Nikolić, Svetlana

Link to this page

Authority KeyName Variants
0345740c-8df4-4e22-a037-3410eb44c7ee
  • Nikolić, Svetlana (2)
Projects

Author's Bibliography

Production of bioethanol from pre-treated cotton fabrics and waste cotton materials

Nikolić, Svetlana; Lazić, Vesna M.; Veljović, Đorđe N.; Mojović, Ljiljana

(2017)

TY  - JOUR
AU  - Nikolić, Svetlana
AU  - Lazić, Vesna M.
AU  - Veljović, Đorđe N.
AU  - Mojović, Ljiljana
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1503
AB  - This study highlights the potential of cotton fabric as a promising feedstock for the production of bioethanol as renewable biofuel. The effect of corona pre-treatment of non-mercerized and mercerized cotton fabrics on glucose and ethanol yield is discussed. Fermentation kinetics for ethanol production and the basic process parameters were assessed and compared. Corona pre-treatment of cotton fabrics led to an increase in the glucose yield (compared to control sample) during enzymatic hydrolysis, and consequently the ethanol yield during fermentation by yeast Saccharomyces cerevisiae var. ellipsoideus. The system with mercerized cotton fabric was found to be superior obtaining an ethanol productivity of 0.900 g/Lh and ethanol yield of 0.94 g/g (based on glucose) after 6 h of fermentation time. The similar results were obtained during processing of waste cotton materials performed under the same process conditions. The obtained results showed that cotton fabric could become an alternative feedstock for the bioethanol production. For potential industrial implementation the waste mercerized cotton scraps would be the materials of choice. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Carbohydrate Polymers
T1  - Production of bioethanol from pre-treated cotton fabrics and waste cotton materials
VL  - 164
SP  - 136
EP  - 144
DO  - 10.1016/j.carbpol.2017.01.090
ER  - 
@article{
author = "Nikolić, Svetlana and Lazić, Vesna M. and Veljović, Đorđe N. and Mojović, Ljiljana",
year = "2017",
abstract = "This study highlights the potential of cotton fabric as a promising feedstock for the production of bioethanol as renewable biofuel. The effect of corona pre-treatment of non-mercerized and mercerized cotton fabrics on glucose and ethanol yield is discussed. Fermentation kinetics for ethanol production and the basic process parameters were assessed and compared. Corona pre-treatment of cotton fabrics led to an increase in the glucose yield (compared to control sample) during enzymatic hydrolysis, and consequently the ethanol yield during fermentation by yeast Saccharomyces cerevisiae var. ellipsoideus. The system with mercerized cotton fabric was found to be superior obtaining an ethanol productivity of 0.900 g/Lh and ethanol yield of 0.94 g/g (based on glucose) after 6 h of fermentation time. The similar results were obtained during processing of waste cotton materials performed under the same process conditions. The obtained results showed that cotton fabric could become an alternative feedstock for the bioethanol production. For potential industrial implementation the waste mercerized cotton scraps would be the materials of choice. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Carbohydrate Polymers",
title = "Production of bioethanol from pre-treated cotton fabrics and waste cotton materials",
volume = "164",
pages = "136-144",
doi = "10.1016/j.carbpol.2017.01.090"
}
Nikolić, S., Lazić, V. M., Veljović, Đ. N.,& Mojović, L.. (2017). Production of bioethanol from pre-treated cotton fabrics and waste cotton materials. in Carbohydrate Polymers, 164, 136-144.
https://doi.org/10.1016/j.carbpol.2017.01.090
Nikolić S, Lazić VM, Veljović ĐN, Mojović L. Production of bioethanol from pre-treated cotton fabrics and waste cotton materials. in Carbohydrate Polymers. 2017;164:136-144.
doi:10.1016/j.carbpol.2017.01.090 .
Nikolić, Svetlana, Lazić, Vesna M., Veljović, Đorđe N., Mojović, Ljiljana, "Production of bioethanol from pre-treated cotton fabrics and waste cotton materials" in Carbohydrate Polymers, 164 (2017):136-144,
https://doi.org/10.1016/j.carbpol.2017.01.090 . .
3
51
27
42

Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics

Lazić, Vesna M.; Radoičić, Marija B.; Šaponjić, Zoran; Radetić, Tamara; Vodnik, Vesna; Nikolić, Svetlana; Dimitrijević, Suzana I.; Radetić, Maja M.

