Kleinová, Angela

Link to this page

Authority KeyName Variants
47c58e49-2e70-4735-9948-a565ea43e72b
  • Kleinová, Angela (4)

Author's Bibliography

Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent

Zmejkoski, Danica; Marković, Zoran M.; Zdravković, Nemanja M.; Trišić, Dijana; Budimir, Milica; Kuzman, Sanja; Kozyrovska, Natalia O.; Orlovska, Iryna V.; Bugárová, Nikol; Petrović, Đorđe; Kováčová, Mária; Kleinová, Angela; Špitalský, Zdeno; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Marković, Zoran M.
AU  - Zdravković, Nemanja M.
AU  - Trišić, Dijana
AU  - Budimir, Milica
AU  - Kuzman, Sanja
AU  - Kozyrovska, Natalia O.
AU  - Orlovska, Iryna V.
AU  - Bugárová, Nikol
AU  - Petrović, Đorđe
AU  - Kováčová, Mária
AU  - Kleinová, Angela
AU  - Špitalský, Zdeno
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9143
AB  - Therapy of bacterial urinary tract infections (UTIs) and catheter associated urinary tract infections (CAUTIs) is still a great challenge because of the resistance of bacteria to nowadays used antibiotics and encrustation of catheters. Bacterial cellulose (BC) as a biocompatible material with a high porosity allows incorporation of different materials in its three dimensional network structure. In this work a low molecular weight chitosan (Chi) polymer is incorporated in BC with different concentrations. Different characterization techniques are used to investigate structural and optical properties of these composites. Radical scavenging activity test shows moderate antioxidant activity of these biocompatible composites whereasin vitrorelease test shows that 13.3% of chitosan is released after 72 h. Antibacterial testing of BC-Chi composites conducted on Gram-positive and Gram-negative bacteria causing UTIs and CAUTIs (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumoniae) and encrustation (Proteus mirabilis) show bactericidal effect. The morphology analysis of bacteria after the application of BC-Chi shows that they are flattened with a rough surface, with a tendency to agglomerate and with decreased length and width. All obtained results show that BC-Chi composites might be considered as potential biomedical agents in treatment of UTIs and CAUTIs and as a urinary catheter coating in encrustation prevention.
T2  - RSC Advances
T1  - Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent
VL  - 11
IS  - 15
SP  - 8559
EP  - 8568
DO  - 10.1039/D0RA10782D
ER  - 
@article{
author = "Zmejkoski, Danica and Marković, Zoran M. and Zdravković, Nemanja M. and Trišić, Dijana and Budimir, Milica and Kuzman, Sanja and Kozyrovska, Natalia O. and Orlovska, Iryna V. and Bugárová, Nikol and Petrović, Đorđe and Kováčová, Mária and Kleinová, Angela and Špitalský, Zdeno and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2021",
abstract = "Therapy of bacterial urinary tract infections (UTIs) and catheter associated urinary tract infections (CAUTIs) is still a great challenge because of the resistance of bacteria to nowadays used antibiotics and encrustation of catheters. Bacterial cellulose (BC) as a biocompatible material with a high porosity allows incorporation of different materials in its three dimensional network structure. In this work a low molecular weight chitosan (Chi) polymer is incorporated in BC with different concentrations. Different characterization techniques are used to investigate structural and optical properties of these composites. Radical scavenging activity test shows moderate antioxidant activity of these biocompatible composites whereasin vitrorelease test shows that 13.3% of chitosan is released after 72 h. Antibacterial testing of BC-Chi composites conducted on Gram-positive and Gram-negative bacteria causing UTIs and CAUTIs (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumoniae) and encrustation (Proteus mirabilis) show bactericidal effect. The morphology analysis of bacteria after the application of BC-Chi shows that they are flattened with a rough surface, with a tendency to agglomerate and with decreased length and width. All obtained results show that BC-Chi composites might be considered as potential biomedical agents in treatment of UTIs and CAUTIs and as a urinary catheter coating in encrustation prevention.",
journal = "RSC Advances",
title = "Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent",
volume = "11",
number = "15",
pages = "8559-8568",
doi = "10.1039/D0RA10782D"
}
Zmejkoski, D., Marković, Z. M., Zdravković, N. M., Trišić, D., Budimir, M., Kuzman, S., Kozyrovska, N. O., Orlovska, I. V., Bugárová, N., Petrović, Đ., Kováčová, M., Kleinová, A., Špitalský, Z., Pavlović, V. B.,& Todorović-Marković, B.. (2021). Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. in RSC Advances, 11(15), 8559-8568.
https://doi.org/10.1039/D0RA10782D
Zmejkoski D, Marković ZM, Zdravković NM, Trišić D, Budimir M, Kuzman S, Kozyrovska NO, Orlovska IV, Bugárová N, Petrović Đ, Kováčová M, Kleinová A, Špitalský Z, Pavlović VB, Todorović-Marković B. Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. in RSC Advances. 2021;11(15):8559-8568.
doi:10.1039/D0RA10782D .
Zmejkoski, Danica, Marković, Zoran M., Zdravković, Nemanja M., Trišić, Dijana, Budimir, Milica, Kuzman, Sanja, Kozyrovska, Natalia O., Orlovska, Iryna V., Bugárová, Nikol, Petrović, Đorđe, Kováčová, Mária, Kleinová, Angela, Špitalský, Zdeno, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent" in RSC Advances, 11, no. 15 (2021):8559-8568,
https://doi.org/10.1039/D0RA10782D . .
11
2
7

Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment

Zmejkoski, Danica; Marković, Zoran M.; Budimir, Milica; Zdravković, Nemanja M.; Trišić, Dijana ; Bugárová, Nikol; Danko, Martin; Kozyrovska, Natalia O.; Špitalský, Zdeno; Kleinová, Angela; Kuzman, Sanja; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Marković, Zoran M.
AU  - Budimir, Milica
AU  - Zdravković, Nemanja M.
AU  - Trišić, Dijana 
AU  - Bugárová, Nikol
AU  - Danko, Martin
AU  - Kozyrovska, Natalia O.
AU  - Špitalský, Zdeno
AU  - Kleinová, Angela
AU  - Kuzman, Sanja
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9566
AB  - Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment. © 2021 Elsevier B.V.
T2  - Materials Science and Engineering: C
T1  - Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment
VL  - 122
SP  - 111925
DO  - 10.1016/j.msec.2021.111925
ER  - 
@article{
author = "Zmejkoski, Danica and Marković, Zoran M. and Budimir, Milica and Zdravković, Nemanja M. and Trišić, Dijana  and Bugárová, Nikol and Danko, Martin and Kozyrovska, Natalia O. and Špitalský, Zdeno and Kleinová, Angela and Kuzman, Sanja and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2021",
abstract = "Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment. © 2021 Elsevier B.V.",
journal = "Materials Science and Engineering: C",
title = "Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment",
volume = "122",
pages = "111925",
doi = "10.1016/j.msec.2021.111925"
}
Zmejkoski, D., Marković, Z. M., Budimir, M., Zdravković, N. M., Trišić, D., Bugárová, N., Danko, M., Kozyrovska, N. O., Špitalský, Z., Kleinová, A., Kuzman, S., Pavlović, V. B.,& Todorović-Marković, B.. (2021). Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. in Materials Science and Engineering: C, 122, 111925.
https://doi.org/10.1016/j.msec.2021.111925
Zmejkoski D, Marković ZM, Budimir M, Zdravković NM, Trišić D, Bugárová N, Danko M, Kozyrovska NO, Špitalský Z, Kleinová A, Kuzman S, Pavlović VB, Todorović-Marković B. Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. in Materials Science and Engineering: C. 2021;122:111925.
doi:10.1016/j.msec.2021.111925 .
Zmejkoski, Danica, Marković, Zoran M., Budimir, Milica, Zdravković, Nemanja M., Trišić, Dijana , Bugárová, Nikol, Danko, Martin, Kozyrovska, Natalia O., Špitalský, Zdeno, Kleinová, Angela, Kuzman, Sanja, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment" in Materials Science and Engineering: C, 122 (2021):111925,
https://doi.org/10.1016/j.msec.2021.111925 . .
25
6
21

Highly Efficient Antioxidant F- and Cl-Doped Carbon Quantum Dots for Bioimaging

Marković, Zoran M.; Labudová, Martina; Danko, Martin; Matijašević, Danka; Mičušík, Matej; Nádaždy, Vojtech; Kováčová, Mária; Kleinová, Angela; Špitalský, Zdeno; Pavlović, Vladimir B.; Milivojević, Dušan; Medić, Mina M.; Todorović-Marković, Biljana

