Bozek, John

Link to this page

Authority KeyName Variants
7c4f653a-9db5-444a-82c9-60271fcc0bc1
  • Bozek, John (1)
  • Bozek, John D. (1)

Author's Bibliography

Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems

Danilović, Danijela; Božanić, Dušan K.; Dojčilović, Radovan; Vukmirović, Nenad; Sapkota, Pitambar; Vukašinović, Ivana; Đoković, Vladimir; Bozek, John; Nicolas, Christophe; Ptasinska, Sylwia; Milosavljević, Aleksandar R.

(2020)

TY  - JOUR
AU  - Danilović, Danijela
AU  - Božanić, Dušan K.
AU  - Dojčilović, Radovan
AU  - Vukmirović, Nenad
AU  - Sapkota, Pitambar
AU  - Vukašinović, Ivana
AU  - Đoković, Vladimir
AU  - Bozek, John
AU  - Nicolas, Christophe
AU  - Ptasinska, Sylwia
AU  - Milosavljević, Aleksandar R.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9732
AB  - We report on the aerosol generation of ligand-free silver iodobismuthate (Ag-Bi-I) nanoparticles (NPs) and on in situ investigation of their electronic structure using synchrotron radiation soft X-ray aerosol photoelectron spectroscopy (XAPS). The structural and morphological characterizations revealed the aerosol to be composed of spherical rudorffite Ag3BiI6 particles, approximately 100 nm in size. The XAPS showed well-resolved signals from all expected elements (Ag, Bi, and I) and allowed estimation of the NP work function to be about 4.5 eV. The ionization energy of Ag3BiI6 NPs was determined to be 6.1 eV that is in good agreement with our calculations based on a hybrid functional approach. The presented method of production of Ag3BiI6 aerosol can prove beneficial for the future development of Ag-Bi-I-based photovoltaic materials, since it allows the deposition of Ag-Bi-I particles on large surface areas of arbitrary shape and roughness.
T2  - The Journal of Physical Chemistry C
T1  - Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems
VL  - 124
IS  - 43
SP  - 23930
EP  - 23937
DO  - 10.1021/acs.jpcc.0c06819
ER  - 
@article{
author = "Danilović, Danijela and Božanić, Dušan K. and Dojčilović, Radovan and Vukmirović, Nenad and Sapkota, Pitambar and Vukašinović, Ivana and Đoković, Vladimir and Bozek, John and Nicolas, Christophe and Ptasinska, Sylwia and Milosavljević, Aleksandar R.",
year = "2020",
abstract = "We report on the aerosol generation of ligand-free silver iodobismuthate (Ag-Bi-I) nanoparticles (NPs) and on in situ investigation of their electronic structure using synchrotron radiation soft X-ray aerosol photoelectron spectroscopy (XAPS). The structural and morphological characterizations revealed the aerosol to be composed of spherical rudorffite Ag3BiI6 particles, approximately 100 nm in size. The XAPS showed well-resolved signals from all expected elements (Ag, Bi, and I) and allowed estimation of the NP work function to be about 4.5 eV. The ionization energy of Ag3BiI6 NPs was determined to be 6.1 eV that is in good agreement with our calculations based on a hybrid functional approach. The presented method of production of Ag3BiI6 aerosol can prove beneficial for the future development of Ag-Bi-I-based photovoltaic materials, since it allows the deposition of Ag-Bi-I particles on large surface areas of arbitrary shape and roughness.",
journal = "The Journal of Physical Chemistry C",
title = "Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems",
volume = "124",
number = "43",
pages = "23930-23937",
doi = "10.1021/acs.jpcc.0c06819"
}
Danilović, D., Božanić, D. K., Dojčilović, R., Vukmirović, N., Sapkota, P., Vukašinović, I., Đoković, V., Bozek, J., Nicolas, C., Ptasinska, S.,& Milosavljević, A. R.. (2020). Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems. in The Journal of Physical Chemistry C, 124(43), 23930-23937.
https://doi.org/10.1021/acs.jpcc.0c06819
Danilović D, Božanić DK, Dojčilović R, Vukmirović N, Sapkota P, Vukašinović I, Đoković V, Bozek J, Nicolas C, Ptasinska S, Milosavljević AR. Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems. in The Journal of Physical Chemistry C. 2020;124(43):23930-23937.
doi:10.1021/acs.jpcc.0c06819 .
Danilović, Danijela, Božanić, Dušan K., Dojčilović, Radovan, Vukmirović, Nenad, Sapkota, Pitambar, Vukašinović, Ivana, Đoković, Vladimir, Bozek, John, Nicolas, Christophe, Ptasinska, Sylwia, Milosavljević, Aleksandar R., "Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems" in The Journal of Physical Chemistry C, 124, no. 43 (2020):23930-23937,
https://doi.org/10.1021/acs.jpcc.0c06819 . .
1
13
4
12

Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo

Milosavljević, Aleksandar R.; Božanić, Dušan K.; Sadhu, Subha; Vukmirović, Nenad; Dojčilović, Radovan; Sapkota, Pitambar; Huang, Weixin; Bozek, John D.; Nicolas, Christophe; Nahon, Laurent; Ptasinska, Sylwia

(2018)

TY  - JOUR
AU  - Milosavljević, Aleksandar R.
AU  - Božanić, Dušan K.
AU  - Sadhu, Subha
AU  - Vukmirović, Nenad
AU  - Dojčilović, Radovan
AU  - Sapkota, Pitambar
AU  - Huang, Weixin
AU  - Bozek, John D.
AU  - Nicolas, Christophe
AU  - Nahon, Laurent
AU  - Ptasinska, Sylwia
PY  - 2018
UR  - http://pubs.acs.org/doi/10.1021/acs.jpclett.8b01466
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7915
AB  - We report an investigation of lead halide perovskite CH3NH3PbBr3 nanocrystals and associated ligand molecules by combining several different state-of-the-art experimental techniques, including synchrotron radiation-based XPS and VUV PES of free-standing nanocrystals isolated in vacuum. By using this novel approach for perovskite materials, we could directly obtain complete band alignment to vacuum of both CH3NH3PbBr3 nanocrystals and the ligands widely used in their preparation. We discuss the possible influence of the ligand molecules to apparent perovskite properties, and we compare the electronic properties of nanocrystals to those of bulk material. The experimental results were supported by DFT calculations.
T2  - Journal of Physical Chemistry Letters
T1  - Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo
VL  - 9
IS  - 13
SP  - 3604
EP  - 3611
DO  - 10.1021/acs.jpclett.8b01466
ER  - 
@article{
author = "Milosavljević, Aleksandar R. and Božanić, Dušan K. and Sadhu, Subha and Vukmirović, Nenad and Dojčilović, Radovan and Sapkota, Pitambar and Huang, Weixin and Bozek, John D. and Nicolas, Christophe and Nahon, Laurent and Ptasinska, Sylwia",
year = "2018",
abstract = "We report an investigation of lead halide perovskite CH3NH3PbBr3 nanocrystals and associated ligand molecules by combining several different state-of-the-art experimental techniques, including synchrotron radiation-based XPS and VUV PES of free-standing nanocrystals isolated in vacuum. By using this novel approach for perovskite materials, we could directly obtain complete band alignment to vacuum of both CH3NH3PbBr3 nanocrystals and the ligands widely used in their preparation. We discuss the possible influence of the ligand molecules to apparent perovskite properties, and we compare the electronic properties of nanocrystals to those of bulk material. The experimental results were supported by DFT calculations.",
journal = "Journal of Physical Chemistry Letters",
title = "Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo",
volume = "9",
number = "13",
pages = "3604-3611",
doi = "10.1021/acs.jpclett.8b01466"
}
Milosavljević, A. R., Božanić, D. K., Sadhu, S., Vukmirović, N., Dojčilović, R., Sapkota, P., Huang, W., Bozek, J. D., Nicolas, C., Nahon, L.,& Ptasinska, S.. (2018). Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo. in Journal of Physical Chemistry Letters, 9(13), 3604-3611.
https://doi.org/10.1021/acs.jpclett.8b01466
Milosavljević AR, Božanić DK, Sadhu S, Vukmirović N, Dojčilović R, Sapkota P, Huang W, Bozek JD, Nicolas C, Nahon L, Ptasinska S. Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo. in Journal of Physical Chemistry Letters. 2018;9(13):3604-3611.
doi:10.1021/acs.jpclett.8b01466 .
Milosavljević, Aleksandar R., Božanić, Dušan K., Sadhu, Subha, Vukmirović, Nenad, Dojčilović, Radovan, Sapkota, Pitambar, Huang, Weixin, Bozek, John D., Nicolas, Christophe, Nahon, Laurent, Ptasinska, Sylwia, "Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo" in Journal of Physical Chemistry Letters, 9, no. 13 (2018):3604-3611,
https://doi.org/10.1021/acs.jpclett.8b01466 . .
1
18
10
18