Belec, Blaž

Link to this page

Authority KeyName Variants
a3b6f6d6-9d8b-43f7-a074-38e5cc2307a8
  • Belec, Blaž (2)
Projects

Author's Bibliography

Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors

Mravik, Željko; Pejčić, Milica; Rmuš Mravik, Jelena; Belec, Blaž; Bajuk-Bogdanović, Danica; Jovanović, Sonja; Marković, Smilja; Gavrilov, Nemanja; Skuratov, Vladimir; Jovanović, Zoran

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Mravik, Željko
AU  - Pejčić, Milica
AU  - Rmuš Mravik, Jelena
AU  - Belec, Blaž
AU  - Bajuk-Bogdanović, Danica
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Gavrilov, Nemanja
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11637
AB  - In recent years graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposites have demonstrated promising potential for electrochemical supercapacitors. However, to enhance their performance, it is necessary to modify the surface chemistry of GO to minimize the influence of basal plane oxygen groups, which hinder the material's conductivity. Additionally, some degree of structural modification of WPA is desired. In this regard, ion beam irradiation presents a promising method to simultaneously optimize surface chemistry of GO and structurally modify WPA. To accomplish this, ion beam irradiation is employed for modification of individual components as well as their nanocomposites with varying mass ratios. Different ion species, fluences and energies were utilized depending on the sample type, ranging from 10 keV C to 710 MeV Bi. Spectroscopy methods were employed to gain insight into the type and degree of structural modification in WPA. A direct correlation is observed between the parameters of the ion beams and the resulting structural changes. As the disordering increases, the structure transitions from partially modified to increased bond breaking, ultimately leading to reconnected bronze-like structures. By increasing the fluence, a gradual modification of the structure and surface chemistry of GO was possible. The effects of irradiation on GO and WPA are particularly pronounced in irradiated composites, where higher capacitance is measured.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
T1  - Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors
SP  - 50
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11637
ER  - 
@conference{
author = "Mravik, Željko and Pejčić, Milica and Rmuš Mravik, Jelena and Belec, Blaž and Bajuk-Bogdanović, Danica and Jovanović, Sonja and Marković, Smilja and Gavrilov, Nemanja and Skuratov, Vladimir and Jovanović, Zoran",
year = "2023",
abstract = "In recent years graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposites have demonstrated promising potential for electrochemical supercapacitors. However, to enhance their performance, it is necessary to modify the surface chemistry of GO to minimize the influence of basal plane oxygen groups, which hinder the material's conductivity. Additionally, some degree of structural modification of WPA is desired. In this regard, ion beam irradiation presents a promising method to simultaneously optimize surface chemistry of GO and structurally modify WPA. To accomplish this, ion beam irradiation is employed for modification of individual components as well as their nanocomposites with varying mass ratios. Different ion species, fluences and energies were utilized depending on the sample type, ranging from 10 keV C to 710 MeV Bi. Spectroscopy methods were employed to gain insight into the type and degree of structural modification in WPA. A direct correlation is observed between the parameters of the ion beams and the resulting structural changes. As the disordering increases, the structure transitions from partially modified to increased bond breaking, ultimately leading to reconnected bronze-like structures. By increasing the fluence, a gradual modification of the structure and surface chemistry of GO was possible. The effects of irradiation on GO and WPA are particularly pronounced in irradiated composites, where higher capacitance is measured.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade",
title = "Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors",
pages = "50",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11637"
}
Mravik, Ž., Pejčić, M., Rmuš Mravik, J., Belec, B., Bajuk-Bogdanović, D., Jovanović, S., Marković, S., Gavrilov, N., Skuratov, V.,& Jovanović, Z.. (2023). Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
Belgrade : Serbian Ceramic Society., 50.
https://hdl.handle.net/21.15107/rcub_vinar_11637
Mravik Ž, Pejčić M, Rmuš Mravik J, Belec B, Bajuk-Bogdanović D, Jovanović S, Marković S, Gavrilov N, Skuratov V, Jovanović Z. Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade. 2023;:50.
https://hdl.handle.net/21.15107/rcub_vinar_11637 .
Mravik, Željko, Pejčić, Milica, Rmuš Mravik, Jelena, Belec, Blaž, Bajuk-Bogdanović, Danica, Jovanović, Sonja, Marković, Smilja, Gavrilov, Nemanja, Skuratov, Vladimir, Jovanović, Zoran, "Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors" in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade (2023):50,
https://hdl.handle.net/21.15107/rcub_vinar_11637 .

Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER

Rmuš, Jelena; Belec, Blaž; Milanović, Igor; Fanetti, Mattia; Gardonio, Sandra; Valant, Matjaž; Kurko, Sandra

(2023)

TY  - JOUR
AU  - Rmuš, Jelena
AU  - Belec, Blaž
AU  - Milanović, Igor
AU  - Fanetti, Mattia
AU  - Gardonio, Sandra
AU  - Valant, Matjaž
AU  - Kurko, Sandra
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11096
AB  - To produce materials with enhanced catalytic activity toward hydrogen evolution reaction we combined MoS2 as transition metal dichalcogenide and Bi2Se3 as topological insulator. The composites were produced by three methods: mechanical milling, high power sonication and spin-coating. MoS2 and Bi2Se3 as precursors in composites preparation were synthesized by hydrothermal method. The structure and morphology of various composites were correlated with their electrochemical properties obtained by impedance spectroscopy, linear sweep and cyclic voltammetry. Mechanical milling provided composites with the most pronounced activity improvement as a result of the largest damage and amount of introduced defects into the materials structure. The potential required to achieve the current density of 10 mA/cm2 in these samples is lowered up to 50 mV compared to as-synthesized material. Bi2Se3 in composite materials promotes the electron transfer to MoS2 which leads to the decrease of charge transfer resistance by 25 Ω.
T2  - Journal of Energy Storage
T1  - Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER
VL  - 68
SP  - 107719
DO  - 10.1016/j.est.2023.107719
ER  - 
@article{
author = "Rmuš, Jelena and Belec, Blaž and Milanović, Igor and Fanetti, Mattia and Gardonio, Sandra and Valant, Matjaž and Kurko, Sandra",
year = "2023",
abstract = "To produce materials with enhanced catalytic activity toward hydrogen evolution reaction we combined MoS2 as transition metal dichalcogenide and Bi2Se3 as topological insulator. The composites were produced by three methods: mechanical milling, high power sonication and spin-coating. MoS2 and Bi2Se3 as precursors in composites preparation were synthesized by hydrothermal method. The structure and morphology of various composites were correlated with their electrochemical properties obtained by impedance spectroscopy, linear sweep and cyclic voltammetry. Mechanical milling provided composites with the most pronounced activity improvement as a result of the largest damage and amount of introduced defects into the materials structure. The potential required to achieve the current density of 10 mA/cm2 in these samples is lowered up to 50 mV compared to as-synthesized material. Bi2Se3 in composite materials promotes the electron transfer to MoS2 which leads to the decrease of charge transfer resistance by 25 Ω.",
journal = "Journal of Energy Storage",
title = "Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER",
volume = "68",
pages = "107719",
doi = "10.1016/j.est.2023.107719"
}
Rmuš, J., Belec, B., Milanović, I., Fanetti, M., Gardonio, S., Valant, M.,& Kurko, S.. (2023). Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER. in Journal of Energy Storage, 68, 107719.
https://doi.org/10.1016/j.est.2023.107719
Rmuš J, Belec B, Milanović I, Fanetti M, Gardonio S, Valant M, Kurko S. Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER. in Journal of Energy Storage. 2023;68:107719.
doi:10.1016/j.est.2023.107719 .
Rmuš, Jelena, Belec, Blaž, Milanović, Igor, Fanetti, Mattia, Gardonio, Sandra, Valant, Matjaž, Kurko, Sandra, "Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER" in Journal of Energy Storage, 68 (2023):107719,
https://doi.org/10.1016/j.est.2023.107719 . .
2
2
2