Valle Martínez de Yuso, M.

Link to this page

Authority KeyName Variants
0a6ec1e0-3039-4630-9197-c021ce94c576
  • Valle Martínez de Yuso, M. (1)

Author's Bibliography

S, N-doped carbon dots-based cisplatin delivery system in adenocarcinoma cells: Spectroscopical and computational approach

Dučić, Tanja; Alves, Carla S.; Vučinić, Željko; Lázaro-Martínez, Juan M.; Petković, Marijana; Soto, Juan; Mutavdžić, Dragosav; Valle Martínez de Yuso, M.; Radotić, Ksenija; Algarra, Manuel

(2022)

TY  - JOUR
AU  - Dučić, Tanja
AU  - Alves, Carla S.
AU  - Vučinić, Željko
AU  - Lázaro-Martínez, Juan M.
AU  - Petković, Marijana
AU  - Soto, Juan
AU  - Mutavdžić, Dragosav
AU  - Valle Martínez de Yuso, M.
AU  - Radotić, Ksenija
AU  - Algarra, Manuel
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10277
AB  - S and N-doped carbon dots (S-CDs and N-CDs) and their cisplatin (cis-Pt) derivatives. (S-CDs@cis-Pt and N-CDs@cis-Pt) were tested on two ovarian cancer cell lines: A2780 and A2780 cells resistant to cis-Pt (A2780R). Several spectroscopic techniques were employed to check S-CDs@cis-Pt and N-CDs@cis-Pt: solid- and solution-state nuclear magnetic resonance, matrix-assisted laser desorption, ionization time-of-flight mass spectrometry, and X-ray photoelectron spectroscopy. In addition, synchrotron-based Fourier Transformed Infrared spectro-microscopy was used to evaluate the biochemical changes in cells after treatment with cis-Pt, S-CDs, N-CDs, or S-CDs@cis-Pt and N-CDs@cis-Pt, respectively. Computational chemistry was applied to establish the model for the most stable bond between S-CDs and N-CDs and cis-Pt. The results revealed the successful modification of S-CDs and N-CDs with cis-Pt and the formation of a stable composite system that can be used for drug delivery to cancer cells and likewise to overcome acquired cis-Pt resistance. Nanoparticle treatment of A2780 and A2780R cells led to the changes in their structure of lipids, proteins, and nucleic acids depending on the treatment. The results showed the S-CDs@cis-Pt and N-CDs@cis-Pt might be used in the combination with cis-Pt to treat the adenocarcinoma, thus having a potential to be further developed as drug delivery systems.
T2  - Journal of Colloid and Interface Science
T1  - S, N-doped carbon dots-based cisplatin delivery system in adenocarcinoma cells: Spectroscopical and computational approach
VL  - 623
SP  - 226
EP  - 237
DO  - 10.1016/j.jcis.2022.05.005
ER  - 
@article{
author = "Dučić, Tanja and Alves, Carla S. and Vučinić, Željko and Lázaro-Martínez, Juan M. and Petković, Marijana and Soto, Juan and Mutavdžić, Dragosav and Valle Martínez de Yuso, M. and Radotić, Ksenija and Algarra, Manuel",
year = "2022",
abstract = "S and N-doped carbon dots (S-CDs and N-CDs) and their cisplatin (cis-Pt) derivatives. (S-CDs@cis-Pt and N-CDs@cis-Pt) were tested on two ovarian cancer cell lines: A2780 and A2780 cells resistant to cis-Pt (A2780R). Several spectroscopic techniques were employed to check S-CDs@cis-Pt and N-CDs@cis-Pt: solid- and solution-state nuclear magnetic resonance, matrix-assisted laser desorption, ionization time-of-flight mass spectrometry, and X-ray photoelectron spectroscopy. In addition, synchrotron-based Fourier Transformed Infrared spectro-microscopy was used to evaluate the biochemical changes in cells after treatment with cis-Pt, S-CDs, N-CDs, or S-CDs@cis-Pt and N-CDs@cis-Pt, respectively. Computational chemistry was applied to establish the model for the most stable bond between S-CDs and N-CDs and cis-Pt. The results revealed the successful modification of S-CDs and N-CDs with cis-Pt and the formation of a stable composite system that can be used for drug delivery to cancer cells and likewise to overcome acquired cis-Pt resistance. Nanoparticle treatment of A2780 and A2780R cells led to the changes in their structure of lipids, proteins, and nucleic acids depending on the treatment. The results showed the S-CDs@cis-Pt and N-CDs@cis-Pt might be used in the combination with cis-Pt to treat the adenocarcinoma, thus having a potential to be further developed as drug delivery systems.",
journal = "Journal of Colloid and Interface Science",
title = "S, N-doped carbon dots-based cisplatin delivery system in adenocarcinoma cells: Spectroscopical and computational approach",
volume = "623",
pages = "226-237",
doi = "10.1016/j.jcis.2022.05.005"
}
Dučić, T., Alves, C. S., Vučinić, Ž., Lázaro-Martínez, J. M., Petković, M., Soto, J., Mutavdžić, D., Valle Martínez de Yuso, M., Radotić, K.,& Algarra, M.. (2022). S, N-doped carbon dots-based cisplatin delivery system in adenocarcinoma cells: Spectroscopical and computational approach. in Journal of Colloid and Interface Science, 623, 226-237.
https://doi.org/10.1016/j.jcis.2022.05.005
Dučić T, Alves CS, Vučinić Ž, Lázaro-Martínez JM, Petković M, Soto J, Mutavdžić D, Valle Martínez de Yuso M, Radotić K, Algarra M. S, N-doped carbon dots-based cisplatin delivery system in adenocarcinoma cells: Spectroscopical and computational approach. in Journal of Colloid and Interface Science. 2022;623:226-237.
doi:10.1016/j.jcis.2022.05.005 .
Dučić, Tanja, Alves, Carla S., Vučinić, Željko, Lázaro-Martínez, Juan M., Petković, Marijana, Soto, Juan, Mutavdžić, Dragosav, Valle Martínez de Yuso, M., Radotić, Ksenija, Algarra, Manuel, "S, N-doped carbon dots-based cisplatin delivery system in adenocarcinoma cells: Spectroscopical and computational approach" in Journal of Colloid and Interface Science, 623 (2022):226-237,
https://doi.org/10.1016/j.jcis.2022.05.005 . .
3
6
3