Bulat, Tanja M.

Link to this page

Authority KeyName Variants
orcid::0000-0001-7427-5611
  • Bulat, Tanja M. (9)
Projects

Author's Bibliography

Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions

Keta, Otilija D.; Todorović, Danijela V.; Bulat, Tanja M.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2017)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Todorović, Danijela V.
AU  - Bulat, Tanja M.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Romano, Francesco
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1573
AB  - The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied.
T2  - Experimental Biology and Medicine
T1  - Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions
VL  - 242
IS  - 10
SP  - 1015
EP  - 1024
DO  - 10.1177/1535370216669611
ER  - 
@article{
author = "Keta, Otilija D. and Todorović, Danijela V. and Bulat, Tanja M. and Cirrone, Giuseppe Antonio Pablo and Romano, Francesco and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2017",
abstract = "The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied.",
journal = "Experimental Biology and Medicine",
title = "Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions",
volume = "242",
number = "10",
pages = "1015-1024",
doi = "10.1177/1535370216669611"
}
Keta, O. D., Todorović, D. V., Bulat, T. M., Cirrone, G. A. P., Romano, F., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A.. (2017). Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions. in Experimental Biology and Medicine, 242(10), 1015-1024.
https://doi.org/10.1177/1535370216669611
Keta OD, Todorović DV, Bulat TM, Cirrone GAP, Romano F, Cuttone G, Petrović IM, Ristić-Fira A. Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions. in Experimental Biology and Medicine. 2017;242(10):1015-1024.
doi:10.1177/1535370216669611 .
Keta, Otilija D., Todorović, Danijela V., Bulat, Tanja M., Cirrone, Giuseppe Antonio Pablo, Romano, Francesco, Cuttone, Giacomo, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions" in Experimental Biology and Medicine, 242, no. 10 (2017):1015-1024,
https://doi.org/10.1177/1535370216669611 . .
15
10
13

Angiogenic factors are increased in circulating granulocytes and CD34(+) cells of myeloproliferative neoplasms

Subotički, Tijana; Mitrović-Ajtić, Olivera; Beleslin-Čokić, Bojana B.; Nienhold, Ronny; Diklić, Miloš; Đikić, Dragoslava; Leković, Danijela; Bulat, Tanja M.; Marković, Dragana; Gotić, Mirjana; Noguchi, Constance T.; Schechter, Alan N.; Skoda, Radek C.; Čokić, Vladan

(2017)

