Ministry of Education, Science and Technology of the Republic of Serbia

Link to this page

Ministry of Education, Science and Technology of the Republic of Serbia

Authors

Publications

Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites

Milanović, Igor; Milošević Govedarović, Sanja S.; Lukić, Miodrag; Jovanović, Zoran; Rmuš, Jelena; Mitrović-Rajić, Anđela; Grbović-Novaković, Jasmina; Kurko, Sandra V.

(2022)

TY  - JOUR
AU  - Milanović, Igor
AU  - Milošević Govedarović, Sanja S.
AU  - Lukić, Miodrag
AU  - Jovanović, Zoran
AU  - Rmuš, Jelena
AU  - Mitrović-Rajić, Anđela
AU  - Grbović-Novaković, Jasmina
AU  - Kurko, Sandra V.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10504
AB  - LiAlH4 was modified by mechanical milling and with the addition of 5 wt.% Fe2O3 in order to improve its hydrogen desorption properties. The composite was milled for 1, 3, 5, 7 or 15min, and depending on the milling time, various phenomena took place. Up to a milling time of 5min, the particle size of the composite decreases. Further milling leads to the particles agglomeration reaching the size of the starting material after 15min. Moreover, the mechanical milling process leads to the transformation of AlH - 4 to AlH 3 - 6 structure as a result of partial hydrogen desorption. Hydrogen desorption during the milling is the most pronounced in the sample milled for 15min, so this sample has only one hydrogen desorption peak in the temperature-programmed desorption measurements.Mechanical milling with the addition of Fe2O3 for up to 15min improves LiAlH4 hydrogen desorption properties as hydrogen desorption temperature and apparent activation energies decrease.
T2  - Processing and Application of Ceramics
T1  - Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites
VL  - 16
IS  - 3
SP  - 259
EP  - 266
DO  - 10.2298/PAC2203259M
ER  - 
@article{
author = "Milanović, Igor and Milošević Govedarović, Sanja S. and Lukić, Miodrag and Jovanović, Zoran and Rmuš, Jelena and Mitrović-Rajić, Anđela and Grbović-Novaković, Jasmina and Kurko, Sandra V.",
year = "2022",
abstract = "LiAlH4 was modified by mechanical milling and with the addition of 5 wt.% Fe2O3 in order to improve its hydrogen desorption properties. The composite was milled for 1, 3, 5, 7 or 15min, and depending on the milling time, various phenomena took place. Up to a milling time of 5min, the particle size of the composite decreases. Further milling leads to the particles agglomeration reaching the size of the starting material after 15min. Moreover, the mechanical milling process leads to the transformation of AlH - 4 to AlH 3 - 6 structure as a result of partial hydrogen desorption. Hydrogen desorption during the milling is the most pronounced in the sample milled for 15min, so this sample has only one hydrogen desorption peak in the temperature-programmed desorption measurements.Mechanical milling with the addition of Fe2O3 for up to 15min improves LiAlH4 hydrogen desorption properties as hydrogen desorption temperature and apparent activation energies decrease.",
journal = "Processing and Application of Ceramics",
title = "Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites",
volume = "16",
number = "3",
pages = "259-266",
doi = "10.2298/PAC2203259M"
}
Milanović, I., Milošević Govedarović, S. S., Lukić, M., Jovanović, Z., Rmuš, J., Mitrović-Rajić, A., Grbović-Novaković, J.,& Kurko, S. V.. (2022). Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites. in Processing and Application of Ceramics, 16(3), 259-266.
https://doi.org/10.2298/PAC2203259M
Milanović I, Milošević Govedarović SS, Lukić M, Jovanović Z, Rmuš J, Mitrović-Rajić A, Grbović-Novaković J, Kurko SV. Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites. in Processing and Application of Ceramics. 2022;16(3):259-266.
doi:10.2298/PAC2203259M .
Milanović, Igor, Milošević Govedarović, Sanja S., Lukić, Miodrag, Jovanović, Zoran, Rmuš, Jelena, Mitrović-Rajić, Anđela, Grbović-Novaković, Jasmina, Kurko, Sandra V., "Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites" in Processing and Application of Ceramics, 16, no. 3 (2022):259-266,
https://doi.org/10.2298/PAC2203259M . .
1
1

Ultrashort laser - fusion material interaction

Trtica, Milan; Stašić, Jelena; Limpouch, Jiri; Gavrilov, P.

