Kovacevic, Aleksander G.

Link to this page

Authority KeyName Variants
7c24118e-2677-459a-8e12-0e327f53b66f
  • Kovacevic, Aleksander G. (4)
Projects

Author's Bibliography

Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam

Kovacevic, Aleksander G.; Petrović, Suzana; Lazović, Vladimir M.; Peruško, Davor; Pantelić, Dejan; Jelenković, Branislav

(2017)

TY  - JOUR
AU  - Kovacevic, Aleksander G.
AU  - Petrović, Suzana
AU  - Lazović, Vladimir M.
AU  - Peruško, Davor
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7165
AB  - During femtosecond interaction with surfaces, the processes of liquid and solid-state dewetting could be responsible for the generation and regrouping of nanoparticles and nanoparticle clusters. The occurrence of surface plasmon polariton most probably induces the LIPSS arrangement. We have used low-fluence scanning femtosecond beam to generate sub-wavelength periodic structures on multilayer Ni/Pd thin films on Si. The spatial period of LIPSS increases with the change of scanning directions in respect to the polarization direction due to the phase difference increase between the incoming and induced oscillations. (c) 2017 Elsevier B.V. All rights reserved.
T2  - Applied Surface Science
T1  - Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam
VL  - 417
SP  - 155
EP  - 159
DO  - 10.1016/j.apsusc.2017.03.141
ER  - 
@article{
author = "Kovacevic, Aleksander G. and Petrović, Suzana and Lazović, Vladimir M. and Peruško, Davor and Pantelić, Dejan and Jelenković, Branislav",
year = "2017",
abstract = "During femtosecond interaction with surfaces, the processes of liquid and solid-state dewetting could be responsible for the generation and regrouping of nanoparticles and nanoparticle clusters. The occurrence of surface plasmon polariton most probably induces the LIPSS arrangement. We have used low-fluence scanning femtosecond beam to generate sub-wavelength periodic structures on multilayer Ni/Pd thin films on Si. The spatial period of LIPSS increases with the change of scanning directions in respect to the polarization direction due to the phase difference increase between the incoming and induced oscillations. (c) 2017 Elsevier B.V. All rights reserved.",
journal = "Applied Surface Science",
title = "Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam",
volume = "417",
pages = "155-159",
doi = "10.1016/j.apsusc.2017.03.141"
}
Kovacevic, A. G., Petrović, S., Lazović, V. M., Peruško, D., Pantelić, D.,& Jelenković, B.. (2017). Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam. in Applied Surface Science, 417, 155-159.
https://doi.org/10.1016/j.apsusc.2017.03.141
Kovacevic AG, Petrović S, Lazović VM, Peruško D, Pantelić D, Jelenković B. Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam. in Applied Surface Science. 2017;417:155-159.
doi:10.1016/j.apsusc.2017.03.141 .
Kovacevic, Aleksander G., Petrović, Suzana, Lazović, Vladimir M., Peruško, Davor, Pantelić, Dejan, Jelenković, Branislav, "Inducing subwavelength periodic nanostructures on multilayer NiPd thin film by low-fluence femtosecond laser beam" in Applied Surface Science, 417 (2017):155-159,
https://doi.org/10.1016/j.apsusc.2017.03.141 . .
3
3
3

Interaction of laser beams with carbon textile materials

Sreckovic, Milesa Z.; Kaluđerović, Branka V.; Kovacevic, Aleksander G.; Bugarinović, Aleksandar; Druzijanic, Dragan

(Emerald Group Publishing Limited, 2015)