TY  - JOUR
AU  - Subotički, Tijana
AU  - Mitrović-Ajtić, Olivera
AU  - Beleslin-Čokić, Bojana B.
AU  - Nienhold, Ronny
AU  - Diklić, Miloš
AU  - Đikić, Dragoslava
AU  - Leković, Danijela
AU  - Bulat, Tanja M.
AU  - Marković, Dragana
AU  - Gotić, Mirjana
AU  - Noguchi, Constance T.
AU  - Schechter, Alan N.
AU  - Skoda, Radek C.
AU  - Čokić, Vladan
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1395
AB  - It has been shown that angiogenesis and inflammation play an important role in development of most hematological malignancies including the myeloproliferative neoplasm (MPN). The aim of this study was to investigate and correlate the levels of key angiogenic molecules such as hypoxia-inducible factor-1 (HIF-1), vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in peripheral blood and bone marrow cells of MPN patients, along with JAK2V617F mutation allele burden and effects of therapy. HIF-1 and VEGF gene expression were decreased, while eNOS mRNA levels were increased in granulocytes of MPN patients. Furthermore, positively correlated and increased VEGF and eNOS protein levels were in negative correlation with HIF-1 levels in granulocytes of MPN patients. According to immunoblotting, the generally augmented angiogenic factors demonstrated JAK2V617F allele burden dependence only in granulocytes of PMF. The angiogenic factors were largely reduced after hydroxyurea therapy in granulocytes of MPN patients. Levels of eNOS protein expression were stimulated by Calreticulin mutations in granulocytes of essential thrombocythemia. Immunocytochemical analyses of CD34(+) cells showed a more pronounced enhancement of angiogenic factors than in granulocytes. Increased gene expression linked to the proinflammatory TGF and MAPK signaling pathways were detected in CD34(+) cells of MPN patients. In conclusion, the angiogenesis is increased in several cell types of MPN patients supported by the transcriptional activation of inflammation-related target genes, and is not limited to bone marrow stroma cells. It also appears that some of the benefit of hydroxyurea therapy of the MPN is mediated by effects on angiogenic factors. (c) 2016 Wiley Periodicals, Inc.
T2  - Molecular Carcinogenesis
T1  - Angiogenic factors are increased in circulating granulocytes and CD34(+) cells of myeloproliferative neoplasms
VL  - 56
IS  - 2
SP  - 567
EP  - 579
DO  - 10.1002/mc.22517
ER  - 
@article{
author = "Subotički, Tijana and Mitrović-Ajtić, Olivera and Beleslin-Čokić, Bojana B. and Nienhold, Ronny and Diklić, Miloš and Đikić, Dragoslava and Leković, Danijela and Bulat, Tanja M. and Marković, Dragana and Gotić, Mirjana and Noguchi, Constance T. and Schechter, Alan N. and Skoda, Radek C. and Čokić, Vladan",
year = "2017",
abstract = "It has been shown that angiogenesis and inflammation play an important role in development of most hematological malignancies including the myeloproliferative neoplasm (MPN). The aim of this study was to investigate and correlate the levels of key angiogenic molecules such as hypoxia-inducible factor-1 (HIF-1), vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in peripheral blood and bone marrow cells of MPN patients, along with JAK2V617F mutation allele burden and effects of therapy. HIF-1 and VEGF gene expression were decreased, while eNOS mRNA levels were increased in granulocytes of MPN patients. Furthermore, positively correlated and increased VEGF and eNOS protein levels were in negative correlation with HIF-1 levels in granulocytes of MPN patients. According to immunoblotting, the generally augmented angiogenic factors demonstrated JAK2V617F allele burden dependence only in granulocytes of PMF. The angiogenic factors were largely reduced after hydroxyurea therapy in granulocytes of MPN patients. Levels of eNOS protein expression were stimulated by Calreticulin mutations in granulocytes of essential thrombocythemia. Immunocytochemical analyses of CD34(+) cells showed a more pronounced enhancement of angiogenic factors than in granulocytes. Increased gene expression linked to the proinflammatory TGF and MAPK signaling pathways were detected in CD34(+) cells of MPN patients. In conclusion, the angiogenesis is increased in several cell types of MPN patients supported by the transcriptional activation of inflammation-related target genes, and is not limited to bone marrow stroma cells. It also appears that some of the benefit of hydroxyurea therapy of the MPN is mediated by effects on angiogenic factors. (c) 2016 Wiley Periodicals, Inc.",
journal = "Molecular Carcinogenesis",
title = "Angiogenic factors are increased in circulating granulocytes and CD34(+) cells of myeloproliferative neoplasms",
volume = "56",
number = "2",
pages = "567-579",
doi = "10.1002/mc.22517"
}
Subotički, T., Mitrović-Ajtić, O., Beleslin-Čokić, B. B., Nienhold, R., Diklić, M., Đikić, D., Leković, D., Bulat, T. M., Marković, D., Gotić, M., Noguchi, C. T., Schechter, A. N., Skoda, R. C.,& Čokić, V.. (2017). Angiogenic factors are increased in circulating granulocytes and CD34(+) cells of myeloproliferative neoplasms. in Molecular Carcinogenesis, 56(2), 567-579.
https://doi.org/10.1002/mc.22517
Subotički T, Mitrović-Ajtić O, Beleslin-Čokić BB, Nienhold R, Diklić M, Đikić D, Leković D, Bulat TM, Marković D, Gotić M, Noguchi CT, Schechter AN, Skoda RC, Čokić V. Angiogenic factors are increased in circulating granulocytes and CD34(+) cells of myeloproliferative neoplasms. in Molecular Carcinogenesis. 2017;56(2):567-579.
doi:10.1002/mc.22517 .
Subotički, Tijana, Mitrović-Ajtić, Olivera, Beleslin-Čokić, Bojana B., Nienhold, Ronny, Diklić, Miloš, Đikić, Dragoslava, Leković, Danijela, Bulat, Tanja M., Marković, Dragana, Gotić, Mirjana, Noguchi, Constance T., Schechter, Alan N., Skoda, Radek C., Čokić, Vladan, "Angiogenic factors are increased in circulating granulocytes and CD34(+) cells of myeloproliferative neoplasms" in Molecular Carcinogenesis, 56, no. 2 (2017):567-579,
https://doi.org/10.1002/mc.22517 . .
1
10
6
10

Radiation dose determines the method for quantification of DNA double strand breaks

Bulat, Tanja M.; Keta, Otilija D.; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Todorović, Danijela V.

