Pastor, Ferenc

Link to this page

Authority KeyName Variants
af5aec8f-bf5f-4e79-a88a-7ae232599edc
  • Pastor, Ferenc (2)
Projects

Author's Bibliography

Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure

Mutić, Tijana; Stanković, Dalibor M.; Manojlović, Dragan; Petrić, Đorđe; Pastor, Ferenc; Avdin, Vyacheslav V.; Ognjanović, Miloš; Stanković, Vesna

(2024)

TY  - JOUR
AU  - Mutić, Tijana
AU  - Stanković, Dalibor M.
AU  - Manojlović, Dragan
AU  - Petrić, Đorđe
AU  - Pastor, Ferenc
AU  - Avdin, Vyacheslav V.
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13122
AB  - In this work, we successfully prepared a modified cobalt oxide (Co3O4) carbon paste electrode to detect Levofloxacin (LEV). By synthesizing Co3O4 nanoparticles through the chemical coprecipitation method, the electrochemical properties of the electrode and LEV were thoroughly investigated using CV, SWV, and EIS, while material properties were scrutinized using ICP-OES, TEM, SEM, and XRD. The results showed that the prepared electrode displayed a better electrocatalytic response than the bare carbon paste electrode. After optimizing SWV, the electrode exhibited a wide linear working range from 1 to 85 μM at pH 5 of BRBS as the supporting electrolyte. The selectivity of the proposed method was satisfactory, with good repeatability and reproducibility, strongly suggesting a potential application for determining LEV in real samples, particularly in pharmaceutical formulations. The practicality of the approach was demonstrated through good recoveries, and the morphology of the materials was found to be closely related to other parameters, indicating that the developed method can provide a cost-effective, rapid, selective, and sensitive means for LEV monitoring. Overall, this project has made significant progress towards developing a reliable method for detecting LEV and has opened up new opportunities for future research in this field.
T2  - Electrochem
T1  - Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure
VL  - 5
IS  - 1
SP  - 45
EP  - 56
DO  - 10.3390/electrochem5010003
ER  - 
@article{
author = "Mutić, Tijana and Stanković, Dalibor M. and Manojlović, Dragan and Petrić, Đorđe and Pastor, Ferenc and Avdin, Vyacheslav V. and Ognjanović, Miloš and Stanković, Vesna",
year = "2024",
abstract = "In this work, we successfully prepared a modified cobalt oxide (Co3O4) carbon paste electrode to detect Levofloxacin (LEV). By synthesizing Co3O4 nanoparticles through the chemical coprecipitation method, the electrochemical properties of the electrode and LEV were thoroughly investigated using CV, SWV, and EIS, while material properties were scrutinized using ICP-OES, TEM, SEM, and XRD. The results showed that the prepared electrode displayed a better electrocatalytic response than the bare carbon paste electrode. After optimizing SWV, the electrode exhibited a wide linear working range from 1 to 85 μM at pH 5 of BRBS as the supporting electrolyte. The selectivity of the proposed method was satisfactory, with good repeatability and reproducibility, strongly suggesting a potential application for determining LEV in real samples, particularly in pharmaceutical formulations. The practicality of the approach was demonstrated through good recoveries, and the morphology of the materials was found to be closely related to other parameters, indicating that the developed method can provide a cost-effective, rapid, selective, and sensitive means for LEV monitoring. Overall, this project has made significant progress towards developing a reliable method for detecting LEV and has opened up new opportunities for future research in this field.",
journal = "Electrochem",
title = "Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure",
volume = "5",
number = "1",
pages = "45-56",
doi = "10.3390/electrochem5010003"
}
Mutić, T., Stanković, D. M., Manojlović, D., Petrić, Đ., Pastor, F., Avdin, V. V., Ognjanović, M.,& Stanković, V.. (2024). Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure. in Electrochem, 5(1), 45-56.
https://doi.org/10.3390/electrochem5010003
Mutić T, Stanković DM, Manojlović D, Petrić Đ, Pastor F, Avdin VV, Ognjanović M, Stanković V. Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure. in Electrochem. 2024;5(1):45-56.
doi:10.3390/electrochem5010003 .
Mutić, Tijana, Stanković, Dalibor M., Manojlović, Dragan, Petrić, Đorđe, Pastor, Ferenc, Avdin, Vyacheslav V., Ognjanović, Miloš, Stanković, Vesna, "Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure" in Electrochem, 5, no. 1 (2024):45-56,
https://doi.org/10.3390/electrochem5010003 . .
1
1

Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor

Ognjanović, Miloš; Nikolić, Katarina; Bošković, Marko; Pastor, Ferenc; Popov, Nina; Marciuš, Marijan; Krehula, Stjepko; Antić, Bratislav; Stanković, Dalibor M.

(2022)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Nikolić, Katarina
AU  - Bošković, Marko
AU  - Pastor, Ferenc
AU  - Popov, Nina
AU  - Marciuš, Marijan
AU  - Krehula, Stjepko
AU  - Antić, Bratislav
AU  - Stanković, Dalibor M.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10510
AB  - Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.
T2  - Biosensors
T1  - Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor
VL  - 12
IS  - 11
SP  - 932
DO  - 10.3390/bios12110932
ER  - 
@article{
author = "Ognjanović, Miloš and Nikolić, Katarina and Bošković, Marko and Pastor, Ferenc and Popov, Nina and Marciuš, Marijan and Krehula, Stjepko and Antić, Bratislav and Stanković, Dalibor M.",
year = "2022",
abstract = "Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.",
journal = "Biosensors",
title = "Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor",
volume = "12",
number = "11",
pages = "932",
doi = "10.3390/bios12110932"
}
Ognjanović, M., Nikolić, K., Bošković, M., Pastor, F., Popov, N., Marciuš, M., Krehula, S., Antić, B.,& Stanković, D. M.. (2022). Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. in Biosensors, 12(11), 932.
https://doi.org/10.3390/bios12110932
Ognjanović M, Nikolić K, Bošković M, Pastor F, Popov N, Marciuš M, Krehula S, Antić B, Stanković DM. Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. in Biosensors. 2022;12(11):932.
doi:10.3390/bios12110932 .
Ognjanović, Miloš, Nikolić, Katarina, Bošković, Marko, Pastor, Ferenc, Popov, Nina, Marciuš, Marijan, Krehula, Stjepko, Antić, Bratislav, Stanković, Dalibor M., "Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor" in Biosensors, 12, no. 11 (2022):932,
https://doi.org/10.3390/bios12110932 . .
1
10
8