(2020)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Labudová, Martina
AU  - Danko, Martin
AU  - Matijašević, Danka
AU  - Mičušík, Matej
AU  - Nádaždy, Vojtech
AU  - Kováčová, Mária
AU  - Kleinová, Angela
AU  - Špitalský, Zdeno
AU  - Pavlović, Vladimir B.
AU  - Milivojević, Dušan
AU  - Medić, Mina M.
AU  - Todorović-Marković, Biljana
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9733
AB  - The addition of heteroatoms to pristine carbon quantum dots (CQDs) change their structure and optical properties. In this study, fluorine (F)- and chlorine (Cl)-doped CQDs are prepared by the one-step green hydrothermal route from sodium fluoride, sodium chloride, urea, and citric acid as the starting precursors. Microscopy analysis reveals that the average size of these quantum dots is 5 ± 2 nm, whereas the chemical study shows the existence of C–F and C–Cl bonds. The produced F- and Cl-doped CQDs have fluorescence quantum yields of 0.151 and 0.284, respectively, at an excitation wavelength of 450 nm. Charge transfer resistance of F- and Cl-doped CQDs films is 2 orders of magnitude higher than in the pristine CQD films. Transport band gap of the doped CQDs is 2 eV bigger than that of pristine CQDs. Radical scavenging activity shows very good antioxidant activity of doped CQDs. Antibacterial testing reveals poor antibacterial activity against Staphylococcus aureus and Escherichia coli. The F- and Cl-doped CQDs are successfully used as fluorescent probes for cell imaging as shown by confocal microscopy.
T2  - ACS Sustainable Chemistry and Engineering
T1  - Highly Efficient Antioxidant F- and Cl-Doped Carbon Quantum Dots for Bioimaging
VL  - 8
IS  - 43
SP  - 16327
EP  - 16338
DO  - 10.1021/acssuschemeng.0c06260
ER  - 
@article{
author = "Marković, Zoran M. and Labudová, Martina and Danko, Martin and Matijašević, Danka and Mičušík, Matej and Nádaždy, Vojtech and Kováčová, Mária and Kleinová, Angela and Špitalský, Zdeno and Pavlović, Vladimir B. and Milivojević, Dušan and Medić, Mina M. and Todorović-Marković, Biljana",
year = "2020",
abstract = "The addition of heteroatoms to pristine carbon quantum dots (CQDs) change their structure and optical properties. In this study, fluorine (F)- and chlorine (Cl)-doped CQDs are prepared by the one-step green hydrothermal route from sodium fluoride, sodium chloride, urea, and citric acid as the starting precursors. Microscopy analysis reveals that the average size of these quantum dots is 5 ± 2 nm, whereas the chemical study shows the existence of C–F and C–Cl bonds. The produced F- and Cl-doped CQDs have fluorescence quantum yields of 0.151 and 0.284, respectively, at an excitation wavelength of 450 nm. Charge transfer resistance of F- and Cl-doped CQDs films is 2 orders of magnitude higher than in the pristine CQD films. Transport band gap of the doped CQDs is 2 eV bigger than that of pristine CQDs. Radical scavenging activity shows very good antioxidant activity of doped CQDs. Antibacterial testing reveals poor antibacterial activity against Staphylococcus aureus and Escherichia coli. The F- and Cl-doped CQDs are successfully used as fluorescent probes for cell imaging as shown by confocal microscopy.",
journal = "ACS Sustainable Chemistry and Engineering",
title = "Highly Efficient Antioxidant F- and Cl-Doped Carbon Quantum Dots for Bioimaging",
volume = "8",
number = "43",
pages = "16327-16338",
doi = "10.1021/acssuschemeng.0c06260"
}
Marković, Z. M., Labudová, M., Danko, M., Matijašević, D., Mičušík, M., Nádaždy, V., Kováčová, M., Kleinová, A., Špitalský, Z., Pavlović, V. B., Milivojević, D., Medić, M. M.,& Todorović-Marković, B.. (2020). Highly Efficient Antioxidant F- and Cl-Doped Carbon Quantum Dots for Bioimaging. in ACS Sustainable Chemistry and Engineering, 8(43), 16327-16338.
https://doi.org/10.1021/acssuschemeng.0c06260
Marković ZM, Labudová M, Danko M, Matijašević D, Mičušík M, Nádaždy V, Kováčová M, Kleinová A, Špitalský Z, Pavlović VB, Milivojević D, Medić MM, Todorović-Marković B. Highly Efficient Antioxidant F- and Cl-Doped Carbon Quantum Dots for Bioimaging. in ACS Sustainable Chemistry and Engineering. 2020;8(43):16327-16338.
doi:10.1021/acssuschemeng.0c06260 .
Marković, Zoran M., Labudová, Martina, Danko, Martin, Matijašević, Danka, Mičušík, Matej, Nádaždy, Vojtech, Kováčová, Mária, Kleinová, Angela, Špitalský, Zdeno, Pavlović, Vladimir B., Milivojević, Dušan, Medić, Mina M., Todorović-Marković, Biljana, "Highly Efficient Antioxidant F- and Cl-Doped Carbon Quantum Dots for Bioimaging" in ACS Sustainable Chemistry and Engineering, 8, no. 43 (2020):16327-16338,
https://doi.org/10.1021/acssuschemeng.0c06260 . .
69
13
64

Photodynamic-active smart biocompatible material for an antibacterial surface coating