(2016)

TY  - JOUR
AU  - Bulat, Tanja M.
AU  - Keta, Otilija D.
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Todorović, Danijela V.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/970
AB  - Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (gamma H2AX). Immunofluorescent staining visualizes formation of gamma H2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of gamma H2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to gamma-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of gamma H2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of gamma H2AX foci.
T2  - Anais de Academia Brasileira de Ciencias
T1  - Radiation dose determines the method for quantification of DNA double strand breaks
VL  - 88
IS  - 1
SP  - 127
EP  - 136
DO  - 10.1590/0001-3765201620140553
ER  - 
@article{
author = "Bulat, Tanja M. and Keta, Otilija D. and Korićanac, Lela and Žakula, Jelena and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Todorović, Danijela V.",
year = "2016",
abstract = "Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (gamma H2AX). Immunofluorescent staining visualizes formation of gamma H2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of gamma H2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to gamma-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of gamma H2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of gamma H2AX foci.",
journal = "Anais de Academia Brasileira de Ciencias",
title = "Radiation dose determines the method for quantification of DNA double strand breaks",
volume = "88",
number = "1",
pages = "127-136",
doi = "10.1590/0001-3765201620140553"
}
Bulat, T. M., Keta, O. D., Korićanac, L., Žakula, J., Petrović, I. M., Ristić-Fira, A.,& Todorović, D. V.. (2016). Radiation dose determines the method for quantification of DNA double strand breaks. in Anais de Academia Brasileira de Ciencias, 88(1), 127-136.
https://doi.org/10.1590/0001-3765201620140553
Bulat TM, Keta OD, Korićanac L, Žakula J, Petrović IM, Ristić-Fira A, Todorović DV. Radiation dose determines the method for quantification of DNA double strand breaks. in Anais de Academia Brasileira de Ciencias. 2016;88(1):127-136.
doi:10.1590/0001-3765201620140553 .
Bulat, Tanja M., Keta, Otilija D., Korićanac, Lela, Žakula, Jelena, Petrović, Ivan M., Ristić-Fira, Aleksandra, Todorović, Danijela V., "Radiation dose determines the method for quantification of DNA double strand breaks" in Anais de Academia Brasileira de Ciencias, 88, no. 1 (2016):127-136,
https://doi.org/10.1590/0001-3765201620140553 . .
13
7
12

The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib

Keta, Otilija D.; Bulat, Tanja M.; Golic, Igor; Incerti, Sebastien; Korać, Aleksandra; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2016)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Bulat, Tanja M.
AU  - Golic, Igor
AU  - Incerti, Sebastien
AU  - Korać, Aleksandra
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1044
AB  - In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with gamma-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with gamma-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of gamma-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual gamma-H2AX foci after 24 h. gamma-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.
T2  - Cell Biology and Toxicology
T1  - The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib
VL  - 32
IS  - 2
SP  - 83
EP  - 101
DO  - 10.1007/s10565-016-9319-z
ER  - 
@article{
author = "Keta, Otilija D. and Bulat, Tanja M. and Golic, Igor and Incerti, Sebastien and Korać, Aleksandra and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2016",
abstract = "In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with gamma-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with gamma-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of gamma-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual gamma-H2AX foci after 24 h. gamma-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.",
journal = "Cell Biology and Toxicology",
title = "The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib",
volume = "32",
number = "2",
pages = "83-101",
doi = "10.1007/s10565-016-9319-z"
}
Keta, O. D., Bulat, T. M., Golic, I., Incerti, S., Korać, A., Petrović, I. M.,& Ristić-Fira, A.. (2016). The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib. in Cell Biology and Toxicology, 32(2), 83-101.
https://doi.org/10.1007/s10565-016-9319-z
Keta OD, Bulat TM, Golic I, Incerti S, Korać A, Petrović IM, Ristić-Fira A. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib. in Cell Biology and Toxicology. 2016;32(2):83-101.
doi:10.1007/s10565-016-9319-z .
Keta, Otilija D., Bulat, Tanja M., Golic, Igor, Incerti, Sebastien, Korać, Aleksandra, Petrović, Ivan M., Ristić-Fira, Aleksandra, "The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib" in Cell Biology and Toxicology, 32, no. 2 (2016):83-101,
https://doi.org/10.1007/s10565-016-9319-z . .
1
21
18
20

Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition

Keta, Otilija D.; Bulat, Tanja M.; Korićanac, Lela; Žakula, Jelena; Cuttone, Giacomo; Privitera, Giuseppe; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2014)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Bulat, Tanja M.
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Cuttone, Giacomo
AU  - Privitera, Giuseppe
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/167
AB  - Molecular targeted cancer therapy is a promising treatment strategy. Considering the central role of the epidermal growth factor receptor in cell proliferation and survival, there are indications that targeted agents like tyrosine kinase inhibitors, i. e., erlotinib, may enhance the antitumor treatment by radiation. The aim of this study is to analyze the inactivation effects of gamma-rays and to test the radiosensitizing potential of erlotinib on human lung adenocarcinoma cells in vitro. Irradiations were performed with doses ranging from 1 Gy to 8 Gy. In order to increase the radiosensitivity of CRL-5876 lung adenocarcinoma cells, the cells were treated with a clinically relevant concentration of 2 mu M erlotinib. The effects of single and combined treatments were monitored using clonogenic survival, cell viability and proliferation assays at different time points. For the detection and visualization of the phosphorylated histone H2AX (gamma-H2AX), an important biological marker of DNA double-strand break formation, fluorescence inununocytochemistry, was performed. The response to the treatment was monitored at four time points: 30 min, 2, 6, and 24 h. Irradiations with gamma-rays resulted in significant cell inactivation regarding all analyzed biological endpoints. Combined treatments revealed consistent cell inactivation. Moreover, compared to gamma-rays alone, elevated levels of gamma-H2AX foci were observed after pretreatment with erlotinib, indicating radiosensitization through impaired DNA repair.
T2  - Nuclear technology and radiation protection
T1  - Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition
VL  - 29
IS  - 3
SP  - 233
EP  - 241
DO  - 10.2298/NTRP1403233K
ER  - 
@article{
author = "Keta, Otilija D. and Bulat, Tanja M. and Korićanac, Lela and Žakula, Jelena and Cuttone, Giacomo and Privitera, Giuseppe and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2014",
abstract = "Molecular targeted cancer therapy is a promising treatment strategy. Considering the central role of the epidermal growth factor receptor in cell proliferation and survival, there are indications that targeted agents like tyrosine kinase inhibitors, i. e., erlotinib, may enhance the antitumor treatment by radiation. The aim of this study is to analyze the inactivation effects of gamma-rays and to test the radiosensitizing potential of erlotinib on human lung adenocarcinoma cells in vitro. Irradiations were performed with doses ranging from 1 Gy to 8 Gy. In order to increase the radiosensitivity of CRL-5876 lung adenocarcinoma cells, the cells were treated with a clinically relevant concentration of 2 mu M erlotinib. The effects of single and combined treatments were monitored using clonogenic survival, cell viability and proliferation assays at different time points. For the detection and visualization of the phosphorylated histone H2AX (gamma-H2AX), an important biological marker of DNA double-strand break formation, fluorescence inununocytochemistry, was performed. The response to the treatment was monitored at four time points: 30 min, 2, 6, and 24 h. Irradiations with gamma-rays resulted in significant cell inactivation regarding all analyzed biological endpoints. Combined treatments revealed consistent cell inactivation. Moreover, compared to gamma-rays alone, elevated levels of gamma-H2AX foci were observed after pretreatment with erlotinib, indicating radiosensitization through impaired DNA repair.",
journal = "Nuclear technology and radiation protection",
title = "Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition",
volume = "29",
number = "3",
pages = "233-241",
doi = "10.2298/NTRP1403233K"
}
Keta, O. D., Bulat, T. M., Korićanac, L., Žakula, J., Cuttone, G., Privitera, G., Petrović, I. M.,& Ristić-Fira, A.. (2014). Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition. in Nuclear technology and radiation protection, 29(3), 233-241.
https://doi.org/10.2298/NTRP1403233K
Keta OD, Bulat TM, Korićanac L, Žakula J, Cuttone G, Privitera G, Petrović IM, Ristić-Fira A. Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition. in Nuclear technology and radiation protection. 2014;29(3):233-241.
doi:10.2298/NTRP1403233K .
Keta, Otilija D., Bulat, Tanja M., Korićanac, Lela, Žakula, Jelena, Cuttone, Giacomo, Privitera, Giuseppe, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition" in Nuclear technology and radiation protection, 29, no. 3 (2014):233-241,
https://doi.org/10.2298/NTRP1403233K . .
2
2
2

Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED

Ristić-Fira, Aleksandra; Bulat, Tanja M.; Keta, Otilija D.; Romano, Francesco; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Petrović, Ivan M.

(2013)

TY  - CONF
AU  - Ristić-Fira, Aleksandra
AU  - Bulat, Tanja M.
AU  - Keta, Otilija D.
AU  - Romano, Francesco
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7005
AB  - The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumour cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (gamma-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (gamma-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of gamma-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between gamma-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the database that might promote pulsed sources for medical treatments of malignant growths.
C3  - AIP Conference Proceedings
T1  - Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED
VL  - 1546
SP  - 101
EP  - 104
DO  - 10.1063/1.4816616
ER  - 
@conference{
author = "Ristić-Fira, Aleksandra and Bulat, Tanja M. and Keta, Otilija D. and Romano, Francesco and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Petrović, Ivan M.",
year = "2013",
abstract = "The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumour cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (gamma-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (gamma-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of gamma-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between gamma-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the database that might promote pulsed sources for medical treatments of malignant growths.",
journal = "AIP Conference Proceedings",
title = "Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED",
volume = "1546",
pages = "101-104",
doi = "10.1063/1.4816616"
}
Ristić-Fira, A., Bulat, T. M., Keta, O. D., Romano, F., Cirrone, G. A. P., Cuttone, G.,& Petrović, I. M.. (2013). Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED. in AIP Conference Proceedings, 1546, 101-104.
https://doi.org/10.1063/1.4816616
Ristić-Fira A, Bulat TM, Keta OD, Romano F, Cirrone GAP, Cuttone G, Petrović IM. Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED. in AIP Conference Proceedings. 2013;1546:101-104.
doi:10.1063/1.4816616 .
Ristić-Fira, Aleksandra, Bulat, Tanja M., Keta, Otilija D., Romano, Francesco, Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Petrović, Ivan M., "Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED" in AIP Conference Proceedings, 1546 (2013):101-104,
https://doi.org/10.1063/1.4816616 . .

Response of human lung adenocarcinoma cells to proton radiation and erlotinib

Ristić-Fira, Aleksandra; Petrović, Ivan M.; Todorović, Dragana; Korićanac, Lela; Keta, Otilija D.; Bulat, Tanja M.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Cuttone, Giacomo

(2012)

