Ptasinska, Sylwia

Link to this page

Authority KeyName Variants
orcid::0000-0002-7550-8189
  • Ptasinska, Sylwia (4)
Projects

Author's Bibliography

Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets

Danilović, Danijela; Milosavljević, Aleksandar R.; Sapkota, Pitambar; Dojčilović, Radovan; Tošić, Dragana; Vukmirović, Nenad; Jocić, Milan; Đoković, Vladimir; Ptasinska, Sylwia; Božanić, Dušan K.

(2022)

TY  - JOUR
AU  - Danilović, Danijela
AU  - Milosavljević, Aleksandar R.
AU  - Sapkota, Pitambar
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Vukmirović, Nenad
AU  - Jocić, Milan
AU  - Đoković, Vladimir
AU  - Ptasinska, Sylwia
AU  - Božanić, Dušan K.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10402
AB  - Silver–bismuth iodide (Ag–Bi–I) rudorffites are chemically stable and non-toxic materials that can act as a possible lead-free replacement for methylammonium lead halides in optoelectronic applications. We report on a simple route for fabricating Ag–Bi–I colloidal nanoplatelets approximately 160 nm in lateral dimensions and 1–8 nm in thickness via exfoliation of Ag–Bi–I rudorffite powders in acetonitrile. The valence band electronic structure of isolated Ag–Bi–I nanoplatelets was investigated using synchrotron radiation to perform X-ray aerosol photoelectron spectroscopy (XAPS). The ionization energy of the material was found to be 6.1 ± 0.2 eV with respect to the vacuum level. UV–vis absorption and photoluminescence spectroscopies of the Ag–Bi–I colloids showed that the optical properties of the nanoplatelets originate from I 5p to Bi 6p and I 5p to I 5p transitions, which is further confirmed by density functional theory (DFT) calculations. Finally, calculations based on the DFT and k · p theoretical methods showed that the quantum confinement effect is very weak in the system studied.
T2  - The Journal of Physical Chemistry C
T1  - Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets
VL  - 126
IS  - 32
SP  - 13739
EP  - 13747
DO  - 10.1021/acs.jpcc.2c03208
ER  - 
@article{
author = "Danilović, Danijela and Milosavljević, Aleksandar R. and Sapkota, Pitambar and Dojčilović, Radovan and Tošić, Dragana and Vukmirović, Nenad and Jocić, Milan and Đoković, Vladimir and Ptasinska, Sylwia and Božanić, Dušan K.",
year = "2022",
abstract = "Silver–bismuth iodide (Ag–Bi–I) rudorffites are chemically stable and non-toxic materials that can act as a possible lead-free replacement for methylammonium lead halides in optoelectronic applications. We report on a simple route for fabricating Ag–Bi–I colloidal nanoplatelets approximately 160 nm in lateral dimensions and 1–8 nm in thickness via exfoliation of Ag–Bi–I rudorffite powders in acetonitrile. The valence band electronic structure of isolated Ag–Bi–I nanoplatelets was investigated using synchrotron radiation to perform X-ray aerosol photoelectron spectroscopy (XAPS). The ionization energy of the material was found to be 6.1 ± 0.2 eV with respect to the vacuum level. UV–vis absorption and photoluminescence spectroscopies of the Ag–Bi–I colloids showed that the optical properties of the nanoplatelets originate from I 5p to Bi 6p and I 5p to I 5p transitions, which is further confirmed by density functional theory (DFT) calculations. Finally, calculations based on the DFT and k · p theoretical methods showed that the quantum confinement effect is very weak in the system studied.",
journal = "The Journal of Physical Chemistry C",
title = "Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets",
volume = "126",
number = "32",
pages = "13739-13747",
doi = "10.1021/acs.jpcc.2c03208"
}
Danilović, D., Milosavljević, A. R., Sapkota, P., Dojčilović, R., Tošić, D., Vukmirović, N., Jocić, M., Đoković, V., Ptasinska, S.,& Božanić, D. K.. (2022). Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets. in The Journal of Physical Chemistry C, 126(32), 13739-13747.
https://doi.org/10.1021/acs.jpcc.2c03208
Danilović D, Milosavljević AR, Sapkota P, Dojčilović R, Tošić D, Vukmirović N, Jocić M, Đoković V, Ptasinska S, Božanić DK. Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets. in The Journal of Physical Chemistry C. 2022;126(32):13739-13747.
doi:10.1021/acs.jpcc.2c03208 .
Danilović, Danijela, Milosavljević, Aleksandar R., Sapkota, Pitambar, Dojčilović, Radovan, Tošić, Dragana, Vukmirović, Nenad, Jocić, Milan, Đoković, Vladimir, Ptasinska, Sylwia, Božanić, Dušan K., "Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets" in The Journal of Physical Chemistry C, 126, no. 32 (2022):13739-13747,
https://doi.org/10.1021/acs.jpcc.2c03208 . .
2

Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems

Danilović, Danijela; Božanić, Dušan K.; Dojčilović, Radovan; Vukmirović, Nenad; Sapkota, Pitambar; Vukašinović, Ivana; Đoković, Vladimir; Bozek, John; Nicolas, Christophe; Ptasinska, Sylwia; Milosavljević, Aleksandar R.

(2020)

TY  - JOUR
AU  - Danilović, Danijela
AU  - Božanić, Dušan K.
AU  - Dojčilović, Radovan
AU  - Vukmirović, Nenad
AU  - Sapkota, Pitambar
AU  - Vukašinović, Ivana
AU  - Đoković, Vladimir
AU  - Bozek, John
AU  - Nicolas, Christophe
AU  - Ptasinska, Sylwia
AU  - Milosavljević, Aleksandar R.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9732
AB  - We report on the aerosol generation of ligand-free silver iodobismuthate (Ag-Bi-I) nanoparticles (NPs) and on in situ investigation of their electronic structure using synchrotron radiation soft X-ray aerosol photoelectron spectroscopy (XAPS). The structural and morphological characterizations revealed the aerosol to be composed of spherical rudorffite Ag3BiI6 particles, approximately 100 nm in size. The XAPS showed well-resolved signals from all expected elements (Ag, Bi, and I) and allowed estimation of the NP work function to be about 4.5 eV. The ionization energy of Ag3BiI6 NPs was determined to be 6.1 eV that is in good agreement with our calculations based on a hybrid functional approach. The presented method of production of Ag3BiI6 aerosol can prove beneficial for the future development of Ag-Bi-I-based photovoltaic materials, since it allows the deposition of Ag-Bi-I particles on large surface areas of arbitrary shape and roughness.
T2  - The Journal of Physical Chemistry C
T1  - Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems
VL  - 124
IS  - 43
SP  - 23930
EP  - 23937
DO  - 10.1021/acs.jpcc.0c06819
ER  - 
@article{
author = "Danilović, Danijela and Božanić, Dušan K. and Dojčilović, Radovan and Vukmirović, Nenad and Sapkota, Pitambar and Vukašinović, Ivana and Đoković, Vladimir and Bozek, John and Nicolas, Christophe and Ptasinska, Sylwia and Milosavljević, Aleksandar R.",
year = "2020",
abstract = "We report on the aerosol generation of ligand-free silver iodobismuthate (Ag-Bi-I) nanoparticles (NPs) and on in situ investigation of their electronic structure using synchrotron radiation soft X-ray aerosol photoelectron spectroscopy (XAPS). The structural and morphological characterizations revealed the aerosol to be composed of spherical rudorffite Ag3BiI6 particles, approximately 100 nm in size. The XAPS showed well-resolved signals from all expected elements (Ag, Bi, and I) and allowed estimation of the NP work function to be about 4.5 eV. The ionization energy of Ag3BiI6 NPs was determined to be 6.1 eV that is in good agreement with our calculations based on a hybrid functional approach. The presented method of production of Ag3BiI6 aerosol can prove beneficial for the future development of Ag-Bi-I-based photovoltaic materials, since it allows the deposition of Ag-Bi-I particles on large surface areas of arbitrary shape and roughness.",
journal = "The Journal of Physical Chemistry C",
title = "Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems",
volume = "124",
number = "43",
pages = "23930-23937",
doi = "10.1021/acs.jpcc.0c06819"
}
Danilović, D., Božanić, D. K., Dojčilović, R., Vukmirović, N., Sapkota, P., Vukašinović, I., Đoković, V., Bozek, J., Nicolas, C., Ptasinska, S.,& Milosavljević, A. R.. (2020). Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems. in The Journal of Physical Chemistry C, 124(43), 23930-23937.
https://doi.org/10.1021/acs.jpcc.0c06819
Danilović D, Božanić DK, Dojčilović R, Vukmirović N, Sapkota P, Vukašinović I, Đoković V, Bozek J, Nicolas C, Ptasinska S, Milosavljević AR. Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems. in The Journal of Physical Chemistry C. 2020;124(43):23930-23937.
doi:10.1021/acs.jpcc.0c06819 .
Danilović, Danijela, Božanić, Dušan K., Dojčilović, Radovan, Vukmirović, Nenad, Sapkota, Pitambar, Vukašinović, Ivana, Đoković, Vladimir, Bozek, John, Nicolas, Christophe, Ptasinska, Sylwia, Milosavljević, Aleksandar R., "Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems" in The Journal of Physical Chemistry C, 124, no. 43 (2020):23930-23937,
https://doi.org/10.1021/acs.jpcc.0c06819 . .
1
13
4
12

Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo

Milosavljević, Aleksandar R.; Božanić, Dušan K.; Sadhu, Subha; Vukmirović, Nenad; Dojčilović, Radovan; Sapkota, Pitambar; Huang, Weixin; Bozek, John D.; Nicolas, Christophe; Nahon, Laurent; Ptasinska, Sylwia

(2018)

TY  - JOUR
AU  - Milosavljević, Aleksandar R.
AU  - Božanić, Dušan K.
AU  - Sadhu, Subha
AU  - Vukmirović, Nenad
AU  - Dojčilović, Radovan
AU  - Sapkota, Pitambar
AU  - Huang, Weixin
AU  - Bozek, John D.
AU  - Nicolas, Christophe
AU  - Nahon, Laurent
AU  - Ptasinska, Sylwia
PY  - 2018
UR  - http://pubs.acs.org/doi/10.1021/acs.jpclett.8b01466
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7915
AB  - We report an investigation of lead halide perovskite CH3NH3PbBr3 nanocrystals and associated ligand molecules by combining several different state-of-the-art experimental techniques, including synchrotron radiation-based XPS and VUV PES of free-standing nanocrystals isolated in vacuum. By using this novel approach for perovskite materials, we could directly obtain complete band alignment to vacuum of both CH3NH3PbBr3 nanocrystals and the ligands widely used in their preparation. We discuss the possible influence of the ligand molecules to apparent perovskite properties, and we compare the electronic properties of nanocrystals to those of bulk material. The experimental results were supported by DFT calculations.
T2  - Journal of Physical Chemistry Letters
T1  - Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo
VL  - 9
IS  - 13
SP  - 3604
EP  - 3611
DO  - 10.1021/acs.jpclett.8b01466
ER  - 
@article{
author = "Milosavljević, Aleksandar R. and Božanić, Dušan K. and Sadhu, Subha and Vukmirović, Nenad and Dojčilović, Radovan and Sapkota, Pitambar and Huang, Weixin and Bozek, John D. and Nicolas, Christophe and Nahon, Laurent and Ptasinska, Sylwia",
year = "2018",
abstract = "We report an investigation of lead halide perovskite CH3NH3PbBr3 nanocrystals and associated ligand molecules by combining several different state-of-the-art experimental techniques, including synchrotron radiation-based XPS and VUV PES of free-standing nanocrystals isolated in vacuum. By using this novel approach for perovskite materials, we could directly obtain complete band alignment to vacuum of both CH3NH3PbBr3 nanocrystals and the ligands widely used in their preparation. We discuss the possible influence of the ligand molecules to apparent perovskite properties, and we compare the electronic properties of nanocrystals to those of bulk material. The experimental results were supported by DFT calculations.",
journal = "Journal of Physical Chemistry Letters",
title = "Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo",
volume = "9",
number = "13",
pages = "3604-3611",
doi = "10.1021/acs.jpclett.8b01466"
}
Milosavljević, A. R., Božanić, D. K., Sadhu, S., Vukmirović, N., Dojčilović, R., Sapkota, P., Huang, W., Bozek, J. D., Nicolas, C., Nahon, L.,& Ptasinska, S.. (2018). Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo. in Journal of Physical Chemistry Letters, 9(13), 3604-3611.
https://doi.org/10.1021/acs.jpclett.8b01466
Milosavljević AR, Božanić DK, Sadhu S, Vukmirović N, Dojčilović R, Sapkota P, Huang W, Bozek JD, Nicolas C, Nahon L, Ptasinska S. Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo. in Journal of Physical Chemistry Letters. 2018;9(13):3604-3611.
doi:10.1021/acs.jpclett.8b01466 .
Milosavljević, Aleksandar R., Božanić, Dušan K., Sadhu, Subha, Vukmirović, Nenad, Dojčilović, Radovan, Sapkota, Pitambar, Huang, Weixin, Bozek, John D., Nicolas, Christophe, Nahon, Laurent, Ptasinska, Sylwia, "Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo" in Journal of Physical Chemistry Letters, 9, no. 13 (2018):3604-3611,
https://doi.org/10.1021/acs.jpclett.8b01466 . .
1
18
10
18

Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles

Trandafilović, Lidija V.; Jovanović, Dragana J.; Zhang, X.; Ptasinska, Sylwia; Dramićanin, Miroslav

(2017)

TY  - JOUR
AU  - Trandafilović, Lidija V.
AU  - Jovanović, Dragana J.
AU  - Zhang, X.
AU  - Ptasinska, Sylwia
AU  - Dramićanin, Miroslav
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1369
AB  - ZnO nanoparticles doped with different Eu3+ percentages were synthesized in water (ZnO: Eu(chi%)-W) and other solvents (methanol ZnO:Eu(chi%)-M and ethanol ZnO:Eu(chi%)-E). X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption and photoluminescence (PL) spectroscopy were used for characterization of the nanoparticles. Our results showed influence of europium doping and solvents on size, particles agglomeration, light absorption and photo catalytic activity. Improvement in photocatalytical activity with addition of Eu3+ doping was detected. Particle size increased with Eu3+ doping in water samples, while it decreased in methanol. Agglomeration was more prominent in ZnO:Eu(chi%)-W samples. Greater amount of surface OH groups in case of ZnO:Eu(chi%)-M samples was detected by PL, XPS and FTIR measurements. Influence of europium doping, as an electron trap, and surface OH groups, as a hole trap, was studied in sunlight photocatalytic degradation of cationic methylene blue (MB) and anionic methyl orange (MO). Improved photocatalytic behavior was discussed and influence of active species was further investigated using hole and hydroxyle radical scavengers. The degradation pathway of MB and MO, using high performance liquid chromatohraphy (HPLC), is also examined. (C) 2016 Elsevier B.V. All rights reserved.
T2  - Applied Catalysis. B: Environmental
T1  - Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles
VL  - 203
SP  - 740
EP  - 752
DO  - 10.1016/j.apcatb.2016.10.063
ER  - 
@article{
author = "Trandafilović, Lidija V. and Jovanović, Dragana J. and Zhang, X. and Ptasinska, Sylwia and Dramićanin, Miroslav",
year = "2017",
abstract = "ZnO nanoparticles doped with different Eu3+ percentages were synthesized in water (ZnO: Eu(chi%)-W) and other solvents (methanol ZnO:Eu(chi%)-M and ethanol ZnO:Eu(chi%)-E). X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption and photoluminescence (PL) spectroscopy were used for characterization of the nanoparticles. Our results showed influence of europium doping and solvents on size, particles agglomeration, light absorption and photo catalytic activity. Improvement in photocatalytical activity with addition of Eu3+ doping was detected. Particle size increased with Eu3+ doping in water samples, while it decreased in methanol. Agglomeration was more prominent in ZnO:Eu(chi%)-W samples. Greater amount of surface OH groups in case of ZnO:Eu(chi%)-M samples was detected by PL, XPS and FTIR measurements. Influence of europium doping, as an electron trap, and surface OH groups, as a hole trap, was studied in sunlight photocatalytic degradation of cationic methylene blue (MB) and anionic methyl orange (MO). Improved photocatalytic behavior was discussed and influence of active species was further investigated using hole and hydroxyle radical scavengers. The degradation pathway of MB and MO, using high performance liquid chromatohraphy (HPLC), is also examined. (C) 2016 Elsevier B.V. All rights reserved.",
journal = "Applied Catalysis. B: Environmental",
title = "Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles",
volume = "203",
pages = "740-752",
doi = "10.1016/j.apcatb.2016.10.063"
}
Trandafilović, L. V., Jovanović, D. J., Zhang, X., Ptasinska, S.,& Dramićanin, M.. (2017). Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. in Applied Catalysis. B: Environmental, 203, 740-752.
https://doi.org/10.1016/j.apcatb.2016.10.063
Trandafilović LV, Jovanović DJ, Zhang X, Ptasinska S, Dramićanin M. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. in Applied Catalysis. B: Environmental. 2017;203:740-752.
doi:10.1016/j.apcatb.2016.10.063 .
Trandafilović, Lidija V., Jovanović, Dragana J., Zhang, X., Ptasinska, Sylwia, Dramićanin, Miroslav, "Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles" in Applied Catalysis. B: Environmental, 203 (2017):740-752,
https://doi.org/10.1016/j.apcatb.2016.10.063 . .
1
304
181
289