Živković, Emila M.

Link to this page

Authority KeyName Variants
cdf31092-c191-4c52-9fb5-9661ecd772ec
  • Živković, Emila M. (1)
Projects

Author's Bibliography

Volumetric and transport properties of binary liquid mixtures with 1-ethyl-3-methylimidazolium ethyl sulfate as candidate solvents for regenerative flue gas desulfurization processes

(2018)

TY  - JOUR
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7579
AB  - This paper presents novel data on density, viscosity and refractive index of four binary mixtures constituted of ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate and N-methyl-2-pyrrolidone/or 1-hexanol/or liquid polyethylene glycols with molar mass 200/or 400, in the temperature range from T = 288.15 K to 333.15 K and at pressure of p =.1 MPa. Thermal conductivity has been measured for mixtures of ionic liquid and polyethylene glycol 200/or polyethylene glycol 400 in the temperature range from T = 303.15 to 323.15 K and at a pressure of p =.1 MPa. All these solutions have the potential for application in regenerative flue gas desulfurization processes. From experimental values of densities, viscosities, thermal conductivities and refractive indices, excess molar volumes and deviations in viscosity, thermal conductivity and refractive index have been calculated and correlated with Redlich-Kister polynomial equation. The values of excess and deviation functions were used for analysis of molecular interactions present in the investigated solutions. In addition, modeling of transport properties, viscosity and thermal conductivity, was carried out and the obtained results were interpreted taking into account the applied approaches and models. (C) 2018 Elsevier Ltd.
T2  - Journal of Chemical Thermodynamics
T1  - Volumetric and transport properties of binary liquid mixtures with 1-ethyl-3-methylimidazolium ethyl sulfate as candidate solvents for regenerative flue gas desulfurization processes
VL  - 119
SP  - 135
EP  - 154
DO  - 10.1016/j.jct.2017.12.023
ER  - 
@article{
year = "2018",
abstract = "This paper presents novel data on density, viscosity and refractive index of four binary mixtures constituted of ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate and N-methyl-2-pyrrolidone/or 1-hexanol/or liquid polyethylene glycols with molar mass 200/or 400, in the temperature range from T = 288.15 K to 333.15 K and at pressure of p =.1 MPa. Thermal conductivity has been measured for mixtures of ionic liquid and polyethylene glycol 200/or polyethylene glycol 400 in the temperature range from T = 303.15 to 323.15 K and at a pressure of p =.1 MPa. All these solutions have the potential for application in regenerative flue gas desulfurization processes. From experimental values of densities, viscosities, thermal conductivities and refractive indices, excess molar volumes and deviations in viscosity, thermal conductivity and refractive index have been calculated and correlated with Redlich-Kister polynomial equation. The values of excess and deviation functions were used for analysis of molecular interactions present in the investigated solutions. In addition, modeling of transport properties, viscosity and thermal conductivity, was carried out and the obtained results were interpreted taking into account the applied approaches and models. (C) 2018 Elsevier Ltd.",
journal = "Journal of Chemical Thermodynamics",
title = "Volumetric and transport properties of binary liquid mixtures with 1-ethyl-3-methylimidazolium ethyl sulfate as candidate solvents for regenerative flue gas desulfurization processes",
volume = "119",
pages = "135-154",
doi = "10.1016/j.jct.2017.12.023"
}
(2018). Volumetric and transport properties of binary liquid mixtures with 1-ethyl-3-methylimidazolium ethyl sulfate as candidate solvents for regenerative flue gas desulfurization processes. in Journal of Chemical Thermodynamics, 119, 135-154.
https://doi.org/10.1016/j.jct.2017.12.023
Volumetric and transport properties of binary liquid mixtures with 1-ethyl-3-methylimidazolium ethyl sulfate as candidate solvents for regenerative flue gas desulfurization processes. in Journal of Chemical Thermodynamics. 2018;119:135-154.
doi:10.1016/j.jct.2017.12.023 .
"Volumetric and transport properties of binary liquid mixtures with 1-ethyl-3-methylimidazolium ethyl sulfate as candidate solvents for regenerative flue gas desulfurization processes" in Journal of Chemical Thermodynamics, 119 (2018):135-154,
https://doi.org/10.1016/j.jct.2017.12.023 . .
21
14
21