Vasiljević, Zorka

Link to this page

Authority KeyName Variants
b4fa81af-6bff-40d5-8fd5-f544e2e24123
  • Vasiljević, Zorka (2)
Projects

Author's Bibliography

Biosynthesis of ZnO nanoparticles using agro-waste with antibacterial and antioxidant activity

Vasiljević, Zorka; Vunduk, Jovana; Dojčinović, Milena; Bartolić, Dragana; Ognjanović, Miloš; Tadić, Nenad; Mišković, Goran; Nikolić, Maria Vesna

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Vasiljević, Zorka
AU  - Vunduk, Jovana
AU  - Dojčinović, Milena
AU  - Bartolić, Dragana
AU  - Ognjanović, Miloš
AU  - Tadić, Nenad
AU  - Mišković, Goran
AU  - Nikolić, Maria Vesna
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11633
AB  - Green synthesis is a more sustainable option using renewable biomass such as plants as reducing or stabilizing agents compared to toxic chemical compounds. These biological substances also behave as capping agents, which control the size and shape of the nanoparticles. In this work, ZnO nanoparticles (NPs) have been prepared via a simple, low cost and ecofriendly method using citrus fruit peel and extracts as biological reducing agents. Zinc nitrate and zinc acetate were used as a source of zinc ions.XRD analysis revealed the formation of a ZnO wurtzite phase without impurities. Synthesized ZnO NPs with an average electronic band gap ∼3 eV were obtained and found to have round-like, hexagonal-like or needle-like structures depending on precursor type. EDS analysis showed a homogeoneous distribution in Zn and O elements, attributed to single-phase ZnO constituents. Antibacterial and antioxidant activities of synthesized NPs were evaluated. Obtained results showed that ZnO synthesized from nitrate precursors are more effective in inhibiting growth of Salmonella and Staphylococcus Aureus. Antioxidant activity of ZnO NPs determined using CUPRAC and ABTS assays showed higher activity of ZnO obtained using nitrate precursors. The maximum scavenging activity of 90% was observed at the concentration of 10 mg/ml
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
T1  - Biosynthesis of ZnO nanoparticles using agro-waste with antibacterial and antioxidant activity
SP  - 43
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11633
ER  - 
@conference{
author = "Vasiljević, Zorka and Vunduk, Jovana and Dojčinović, Milena and Bartolić, Dragana and Ognjanović, Miloš and Tadić, Nenad and Mišković, Goran and Nikolić, Maria Vesna",
year = "2023",
abstract = "Green synthesis is a more sustainable option using renewable biomass such as plants as reducing or stabilizing agents compared to toxic chemical compounds. These biological substances also behave as capping agents, which control the size and shape of the nanoparticles. In this work, ZnO nanoparticles (NPs) have been prepared via a simple, low cost and ecofriendly method using citrus fruit peel and extracts as biological reducing agents. Zinc nitrate and zinc acetate were used as a source of zinc ions.XRD analysis revealed the formation of a ZnO wurtzite phase without impurities. Synthesized ZnO NPs with an average electronic band gap ∼3 eV were obtained and found to have round-like, hexagonal-like or needle-like structures depending on precursor type. EDS analysis showed a homogeoneous distribution in Zn and O elements, attributed to single-phase ZnO constituents. Antibacterial and antioxidant activities of synthesized NPs were evaluated. Obtained results showed that ZnO synthesized from nitrate precursors are more effective in inhibiting growth of Salmonella and Staphylococcus Aureus. Antioxidant activity of ZnO NPs determined using CUPRAC and ABTS assays showed higher activity of ZnO obtained using nitrate precursors. The maximum scavenging activity of 90% was observed at the concentration of 10 mg/ml",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade",
title = "Biosynthesis of ZnO nanoparticles using agro-waste with antibacterial and antioxidant activity",
pages = "43",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11633"
}
Vasiljević, Z., Vunduk, J., Dojčinović, M., Bartolić, D., Ognjanović, M., Tadić, N., Mišković, G.,& Nikolić, M. V.. (2023). Biosynthesis of ZnO nanoparticles using agro-waste with antibacterial and antioxidant activity. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
Belgrade : Serbian Ceramic Society., 43.
https://hdl.handle.net/21.15107/rcub_vinar_11633
Vasiljević Z, Vunduk J, Dojčinović M, Bartolić D, Ognjanović M, Tadić N, Mišković G, Nikolić MV. Biosynthesis of ZnO nanoparticles using agro-waste with antibacterial and antioxidant activity. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade. 2023;:43.
https://hdl.handle.net/21.15107/rcub_vinar_11633 .
Vasiljević, Zorka, Vunduk, Jovana, Dojčinović, Milena, Bartolić, Dragana, Ognjanović, Miloš, Tadić, Nenad, Mišković, Goran, Nikolić, Maria Vesna, "Biosynthesis of ZnO nanoparticles using agro-waste with antibacterial and antioxidant activity" in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade (2023):43,
https://hdl.handle.net/21.15107/rcub_vinar_11633 .