TY  - CONF
AU  - Ristić-Fira, Aleksandra
AU  - Petrović, Ivan M.
AU  - Todorović, Dragana
AU  - Korićanac, Lela
AU  - Keta, Otilija D.
AU  - Bulat, Tanja M.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Romano, Francesco
AU  - Cuttone, Giacomo
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8642
C3  - Radiotherapy and Oncology
T1  - Response of human lung adenocarcinoma cells to proton radiation and erlotinib
VL  - 102
SP  - S106
EP  - S107
DO  - 10.1016/S0167-8140(12)70182-2
ER  - 
@conference{
author = "Ristić-Fira, Aleksandra and Petrović, Ivan M. and Todorović, Dragana and Korićanac, Lela and Keta, Otilija D. and Bulat, Tanja M. and Cirrone, Giuseppe Antonio Pablo and Romano, Francesco and Cuttone, Giacomo",
year = "2012",
journal = "Radiotherapy and Oncology",
title = "Response of human lung adenocarcinoma cells to proton radiation and erlotinib",
volume = "102",
pages = "S106-S107",
doi = "10.1016/S0167-8140(12)70182-2"
}
Ristić-Fira, A., Petrović, I. M., Todorović, D., Korićanac, L., Keta, O. D., Bulat, T. M., Cirrone, G. A. P., Romano, F.,& Cuttone, G.. (2012). Response of human lung adenocarcinoma cells to proton radiation and erlotinib. in Radiotherapy and Oncology, 102, S106-S107.
https://doi.org/10.1016/S0167-8140(12)70182-2
Ristić-Fira A, Petrović IM, Todorović D, Korićanac L, Keta OD, Bulat TM, Cirrone GAP, Romano F, Cuttone G. Response of human lung adenocarcinoma cells to proton radiation and erlotinib. in Radiotherapy and Oncology. 2012;102:S106-S107.
doi:10.1016/S0167-8140(12)70182-2 .
Ristić-Fira, Aleksandra, Petrović, Ivan M., Todorović, Dragana, Korićanac, Lela, Keta, Otilija D., Bulat, Tanja M., Cirrone, Giuseppe Antonio Pablo, Romano, Francesco, Cuttone, Giacomo, "Response of human lung adenocarcinoma cells to proton radiation and erlotinib" in Radiotherapy and Oncology, 102 (2012):S106-S107,
https://doi.org/10.1016/S0167-8140(12)70182-2 . .

Kinetics of DSBinduction and changes in cell cycle regulation in melanoma cells after ionizing radiation

Bulat, Tanja M.; Keta, Otilija D.; Korićanac, Lela; Todorović, Dragana; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(Society of Physical Chemists of Serbia, 2012)

TY  - CONF
AU  - Bulat, Tanja M.
AU  - Keta, Otilija D.
AU  - Korićanac, Lela
AU  - Todorović, Dragana
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9299
AB  - The effects of γ-rays on the DNA level, i.e. formation of double-strand breaks and
expression of p21 were studied in vitro on the human HTB 140 melanoma cells.
Cells were exposed to the dose range from 2 to 16 Gy. Effects were analyzed 30
min, 2, 6 and 24 h after irradiation. It has been shown that the level of
phosphorylated histone H2AX (γH2AX) is time- and dose-dependent, as well as
the expression of p21.
PB  - Society of Physical Chemists of Serbia
C3  - Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry
T1  - Kinetics of DSBinduction and changes in cell cycle regulation in melanoma cells after ionizing radiation
VL  - 1
SP  - 379
EP  - 381
UR  - https://hdl.handle.net/21.15107/rcub_vinar_9299
ER  - 
@conference{
author = "Bulat, Tanja M. and Keta, Otilija D. and Korićanac, Lela and Todorović, Dragana and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2012",
abstract = "The effects of γ-rays on the DNA level, i.e. formation of double-strand breaks and
expression of p21 were studied in vitro on the human HTB 140 melanoma cells.
Cells were exposed to the dose range from 2 to 16 Gy. Effects were analyzed 30
min, 2, 6 and 24 h after irradiation. It has been shown that the level of
phosphorylated histone H2AX (γH2AX) is time- and dose-dependent, as well as
the expression of p21.",
publisher = "Society of Physical Chemists of Serbia",
journal = "Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry",
title = "Kinetics of DSBinduction and changes in cell cycle regulation in melanoma cells after ionizing radiation",
volume = "1",
pages = "379-381",
url = "https://hdl.handle.net/21.15107/rcub_vinar_9299"
}
Bulat, T. M., Keta, O. D., Korićanac, L., Todorović, D., Petrović, I. M.,& Ristić-Fira, A.. (2012). Kinetics of DSBinduction and changes in cell cycle regulation in melanoma cells after ionizing radiation. in Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry
Society of Physical Chemists of Serbia., 1, 379-381.
https://hdl.handle.net/21.15107/rcub_vinar_9299
Bulat TM, Keta OD, Korićanac L, Todorović D, Petrović IM, Ristić-Fira A. Kinetics of DSBinduction and changes in cell cycle regulation in melanoma cells after ionizing radiation. in Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry. 2012;1:379-381.
https://hdl.handle.net/21.15107/rcub_vinar_9299 .
Bulat, Tanja M., Keta, Otilija D., Korićanac, Lela, Todorović, Dragana, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Kinetics of DSBinduction and changes in cell cycle regulation in melanoma cells after ionizing radiation" in Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry, 1 (2012):379-381,
https://hdl.handle.net/21.15107/rcub_vinar_9299 .