TY  - JOUR
AU  - Sreckovic, Milesa Z.
AU  - Kaluđerović, Branka V.
AU  - Kovacevic, Aleksander G.
AU  - Bugarinović, Aleksandar
AU  - Druzijanic, Dragan
PY  - 2015
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/856
AB  - Purpose - The purpose of this paper is to present the results of interaction occurring during the exposition of some specific carbon textile materials obtained in laboratory conditions to beams of various laser types. Design/methodology/approach - Carbon fabric materials - fiber, felt and cloth - obtained from different precursor materials and prepared at various process conditions (oxidized, partially carbonized, carbonized, graphitized), were exposed to pulses of various lasers (Nd3+:YAG, alexandrite, ruby). Findings - Depending on the laser power, plasma and destructive phenomena occurred. In the case of an interaction between a Nd3+: YAG laser beam and specimens of thickness in millimeter range, the authors have estimated the threshold of the energy density for drilling and discussed the possible models of the interaction. Research limitations/implications - The results have implications in the estimations of quality as well as in the improvement of material processing, giving some new light to the changes of mechanical and optical constants of the material, as well as to the changes of carbon groups of the material, which would be useful for different types of modeling. Future research will be in the interaction of laser beams with various textile materials, where the investigation would cover the microstructure changes and the implications on cloth cutting and welding, concerning the damages as well as relief structures, specially renew for fs laser regimes. Originality/value - The area of laser applications in the textile industry is supported by scientific and applicative exploration. However, fewer results are concerned with deep introspection into the microstructure of the damages considering the laser interaction with carbon fiber and other carbon-based textiles.
PB  - Emerald Group Publishing Limited
T2  - International Journal of Clothing Science and Technology
T1  - Interaction of laser beams with carbon textile materials
VL  - 27
IS  - 5
SP  - 720
EP  - 737
DO  - 10.1108/IJCST-07-2014-0086
ER  - 
@article{
author = "Sreckovic, Milesa Z. and Kaluđerović, Branka V. and Kovacevic, Aleksander G. and Bugarinović, Aleksandar and Druzijanic, Dragan",
year = "2015",
abstract = "Purpose - The purpose of this paper is to present the results of interaction occurring during the exposition of some specific carbon textile materials obtained in laboratory conditions to beams of various laser types. Design/methodology/approach - Carbon fabric materials - fiber, felt and cloth - obtained from different precursor materials and prepared at various process conditions (oxidized, partially carbonized, carbonized, graphitized), were exposed to pulses of various lasers (Nd3+:YAG, alexandrite, ruby). Findings - Depending on the laser power, plasma and destructive phenomena occurred. In the case of an interaction between a Nd3+: YAG laser beam and specimens of thickness in millimeter range, the authors have estimated the threshold of the energy density for drilling and discussed the possible models of the interaction. Research limitations/implications - The results have implications in the estimations of quality as well as in the improvement of material processing, giving some new light to the changes of mechanical and optical constants of the material, as well as to the changes of carbon groups of the material, which would be useful for different types of modeling. Future research will be in the interaction of laser beams with various textile materials, where the investigation would cover the microstructure changes and the implications on cloth cutting and welding, concerning the damages as well as relief structures, specially renew for fs laser regimes. Originality/value - The area of laser applications in the textile industry is supported by scientific and applicative exploration. However, fewer results are concerned with deep introspection into the microstructure of the damages considering the laser interaction with carbon fiber and other carbon-based textiles.",
publisher = "Emerald Group Publishing Limited",
journal = "International Journal of Clothing Science and Technology",
title = "Interaction of laser beams with carbon textile materials",
volume = "27",
number = "5",
pages = "720-737",
doi = "10.1108/IJCST-07-2014-0086"
}
Sreckovic, M. Z., Kaluđerović, B. V., Kovacevic, A. G., Bugarinović, A.,& Druzijanic, D.. (2015). Interaction of laser beams with carbon textile materials. in International Journal of Clothing Science and Technology
Emerald Group Publishing Limited., 27(5), 720-737.
https://doi.org/10.1108/IJCST-07-2014-0086
Sreckovic MZ, Kaluđerović BV, Kovacevic AG, Bugarinović A, Druzijanic D. Interaction of laser beams with carbon textile materials. in International Journal of Clothing Science and Technology. 2015;27(5):720-737.
doi:10.1108/IJCST-07-2014-0086 .
Sreckovic, Milesa Z., Kaluđerović, Branka V., Kovacevic, Aleksander G., Bugarinović, Aleksandar, Druzijanic, Dragan, "Interaction of laser beams with carbon textile materials" in International Journal of Clothing Science and Technology, 27, no. 5 (2015):720-737,
https://doi.org/10.1108/IJCST-07-2014-0086 . .

Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam

Kovacevic, Aleksander G.; Petrović, Suzana; Bokic, Bojana; Gaković, Biljana M.; Bokorov, Milos T.; Vasić, Borislav Z.; Gajic, Rados; Trtica, Milan; Jelenković, Branislav

(2015)

TY  - JOUR
AU  - Kovacevic, Aleksander G.
AU  - Petrović, Suzana
AU  - Bokic, Bojana
AU  - Gaković, Biljana M.
AU  - Bokorov, Milos T.
AU  - Vasić, Borislav Z.
AU  - Gajic, Rados
AU  - Trtica, Milan
AU  - Jelenković, Branislav
PY  - 2015
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/323
AB  - The effects of UV femtosecond laser beam with 76 MHz repetition rate on two types of thin films on Si substrate - the Al single layer thin film, and the multilayered thin film consisted of five Al/Ti bilayers (total thickness 130 nm) - were studied. The surface modification of the target was done by low fluences and different irradiation times, not exceeding similar to 300s. Nanopatterns in the form of femtosecond-laser induced periodic surface structures (fs-LIPSS) with periodicity of LT 315 nm and height of 45 nm were registered upon irradiation of the thin films. It was shown that: (i) the fs-LIPSS evolve from ruffles similar to high spatial frequency LIPSS (HSFL) into a low spatial frequency LIPSS (LSFL) if a certain threshold of the fluence is met, (ii) the number of LSFL increases with the exposition time and (iii) the LSFL remain stable even after long exposure times. We achieved high-quality highly-controllable fabrication of periodic structures on the surface of nanosized multilayer films with high-repetition-rate low-fluence femtosecond laser pulses. Compared to the Al single layer, the presence of the Ti underlayer in the Al/Ti multilayer thin film enabled more efficient heat transmittance through the Al/Ti interface away from the interaction zone which caused the reduction of the ablation effects leading to the formation of more regular LIPSS. The different outcomes of interactions with multi and single layer thin films lead to the conclusion that the behavior of the LIPSS is due to thin film structure. (C) 2014 Elsevier B.V. All rights reserved.
T2  - Applied Surface Science
T1  - Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam
VL  - 326
SP  - 91
EP  - 98
DO  - 10.1016/j.apsusc.2014.10.180
ER  - 
@article{
author = "Kovacevic, Aleksander G. and Petrović, Suzana and Bokic, Bojana and Gaković, Biljana M. and Bokorov, Milos T. and Vasić, Borislav Z. and Gajic, Rados and Trtica, Milan and Jelenković, Branislav",
year = "2015",
abstract = "The effects of UV femtosecond laser beam with 76 MHz repetition rate on two types of thin films on Si substrate - the Al single layer thin film, and the multilayered thin film consisted of five Al/Ti bilayers (total thickness 130 nm) - were studied. The surface modification of the target was done by low fluences and different irradiation times, not exceeding similar to 300s. Nanopatterns in the form of femtosecond-laser induced periodic surface structures (fs-LIPSS) with periodicity of LT 315 nm and height of 45 nm were registered upon irradiation of the thin films. It was shown that: (i) the fs-LIPSS evolve from ruffles similar to high spatial frequency LIPSS (HSFL) into a low spatial frequency LIPSS (LSFL) if a certain threshold of the fluence is met, (ii) the number of LSFL increases with the exposition time and (iii) the LSFL remain stable even after long exposure times. We achieved high-quality highly-controllable fabrication of periodic structures on the surface of nanosized multilayer films with high-repetition-rate low-fluence femtosecond laser pulses. Compared to the Al single layer, the presence of the Ti underlayer in the Al/Ti multilayer thin film enabled more efficient heat transmittance through the Al/Ti interface away from the interaction zone which caused the reduction of the ablation effects leading to the formation of more regular LIPSS. The different outcomes of interactions with multi and single layer thin films lead to the conclusion that the behavior of the LIPSS is due to thin film structure. (C) 2014 Elsevier B.V. All rights reserved.",
journal = "Applied Surface Science",
title = "Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam",
volume = "326",
pages = "91-98",
doi = "10.1016/j.apsusc.2014.10.180"
}
Kovacevic, A. G., Petrović, S., Bokic, B., Gaković, B. M., Bokorov, M. T., Vasić, B. Z., Gajic, R., Trtica, M.,& Jelenković, B.. (2015). Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam. in Applied Surface Science, 326, 91-98.
https://doi.org/10.1016/j.apsusc.2014.10.180
Kovacevic AG, Petrović S, Bokic B, Gaković BM, Bokorov MT, Vasić BZ, Gajic R, Trtica M, Jelenković B. Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam. in Applied Surface Science. 2015;326:91-98.
doi:10.1016/j.apsusc.2014.10.180 .
Kovacevic, Aleksander G., Petrović, Suzana, Bokic, Bojana, Gaković, Biljana M., Bokorov, Milos T., Vasić, Borislav Z., Gajic, Rados, Trtica, Milan, Jelenković, Branislav, "Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam" in Applied Surface Science, 326 (2015):91-98,
https://doi.org/10.1016/j.apsusc.2014.10.180 . .
18
17
18

