Pantelić D, Jelenković B. Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam. in Applied Surface Science. 2017;417:155-159.
doi:10.1016/j.apsusc.2017.03.141 .
Kovačević, Aleksander, Petrović, Suzana, Lazović, Vladimir M., Peruško, Davor, Pantelić, Dejan, Jelenković, Branislav, "Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam" in Applied Surface Science, 417 (2017):155-159,
https://doi.org/10.1016/j.apsusc.2017.03.141 . .
3
3
3

Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse

Gaković, Biljana M.; Tsibidis, George D.; Skoulas, Evangelos; Petrović, Suzana; Vasić, Borislav Z.; Stratakis, Emmanuel

(2017)

TY  - JOUR
AU  - Gaković, Biljana M.
AU  - Tsibidis, George D.
AU  - Skoulas, Evangelos
AU  - Petrović, Suzana
AU  - Vasić, Borislav Z.
AU  - Stratakis, Emmanuel
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1880
AB  - The interaction of ultra-short laser pulses with Titanium/Aluminium (Ti/Al) nano-layered thin film was investigated. The sample composed of alternating Ti and Al layers of a few nanometres thick was deposited by ion-sputtering. A single pulse irradiation experiment was conducted in an ambient air environment using focused and linearly polarized femtosecond laser pulses for the investigation of the ablation effects. The laser induced morphological changes and the composition were characterized using several microscopy techniques and energy dispersive X-ray spectroscopy. The following results were obtained: (i) at low values of pulse energy/fluence, ablation of the upper Ti layer only was observed; (ii) at higher laser fluence, a two-step ablation of Ti and Al layers takes place, followed by partial removal of the nano-layered film. The experimental observations were supported by a theoretical model accounting for the thermal response of the multiple layered structure upon irradiation with ultra-short laser pulses. Published by AIP Publishing.
T2  - Journal of Applied Physics
T1  - Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse
VL  - 122
IS  - 22
DO  - 10.1063/1.5016548
ER  - 
@article{
author = "Gaković, Biljana M. and Tsibidis, George D. and Skoulas, Evangelos and Petrović, Suzana and Vasić, Borislav Z. and Stratakis, Emmanuel",
year = "2017",
abstract = "The interaction of ultra-short laser pulses with Titanium/Aluminium (Ti/Al) nano-layered thin film was investigated. The sample composed of alternating Ti and Al layers of a few nanometres thick was deposited by ion-sputtering. A single pulse irradiation experiment was conducted in an ambient air environment using focused and linearly polarized femtosecond laser pulses for the investigation of the ablation effects. The laser induced morphological changes and the composition were characterized using several microscopy techniques and energy dispersive X-ray spectroscopy. The following results were obtained: (i) at low values of pulse energy/fluence, ablation of the upper Ti layer only was observed; (ii) at higher laser fluence, a two-step ablation of Ti and Al layers takes place, followed by partial removal of the nano-layered film. The experimental observations were supported by a theoretical model accounting for the thermal response of the multiple layered structure upon irradiation with ultra-short laser pulses. Published by AIP Publishing.",
journal = "Journal of Applied Physics",
title = "Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse",
volume = "122",
number = "22",
doi = "10.1063/1.5016548"
}
Gaković, B. M., Tsibidis, G. D., Skoulas, E., Petrović, S., Vasić, B. Z.,& Stratakis, E.. (2017). Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse. in Journal of Applied Physics, 122(22).
https://doi.org/10.1063/1.5016548
Gaković BM, Tsibidis GD, Skoulas E, Petrović S, Vasić BZ, Stratakis E. Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse. in Journal of Applied Physics. 2017;122(22).
doi:10.1063/1.5016548 .
Gaković, Biljana M., Tsibidis, George D., Skoulas, Evangelos, Petrović, Suzana, Vasić, Borislav Z., Stratakis, Emmanuel, "Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse" in Journal of Applied Physics, 122, no. 22 (2017),
https://doi.org/10.1063/1.5016548 . .
2
25
17
23

Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+

Rabasović, Mihailo D.; Murić, Branka D.; Celebonovic, Vladan; Mitrić, Miodrag; Jelenković, Branislav; Nikolić, Marko G.