Sensitivity of Lung Carcinoma Cells to γ-rays and Erlotinib

Keta, Otilija D.; Bulat, Tanja M.; Korićanac, Lela; Todorović, Dragana; Privitera, G.; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(Society of Physical Chemists of Serbia, 2012)

TY  - CONF
AU  - Keta, Otilija D.
AU  - Bulat, Tanja M.
AU  - Korićanac, Lela
AU  - Todorović, Dragana
AU  - Privitera, G.
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9300
AB  - In order to increase radio-sensitivity of human lung adenocarcinoma NCI-H1568
cells, targeted therapy drug, erlotinib was used. The impact of radiation and
erlotinib on cell behaviour was analyzed using three biological endpoints.
Irradiations with γ-rays resulted in reduction of cell survival, viability and
proliferation. Erlotinib significantly inhibited cell growth and proliferation
capacity. Combined treatments with radiation and erlotinib showed high level of
reduction of cell viability and proliferation. Preliminary data encourage further
investigations of mechanisms underlying the radiation responses enhanced by
erlotinib.
PB  - Society of Physical Chemists of Serbia
C3  - Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry
T1  - Sensitivity of Lung Carcinoma Cells to γ-rays and Erlotinib
VL  - 1
SP  - 382
EP  - 384
UR  - https://hdl.handle.net/21.15107/rcub_vinar_9300
ER  - 
@conference{
author = "Keta, Otilija D. and Bulat, Tanja M. and Korićanac, Lela and Todorović, Dragana and Privitera, G. and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2012",
abstract = "In order to increase radio-sensitivity of human lung adenocarcinoma NCI-H1568
cells, targeted therapy drug, erlotinib was used. The impact of radiation and
erlotinib on cell behaviour was analyzed using three biological endpoints.
Irradiations with γ-rays resulted in reduction of cell survival, viability and
proliferation. Erlotinib significantly inhibited cell growth and proliferation
capacity. Combined treatments with radiation and erlotinib showed high level of
reduction of cell viability and proliferation. Preliminary data encourage further
investigations of mechanisms underlying the radiation responses enhanced by
erlotinib.",
publisher = "Society of Physical Chemists of Serbia",
journal = "Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry",
title = "Sensitivity of Lung Carcinoma Cells to γ-rays and Erlotinib",
volume = "1",
pages = "382-384",
url = "https://hdl.handle.net/21.15107/rcub_vinar_9300"
}
Keta, O. D., Bulat, T. M., Korićanac, L., Todorović, D., Privitera, G., Petrović, I. M.,& Ristić-Fira, A.. (2012). Sensitivity of Lung Carcinoma Cells to γ-rays and Erlotinib. in Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry
Society of Physical Chemists of Serbia., 1, 382-384.
https://hdl.handle.net/21.15107/rcub_vinar_9300
Keta OD, Bulat TM, Korićanac L, Todorović D, Privitera G, Petrović IM, Ristić-Fira A. Sensitivity of Lung Carcinoma Cells to γ-rays and Erlotinib. in Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry. 2012;1:382-384.
https://hdl.handle.net/21.15107/rcub_vinar_9300 .
Keta, Otilija D., Bulat, Tanja M., Korićanac, Lela, Todorović, Dragana, Privitera, G., Petrović, Ivan M., Ristić-Fira, Aleksandra, "Sensitivity of Lung Carcinoma Cells to γ-rays and Erlotinib" in Physical chemistry 2012 : 11th international conference on fundamental and applied aspects of physical chemistry, 1 (2012):382-384,
https://hdl.handle.net/21.15107/rcub_vinar_9300 .