Influence of Nuclear Radiation and Laser Beams on Optical Fibers and Components

Pantelic, Sladjana N.; Borna, Nadezda V.; Sreckovic, Milesa Z.; Kovacevic, Aleksander G.; Bugarinović, Aleksandar R.; Kovačević, Milojko; Lazarević, Đorđe R.

(2011)

TY  - JOUR
AU  - Pantelic, Sladjana N.
AU  - Borna, Nadezda V.
AU  - Sreckovic, Milesa Z.
AU  - Kovacevic, Aleksander G.
AU  - Bugarinović, Aleksandar R.
AU  - Kovačević, Milojko
AU  - Lazarević, Đorđe R.
PY  - 2011
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/4296
AB  - The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc.).
T2  - Nuclear technology and radiation protection
T1  - Influence of Nuclear Radiation and Laser Beams on Optical Fibers and Components
VL  - 26
IS  - 1
SP  - 32
EP  - 38
DO  - 10.2298/NTRP1101032P
ER  - 
@article{
author = "Pantelic, Sladjana N. and Borna, Nadezda V. and Sreckovic, Milesa Z. and Kovacevic, Aleksander G. and Bugarinović, Aleksandar R. and Kovačević, Milojko and Lazarević, Đorđe R.",
year = "2011",
abstract = "The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc.).",
journal = "Nuclear technology and radiation protection",
title = "Influence of Nuclear Radiation and Laser Beams on Optical Fibers and Components",
volume = "26",
number = "1",
pages = "32-38",
doi = "10.2298/NTRP1101032P"
}
Pantelic, S. N., Borna, N. V., Sreckovic, M. Z., Kovacevic, A. G., Bugarinović, A. R., Kovačević, M.,& Lazarević, Đ. R.. (2011). Influence of Nuclear Radiation and Laser Beams on Optical Fibers and Components. in Nuclear technology and radiation protection, 26(1), 32-38.
https://doi.org/10.2298/NTRP1101032P
Pantelic SN, Borna NV, Sreckovic MZ, Kovacevic AG, Bugarinović AR, Kovačević M, Lazarević ĐR. Influence of Nuclear Radiation and Laser Beams on Optical Fibers and Components. in Nuclear technology and radiation protection. 2011;26(1):32-38.
doi:10.2298/NTRP1101032P .
Pantelic, Sladjana N., Borna, Nadezda V., Sreckovic, Milesa Z., Kovacevic, Aleksander G., Bugarinović, Aleksandar R., Kovačević, Milojko, Lazarević, Đorđe R., "Influence of Nuclear Radiation and Laser Beams on Optical Fibers and Components" in Nuclear technology and radiation protection, 26, no. 1 (2011):32-38,
https://doi.org/10.2298/NTRP1101032P . .
3
3