(2015)

TY  - JOUR
AU  - Lazić, Vesna M.
AU  - Radoičić, Marija B.
AU  - Šaponjić, Zoran
AU  - Radetić, Tamara
AU  - Vodnik, Vesna
AU  - Nikolić, Svetlana
AU  - Dimitrijević, Suzana I.
AU  - Radetić, Maja M.
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/438
AB  - Recently, many efforts have been made to efficiently impregnate different textile materials with metal and metal oxide nanoparticles in order to provide antimicrobial, UV protective or self-cleaning properties. Evidence of their environmental risks is limited at this point. The aim of this study was to explore the influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Biodegradation behavior of cotton fabrics impregnated with Ag and TiO2 NPs from colloidal solutions of different concentrations was assessed according to standard test method ASTM 5988-03 and soil burial test. Degradation of cotton fabrics was also evaluated by enzymatic hydrolysis with cellulase. The morphology of fibers affected by biodegradation was analyzed by scanning electron microscopy (SEM). In order to get better insight into biodegradation process, dehydrogenase activity of soil has been determined. Ag and particularly TiO2 nanoparticles suppressed the biodegradation of cotton fabrics. The dehydrogenase activity of soil with cotton fabrics impregnated with TiO2 nanoparticles was the weakest. Severe damage of cotton fibers during the biodegradation process was confirmed by SEM.
T2  - Cellulose
T1  - Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics
VL  - 22
IS  - 2
SP  - 1365
EP  - 1378
DO  - 10.1007/s10570-015-0549-7
ER  - 
@article{
author = "Lazić, Vesna M. and Radoičić, Marija B. and Šaponjić, Zoran and Radetić, Tamara and Vodnik, Vesna and Nikolić, Svetlana and Dimitrijević, Suzana I. and Radetić, Maja M.",
year = "2015",
abstract = "Recently, many efforts have been made to efficiently impregnate different textile materials with metal and metal oxide nanoparticles in order to provide antimicrobial, UV protective or self-cleaning properties. Evidence of their environmental risks is limited at this point. The aim of this study was to explore the influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Biodegradation behavior of cotton fabrics impregnated with Ag and TiO2 NPs from colloidal solutions of different concentrations was assessed according to standard test method ASTM 5988-03 and soil burial test. Degradation of cotton fabrics was also evaluated by enzymatic hydrolysis with cellulase. The morphology of fibers affected by biodegradation was analyzed by scanning electron microscopy (SEM). In order to get better insight into biodegradation process, dehydrogenase activity of soil has been determined. Ag and particularly TiO2 nanoparticles suppressed the biodegradation of cotton fabrics. The dehydrogenase activity of soil with cotton fabrics impregnated with TiO2 nanoparticles was the weakest. Severe damage of cotton fibers during the biodegradation process was confirmed by SEM.",
journal = "Cellulose",
title = "Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics",
volume = "22",
number = "2",
pages = "1365-1378",
doi = "10.1007/s10570-015-0549-7"
}
Lazić, V. M., Radoičić, M. B., Šaponjić, Z., Radetić, T., Vodnik, V., Nikolić, S., Dimitrijević, S. I.,& Radetić, M. M.. (2015). Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. in Cellulose, 22(2), 1365-1378.
https://doi.org/10.1007/s10570-015-0549-7
Lazić VM, Radoičić MB, Šaponjić Z, Radetić T, Vodnik V, Nikolić S, Dimitrijević SI, Radetić MM. Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. in Cellulose. 2015;22(2):1365-1378.
doi:10.1007/s10570-015-0549-7 .
Lazić, Vesna M., Radoičić, Marija B., Šaponjić, Zoran, Radetić, Tamara, Vodnik, Vesna, Nikolić, Svetlana, Dimitrijević, Suzana I., Radetić, Maja M., "Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics" in Cellulose, 22, no. 2 (2015):1365-1378,
https://doi.org/10.1007/s10570-015-0549-7 . .
16
16
20