(2016)

TY  - JOUR
AU  - Rabasović, Mihailo D.
AU  - Murić, Branka D.
AU  - Celebonovic, Vladan
AU  - Mitrić, Miodrag
AU  - Jelenković, Branislav
AU  - Nikolić, Marko G.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1305
AB  - In this work we investigated the photoluminescence properties of Y2O3: Er3+, Eu3+ as a function of temperature and the possibility to use this material as a temperature sensor. Photoluminescence emission measurements with 532 nm laser excitation were recorded in the temperature range from 303 up to 573 K. The measured intensity ratio of erbium S-4(3/2) - GT I-4(15/ 2) and europium D-5(0) - GT F-7(2) emission lines was used for determination of the temperature calibration curve. These emission lines are intense, narrow and well defined. The distance between the lines, being 47 nm, can be easily measured even with a low-resolution spectrometer. The calculated relative sensitivity of the temperature sensor was 1.4% K-1 at 303 K, in the physiological temperature range, meaning that it could be successfully applied in biological studies.
T2  - Journal of Physics. D: Applied Physics
T1  - Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+
VL  - 49
IS  - 48
DO  - 10.1088/0022-3727/49/48/485104
ER  - 
@article{
author = "Rabasović, Mihailo D. and Murić, Branka D. and Celebonovic, Vladan and Mitrić, Miodrag and Jelenković, Branislav and Nikolić, Marko G.",
year = "2016",
abstract = "In this work we investigated the photoluminescence properties of Y2O3: Er3+, Eu3+ as a function of temperature and the possibility to use this material as a temperature sensor. Photoluminescence emission measurements with 532 nm laser excitation were recorded in the temperature range from 303 up to 573 K. The measured intensity ratio of erbium S-4(3/2) - GT I-4(15/ 2) and europium D-5(0) - GT F-7(2) emission lines was used for determination of the temperature calibration curve. These emission lines are intense, narrow and well defined. The distance between the lines, being 47 nm, can be easily measured even with a low-resolution spectrometer. The calculated relative sensitivity of the temperature sensor was 1.4% K-1 at 303 K, in the physiological temperature range, meaning that it could be successfully applied in biological studies.",
journal = "Journal of Physics. D: Applied Physics",
title = "Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+",
volume = "49",
number = "48",
doi = "10.1088/0022-3727/49/48/485104"
}
Rabasović, M. D., Murić, B. D., Celebonovic, V., Mitrić, M., Jelenković, B.,& Nikolić, M. G.. (2016). Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+. in Journal of Physics. D: Applied Physics, 49(48).
https://doi.org/10.1088/0022-3727/49/48/485104
Rabasović MD, Murić BD, Celebonovic V, Mitrić M, Jelenković B, Nikolić MG. Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+. in Journal of Physics. D: Applied Physics. 2016;49(48).
doi:10.1088/0022-3727/49/48/485104 .
Rabasović, Mihailo D., Murić, Branka D., Celebonovic, Vladan, Mitrić, Miodrag, Jelenković, Branislav, Nikolić, Marko G., "Luminescence thermometry via the two-dopant intensity ratio of Y2O3: Er3+, Eu3+" in Journal of Physics. D: Applied Physics, 49, no. 48 (2016),
https://doi.org/10.1088/0022-3727/49/48/485104 . .
20
15
18

Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam

Kovačević, Aleksander; Petrović, Suzana; Bokic, Bojana; Gaković, Biljana M.; Bokorov, Milos T.; Vasić, Borislav Z.; Gajic, Rados; Trtica, Milan; Jelenković, Branislav

(2015)