Kováčová, Mária; Kleinová, Angela; Vajďák, Ján; Humpolíček, Petr; Kubát, Pavel; Bodík, Michal; Marković, Zoran M.; Špitálský, Zdenko

(2020)

TY  - JOUR
AU  - Kováčová, Mária
AU  - Kleinová, Angela
AU  - Vajďák, Ján
AU  - Humpolíček, Petr
AU  - Kubát, Pavel
AU  - Bodík, Michal
AU  - Marković, Zoran M.
AU  - Špitálský, Zdenko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9637
AB  - Here we present a new effective antibacterial material suitable for a coating, e.g., surface treatment of textiles, which is also time and financially undemanding. The most important role is played by hydrophobic carbon quantum dots, as a new type of photosensitizer, produced by carbonization of different carbon precursors, which are incorporated by swelling from solution into various polymer matrices in the form of thin films, in particular polyurethanes, which are currently commercially used for industrial surface treatment of textiles. The role of hydrophobic carbon quantum dots is to work as photosensitizers upon irradiation and produce reactive oxygen species, namely singlet oxygen, which is already known as the most effective radical for elimination different kinds of bacteria on the surface or in close proximity to such modified material. Therefore, we have mainly studied the effect of hydrophobic carbon quantum dots on Staphylococcus aureus and the cytotoxicity tests, which are essential for the safe handling of such material. Also, the production of singlet oxygen by several methods (electron paramagnetic spectroscopy, time-resolved near-infrared spectroscopy), surface structures (atomic force microscopy and contact angle measurement), and the effect of radiation on polymer matrices were studied. The prepared material is easily modulated by end-user requirements.
T2  - Journal of Photochemistry and Photobiology B: Biology
T1  - Photodynamic-active smart biocompatible material for an antibacterial surface coating
VL  - 211
SP  - 112012
DO  - 10.1016/j.jphotobiol.2020.112012
ER  - 
@article{
author = "Kováčová, Mária and Kleinová, Angela and Vajďák, Ján and Humpolíček, Petr and Kubát, Pavel and Bodík, Michal and Marković, Zoran M. and Špitálský, Zdenko",
year = "2020",
abstract = "Here we present a new effective antibacterial material suitable for a coating, e.g., surface treatment of textiles, which is also time and financially undemanding. The most important role is played by hydrophobic carbon quantum dots, as a new type of photosensitizer, produced by carbonization of different carbon precursors, which are incorporated by swelling from solution into various polymer matrices in the form of thin films, in particular polyurethanes, which are currently commercially used for industrial surface treatment of textiles. The role of hydrophobic carbon quantum dots is to work as photosensitizers upon irradiation and produce reactive oxygen species, namely singlet oxygen, which is already known as the most effective radical for elimination different kinds of bacteria on the surface or in close proximity to such modified material. Therefore, we have mainly studied the effect of hydrophobic carbon quantum dots on Staphylococcus aureus and the cytotoxicity tests, which are essential for the safe handling of such material. Also, the production of singlet oxygen by several methods (electron paramagnetic spectroscopy, time-resolved near-infrared spectroscopy), surface structures (atomic force microscopy and contact angle measurement), and the effect of radiation on polymer matrices were studied. The prepared material is easily modulated by end-user requirements.",
journal = "Journal of Photochemistry and Photobiology B: Biology",
title = "Photodynamic-active smart biocompatible material for an antibacterial surface coating",
volume = "211",
pages = "112012",
doi = "10.1016/j.jphotobiol.2020.112012"
}
Kováčová, M., Kleinová, A., Vajďák, J., Humpolíček, P., Kubát, P., Bodík, M., Marković, Z. M.,& Špitálský, Z.. (2020). Photodynamic-active smart biocompatible material for an antibacterial surface coating. in Journal of Photochemistry and Photobiology B: Biology, 211, 112012.
https://doi.org/10.1016/j.jphotobiol.2020.112012
Kováčová M, Kleinová A, Vajďák J, Humpolíček P, Kubát P, Bodík M, Marković ZM, Špitálský Z. Photodynamic-active smart biocompatible material for an antibacterial surface coating. in Journal of Photochemistry and Photobiology B: Biology. 2020;211:112012.
doi:10.1016/j.jphotobiol.2020.112012 .
Kováčová, Mária, Kleinová, Angela, Vajďák, Ján, Humpolíček, Petr, Kubát, Pavel, Bodík, Michal, Marković, Zoran M., Špitálský, Zdenko, "Photodynamic-active smart biocompatible material for an antibacterial surface coating" in Journal of Photochemistry and Photobiology B: Biology, 211 (2020):112012,
https://doi.org/10.1016/j.jphotobiol.2020.112012 . .
11
3
6