Green biosynthesis of ZnO nanoparticles using agro-waste and their antibacterial and antioxidant activity

Vasiljević, Zorka; Vunduk, Jovana; Dojčinović, Milena; Bartolić, Dragana; Ognjanović, Miloš; Tadić, Nenad; Mišković, Goran; Nikolić, Maria Vesna

(Novi Sad : University of Novi Sad, Faculty of Technology, 2022)

TY  - CONF
AU  - Vasiljević, Zorka
AU  - Vunduk, Jovana
AU  - Dojčinović, Milena
AU  - Bartolić, Dragana
AU  - Ognjanović, Miloš
AU  - Tadić, Nenad
AU  - Mišković, Goran
AU  - Nikolić, Maria Vesna
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11676
AB  - Potential applications in wastewater treatment, energy storage, sensors, food packaging, etc. To date, these materials have been synthesized by different chemical and physical techniques. However many of them employ environmentally unfriendly solvents and toxic chemical compounds. To tackle this problem, use of renewable biomass such as plants and fungi as reducing or stabilizing agents in green synthesis has been considered as more sustainable option compared to toxic chemical compounds. These biological substances also behave as capping agent, which control the size and the shape of the nanoparticles. In this work, ZnO nanoparticles (NPs) have been prepared via simple, low cost and ecofriendly method using citrus fruit peel and extracts, Agaricus bisporus powder and extract as biological reducing agents. Zinc nitrate and zinc acetate were used as source of zinc ions. Structural and optical properties were investigated by X-ray diffraction analysis (XRD), Zeta potential, Fourier Transform Infrared (FTIR) spectroscopy, UV-visible (UV-vis) spectroscopy and Photoluminescence spectroscopy (PL). Morphological features were characterized by Field Emission Scanning Electron microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). Antibacterial and antioxidant activity was tested and evaluated.
PB  - Novi Sad : University of Novi Sad, Faculty of Technology
C3  - 2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad
T1  - Green biosynthesis of ZnO nanoparticles using agro-waste and their antibacterial and antioxidant activity
SP  - 106
EP  - 106
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11676
ER  - 
@conference{
author = "Vasiljević, Zorka and Vunduk, Jovana and Dojčinović, Milena and Bartolić, Dragana and Ognjanović, Miloš and Tadić, Nenad and Mišković, Goran and Nikolić, Maria Vesna",
year = "2022",
abstract = "Potential applications in wastewater treatment, energy storage, sensors, food packaging, etc. To date, these materials have been synthesized by different chemical and physical techniques. However many of them employ environmentally unfriendly solvents and toxic chemical compounds. To tackle this problem, use of renewable biomass such as plants and fungi as reducing or stabilizing agents in green synthesis has been considered as more sustainable option compared to toxic chemical compounds. These biological substances also behave as capping agent, which control the size and the shape of the nanoparticles. In this work, ZnO nanoparticles (NPs) have been prepared via simple, low cost and ecofriendly method using citrus fruit peel and extracts, Agaricus bisporus powder and extract as biological reducing agents. Zinc nitrate and zinc acetate were used as source of zinc ions. Structural and optical properties were investigated by X-ray diffraction analysis (XRD), Zeta potential, Fourier Transform Infrared (FTIR) spectroscopy, UV-visible (UV-vis) spectroscopy and Photoluminescence spectroscopy (PL). Morphological features were characterized by Field Emission Scanning Electron microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). Antibacterial and antioxidant activity was tested and evaluated.",
publisher = "Novi Sad : University of Novi Sad, Faculty of Technology",
journal = "2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad",
title = "Green biosynthesis of ZnO nanoparticles using agro-waste and their antibacterial and antioxidant activity",
pages = "106-106",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11676"
}
Vasiljević, Z., Vunduk, J., Dojčinović, M., Bartolić, D., Ognjanović, M., Tadić, N., Mišković, G.,& Nikolić, M. V.. (2022). Green biosynthesis of ZnO nanoparticles using agro-waste and their antibacterial and antioxidant activity. in 2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad
Novi Sad : University of Novi Sad, Faculty of Technology., 106-106.
https://hdl.handle.net/21.15107/rcub_vinar_11676
Vasiljević Z, Vunduk J, Dojčinović M, Bartolić D, Ognjanović M, Tadić N, Mišković G, Nikolić MV. Green biosynthesis of ZnO nanoparticles using agro-waste and their antibacterial and antioxidant activity. in 2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad. 2022;:106-106.
https://hdl.handle.net/21.15107/rcub_vinar_11676 .
Vasiljević, Zorka, Vunduk, Jovana, Dojčinović, Milena, Bartolić, Dragana, Ognjanović, Miloš, Tadić, Nenad, Mišković, Goran, Nikolić, Maria Vesna, "Green biosynthesis of ZnO nanoparticles using agro-waste and their antibacterial and antioxidant activity" in 2nd International Conference on Advanced Production and Processing : the book of abstracts; Oct 20-22, Novi Sad (2022):106-106,
https://hdl.handle.net/21.15107/rcub_vinar_11676 .