TY  - JOUR
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Bokic, Bojana
AU  - Gaković, Biljana M.
AU  - Bokorov, Milos T.
AU  - Vasić, Borislav Z.
AU  - Gajic, Rados
AU  - Trtica, Milan
AU  - Jelenković, Branislav
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/323
AB  - The effects of UV femtosecond laser beam with 76 MHz repetition rate on two types of thin films on Si substrate - the Al single layer thin film, and the multilayered thin film consisted of five Al/Ti bilayers (total thickness 130 nm) - were studied. The surface modification of the target was done by low fluences and different irradiation times, not exceeding similar to 300s. Nanopatterns in the form of femtosecond-laser induced periodic surface structures (fs-LIPSS) with periodicity of LT 315 nm and height of 45 nm were registered upon irradiation of the thin films. It was shown that: (i) the fs-LIPSS evolve from ruffles similar to high spatial frequency LIPSS (HSFL) into a low spatial frequency LIPSS (LSFL) if a certain threshold of the fluence is met, (ii) the number of LSFL increases with the exposition time and (iii) the LSFL remain stable even after long exposure times. We achieved high-quality highly-controllable fabrication of periodic structures on the surface of nanosized multilayer films with high-repetition-rate low-fluence femtosecond laser pulses. Compared to the Al single layer, the presence of the Ti underlayer in the Al/Ti multilayer thin film enabled more efficient heat transmittance through the Al/Ti interface away from the interaction zone which caused the reduction of the ablation effects leading to the formation of more regular LIPSS. The different outcomes of interactions with multi and single layer thin films lead to the conclusion that the behavior of the LIPSS is due to thin film structure. (C) 2014 Elsevier B.V. All rights reserved.
T2  - Applied Surface Science
T1  - Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam
VL  - 326
SP  - 91
EP  - 98
DO  - 10.1016/j.apsusc.2014.10.180
ER  - 
@article{
author = "Kovačević, Aleksander and Petrović, Suzana and Bokic, Bojana and Gaković, Biljana M. and Bokorov, Milos T. and Vasić, Borislav Z. and Gajic, Rados and Trtica, Milan and Jelenković, Branislav",
year = "2015",
abstract = "The effects of UV femtosecond laser beam with 76 MHz repetition rate on two types of thin films on Si substrate - the Al single layer thin film, and the multilayered thin film consisted of five Al/Ti bilayers (total thickness 130 nm) - were studied. The surface modification of the target was done by low fluences and different irradiation times, not exceeding similar to 300s. Nanopatterns in the form of femtosecond-laser induced periodic surface structures (fs-LIPSS) with periodicity of LT 315 nm and height of 45 nm were registered upon irradiation of the thin films. It was shown that: (i) the fs-LIPSS evolve from ruffles similar to high spatial frequency LIPSS (HSFL) into a low spatial frequency LIPSS (LSFL) if a certain threshold of the fluence is met, (ii) the number of LSFL increases with the exposition time and (iii) the LSFL remain stable even after long exposure times. We achieved high-quality highly-controllable fabrication of periodic structures on the surface of nanosized multilayer films with high-repetition-rate low-fluence femtosecond laser pulses. Compared to the Al single layer, the presence of the Ti underlayer in the Al/Ti multilayer thin film enabled more efficient heat transmittance through the Al/Ti interface away from the interaction zone which caused the reduction of the ablation effects leading to the formation of more regular LIPSS. The different outcomes of interactions with multi and single layer thin films lead to the conclusion that the behavior of the LIPSS is due to thin film structure. (C) 2014 Elsevier B.V. All rights reserved.",
journal = "Applied Surface Science",
title = "Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam",
volume = "326",
pages = "91-98",
doi = "10.1016/j.apsusc.2014.10.180"
}
Kovačević, A., Petrović, S., Bokic, B., Gaković, B. M., Bokorov, M. T., Vasić, B. Z., Gajic, R., Trtica, M.,& Jelenković, B.. (2015). Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam. in Applied Surface Science, 326, 91-98.
https://doi.org/10.1016/j.apsusc.2014.10.180
Kovačević A, Petrović S, Bokic B, Gaković BM, Bokorov MT, Vasić BZ, Gajic R, Trtica M, Jelenković B. Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam. in Applied Surface Science. 2015;326:91-98.
doi:10.1016/j.apsusc.2014.10.180 .
Kovačević, Aleksander, Petrović, Suzana, Bokic, Bojana, Gaković, Biljana M., Bokorov, Milos T., Vasić, Borislav Z., Gajic, Rados, Trtica, Milan, Jelenković, Branislav, "Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam" in Applied Surface Science, 326 (2015):91-98,
https://doi.org/10.1016/j.apsusc.2014.10.180 . .
23
19
21