(2021)

TY  - CONF
AU  - Trtica, Milan
AU  - Stašić, Jelena
AU  - Limpouch, Jiri
AU  - Gavrilov, P.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12097
AB  - Nuclear fusion (NF) as a source of clean energy is of interest to many governments, research groups, etc., nowadays. In order for NF to be applied in full capacity, certain problems related to plasma physics and reactor technology should be overcome [1]. In the main, there are two approaches at this moment, the first one based on magnetic confinement and the second one based on inertial confinement fusion, i.e. laser concept. Focusing only on the reactor technology, it is of high importance, among other, to apply the reactor materials (RM) possessing high resistance to thermal and radiation (including electromagnetic) flux [2]. In this context, the behavior of fusion RM, particularly potential plasma facing materials (PFM), will be observed. In nuclear reactor, the PFM are exposed to various fluxes such as the neutrons, alfa-particles, electromagnetic, thermal, hydrogen isotopes. These high thermal as well as electromagnetic fluxes can be, in one approximation, simulated by high-intensity laser radiation [3, 4]. Examples of high intensity femtosecond laser – material interaction will be presented in this work. The materials, i.e. candidates for PFM like tungsten, oxide dispersion strengthened (ODS) steel, will be investigated under the action of high laser intensity of the order of 1014 W/cm2  [5, 6]. Also, the presence of hydrogen isotopes in PFM will be analyzed.
C3  - AMPL-2021 : 15TH International conference Pulsed Lasers and Laser Applications : Book of abstracts
T1  - Ultrashort laser - fusion material interaction
VL  - 102
SP  - 6
EP  - 7
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12097
ER  - 
@conference{
author = "Trtica, Milan and Stašić, Jelena and Limpouch, Jiri and Gavrilov, P.",
year = "2021",
abstract = "Nuclear fusion (NF) as a source of clean energy is of interest to many governments, research groups, etc., nowadays. In order for NF to be applied in full capacity, certain problems related to plasma physics and reactor technology should be overcome [1]. In the main, there are two approaches at this moment, the first one based on magnetic confinement and the second one based on inertial confinement fusion, i.e. laser concept. Focusing only on the reactor technology, it is of high importance, among other, to apply the reactor materials (RM) possessing high resistance to thermal and radiation (including electromagnetic) flux [2]. In this context, the behavior of fusion RM, particularly potential plasma facing materials (PFM), will be observed. In nuclear reactor, the PFM are exposed to various fluxes such as the neutrons, alfa-particles, electromagnetic, thermal, hydrogen isotopes. These high thermal as well as electromagnetic fluxes can be, in one approximation, simulated by high-intensity laser radiation [3, 4]. Examples of high intensity femtosecond laser – material interaction will be presented in this work. The materials, i.e. candidates for PFM like tungsten, oxide dispersion strengthened (ODS) steel, will be investigated under the action of high laser intensity of the order of 1014 W/cm2  [5, 6]. Also, the presence of hydrogen isotopes in PFM will be analyzed.",
journal = "AMPL-2021 : 15TH International conference Pulsed Lasers and Laser Applications : Book of abstracts",
title = "Ultrashort laser - fusion material interaction",
volume = "102",
pages = "6-7",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12097"
}
Trtica, M., Stašić, J., Limpouch, J.,& Gavrilov, P.. (2021). Ultrashort laser - fusion material interaction. in AMPL-2021 : 15TH International conference Pulsed Lasers and Laser Applications : Book of abstracts, 102, 6-7.
https://hdl.handle.net/21.15107/rcub_vinar_12097
Trtica M, Stašić J, Limpouch J, Gavrilov P. Ultrashort laser - fusion material interaction. in AMPL-2021 : 15TH International conference Pulsed Lasers and Laser Applications : Book of abstracts. 2021;102:6-7.
https://hdl.handle.net/21.15107/rcub_vinar_12097 .
Trtica, Milan, Stašić, Jelena, Limpouch, Jiri, Gavrilov, P., "Ultrashort laser - fusion material interaction" in AMPL-2021 : 15TH International conference Pulsed Lasers and Laser Applications : Book of abstracts, 102 (2021):6-7,
https://hdl.handle.net/21.15107/rcub_vinar_12097 .