National Natural Science Foundation of China [52176203, 52050027]

Link to this page

National Natural Science Foundation of China [52176203, 52050027]

Authors

Publications

A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery

Yao, Jing; Guo, Leilei; Zhu, Pengfei; Yang, Fusheng; Yan, Hongli; Kurko, Sandra V.; Yartys, Volodymyr A.; Zhang, Zaoxiao; Wu, Zhen

(2021)

TY  - JOUR
AU  - Yao, Jing
AU  - Guo, Leilei
AU  - Zhu, Pengfei
AU  - Yang, Fusheng
AU  - Yan, Hongli
AU  - Kurko, Sandra V.
AU  - Yartys, Volodymyr A.
AU  - Zhang, Zaoxiao
AU  - Wu, Zhen
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9945
AB  - Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.
T2  - Energy Conversion and Management
T1  - A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery
VL  - 247
SP  - 114728
DO  - 10.1016/j.enconman.2021.114728
ER  - 
@article{
author = "Yao, Jing and Guo, Leilei and Zhu, Pengfei and Yang, Fusheng and Yan, Hongli and Kurko, Sandra V. and Yartys, Volodymyr A. and Zhang, Zaoxiao and Wu, Zhen",
year = "2021",
abstract = "Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.",
journal = "Energy Conversion and Management",
title = "A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery",
volume = "247",
pages = "114728",
doi = "10.1016/j.enconman.2021.114728"
}
Yao, J., Guo, L., Zhu, P., Yang, F., Yan, H., Kurko, S. V., Yartys, V. A., Zhang, Z.,& Wu, Z.. (2021). A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery. in Energy Conversion and Management, 247, 114728.
https://doi.org/10.1016/j.enconman.2021.114728
Yao J, Guo L, Zhu P, Yang F, Yan H, Kurko SV, Yartys VA, Zhang Z, Wu Z. A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery. in Energy Conversion and Management. 2021;247:114728.
doi:10.1016/j.enconman.2021.114728 .
Yao, Jing, Guo, Leilei, Zhu, Pengfei, Yang, Fusheng, Yan, Hongli, Kurko, Sandra V., Yartys, Volodymyr A., Zhang, Zaoxiao, Wu, Zhen, "A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery" in Energy Conversion and Management, 247 (2021):114728,
https://doi.org/10.1016/j.enconman.2021.114728 . .
6
5

Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell

Zhu, Pengfei; Wu, Zhen; Yao, Jing; Guo, Leilei; Yan, Hongli; Nyamsi, Serge Nyallang; Kurko, Sandra V.; Yang, Fusheng; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Zhu, Pengfei
AU  - Wu, Zhen
AU  - Yao, Jing
AU  - Guo, Leilei
AU  - Yan, Hongli
AU  - Nyamsi, Serge Nyallang
AU  - Kurko, Sandra V.
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9931
AB  - In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.
T2  - Journal of Power Sources
T1  - Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell
VL  - 512
SP  - 230470
DO  - 10.1016/j.jpowsour.2021.230470
ER  - 
@article{
author = "Zhu, Pengfei and Wu, Zhen and Yao, Jing and Guo, Leilei and Yan, Hongli and Nyamsi, Serge Nyallang and Kurko, Sandra V. and Yang, Fusheng and Zhang, Zaoxiao",
year = "2021",
abstract = "In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.",
journal = "Journal of Power Sources",
title = "Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell",
volume = "512",
pages = "230470",
doi = "10.1016/j.jpowsour.2021.230470"
}
Zhu, P., Wu, Z., Yao, J., Guo, L., Yan, H., Nyamsi, S. N., Kurko, S. V., Yang, F.,& Zhang, Z.. (2021). Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. in Journal of Power Sources, 512, 230470.
https://doi.org/10.1016/j.jpowsour.2021.230470
Zhu P, Wu Z, Yao J, Guo L, Yan H, Nyamsi SN, Kurko SV, Yang F, Zhang Z. Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. in Journal of Power Sources. 2021;512:230470.
doi:10.1016/j.jpowsour.2021.230470 .
Zhu, Pengfei, Wu, Zhen, Yao, Jing, Guo, Leilei, Yan, Hongli, Nyamsi, Serge Nyallang, Kurko, Sandra V., Yang, Fusheng, Zhang, Zaoxiao, "Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell" in Journal of Power Sources, 512 (2021):230470,
https://doi.org/10.1016/j.jpowsour.2021.230470 . .
24
21