Raman spectroscopy of graphene: doping and mapping

Stojanović, Danka; Matkovic, A.; Askrabic, S.; Beltaos, A.; Ralević, Uroš; Jovanović, Đorđe; Bajuk-Bogdanović, Danica V.; Holclajtner-Antunović, Ivanka D.; Gajic, R.

(2013)

TY  - JOUR
AU  - Stojanović, Danka
AU  - Matkovic, A.
AU  - Askrabic, S.
AU  - Beltaos, A.
AU  - Ralević, Uroš
AU  - Jovanović, Đorđe
AU  - Bajuk-Bogdanović, Danica V.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Gajic, R.
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7017
AB  - In this study, graphene samples prepared by mechanical exfoliation were examined by Raman spectroscopy. The Au electrical contacts, fabricated using photolithography, allowed the application of a gate voltage between graphene and the Si substrate. In the Raman spectra of the sample, we observed shifts of position, changes of intensity and the width variations of the G and 2D peaks with the change of the gate voltage. Spatial Raman mapping of the samples was performed showing variations in intensities of the Raman peaks in different flake regions.
T2  - Physica Scripta
T1  - Raman spectroscopy of graphene: doping and mapping
VL  - T157
DO  - 10.1088/0031-8949/2013/T157/014010
ER  - 
@article{
author = "Stojanović, Danka and Matkovic, A. and Askrabic, S. and Beltaos, A. and Ralević, Uroš and Jovanović, Đorđe and Bajuk-Bogdanović, Danica V. and Holclajtner-Antunović, Ivanka D. and Gajic, R.",
year = "2013",
abstract = "In this study, graphene samples prepared by mechanical exfoliation were examined by Raman spectroscopy. The Au electrical contacts, fabricated using photolithography, allowed the application of a gate voltage between graphene and the Si substrate. In the Raman spectra of the sample, we observed shifts of position, changes of intensity and the width variations of the G and 2D peaks with the change of the gate voltage. Spatial Raman mapping of the samples was performed showing variations in intensities of the Raman peaks in different flake regions.",
journal = "Physica Scripta",
title = "Raman spectroscopy of graphene: doping and mapping",
volume = "T157",
doi = "10.1088/0031-8949/2013/T157/014010"
}
Stojanović, D., Matkovic, A., Askrabic, S., Beltaos, A., Ralević, U., Jovanović, Đ., Bajuk-Bogdanović, D. V., Holclajtner-Antunović, I. D.,& Gajic, R.. (2013). Raman spectroscopy of graphene: doping and mapping. in Physica Scripta, T157.
https://doi.org/10.1088/0031-8949/2013/T157/014010
Stojanović D, Matkovic A, Askrabic S, Beltaos A, Ralević U, Jovanović Đ, Bajuk-Bogdanović DV, Holclajtner-Antunović ID, Gajic R. Raman spectroscopy of graphene: doping and mapping. in Physica Scripta. 2013;T157.
doi:10.1088/0031-8949/2013/T157/014010 .
Stojanović, Danka, Matkovic, A., Askrabic, S., Beltaos, A., Ralević, Uroš, Jovanović, Đorđe, Bajuk-Bogdanović, Danica V., Holclajtner-Antunović, Ivanka D., Gajic, R., "Raman spectroscopy of graphene: doping and mapping" in Physica Scripta, T157 (2013),
https://doi.org/10.1088/0031-8949/2013/T157/014010 . .
3
2
3