Abduarahman, Muna Abdualatif

Link to this page

Authority KeyName Variants
2ae3b7fd-a41f-4a9c-b7dd-4bdaf0afcdd4
  • Abduarahman, Muna Abdualatif (1)
Projects

Author's Bibliography

Mn-Fe Layered Double Hydroxide Modified Cellulose-Based Membrane for Sustainable Anionic Pollutant Removal

Abduarahman, Muna Abdualatif; Vuksanović, Marija M.; Milošević, Milena; Egelja, Adela; Savić, Andrija B.; Veličković, Zlate; Marinković, Aleksandar

(2024)

TY  - JOUR
AU  - Abduarahman, Muna Abdualatif
AU  - Vuksanović, Marija M.
AU  - Milošević, Milena
AU  - Egelja, Adela
AU  - Savić, Andrija B.
AU  - Veličković, Zlate
AU  - Marinković, Aleksandar
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12866
AB  - This study aimed to investigate the adsorption of As(V), phosphate, and textile dye Acid Green 25 (AG-25) on layered double hydroxides Mn-Fe_LDH and corresponding membranes (wCell/Mn-Fe_LDH). The wCell membrane, derived from waste tobacco boxes, was formed by cross-linking of epoxy and amino modified cellulose fibers with epoxy modified Mn-Fe_LDH and lysine as cross-linker. Structural and morphological analyses were conducted for Mn-Fe_LDH and wCell/Mn-Fe_LDH. The batch system explored pH, contact time, temperature, and initial concentration effects on wCell/Mn-Fe_LDH adsorption efficiency. Adsorption capacities of 82.71, 106.9, and 130.3 mg g−1 were achieved for As(V), phosphate, and AG-25, respectively, indicating effective anionic species removal. Kinetic analysis suggested intraparticle diffusion as the rate-limiting step. Thermodynamic parameters and ionic strength effects indicated a physisorption mechanism for AG-25 and surface complexation for As(V) and phosphate. Biodegradation experiments after five adsorption/desorption cycles revealed the membrane’s decomposition, with phosphate’s strong bonding releasing essential elements valuable for soil fertilization. Effluent wastewater treatment demonstrated low environmental impact through the formation of insoluble As(V) salts and photocatalytic dye degradation.
T2  - Journal of Polymers and the Environment
T1  - Mn-Fe Layered Double Hydroxide Modified Cellulose-Based Membrane for Sustainable Anionic Pollutant Removal
IS  - InPress
DO  - 10.1007/s10924-024-03192-x
ER  - 
@article{
author = "Abduarahman, Muna Abdualatif and Vuksanović, Marija M. and Milošević, Milena and Egelja, Adela and Savić, Andrija B. and Veličković, Zlate and Marinković, Aleksandar",
year = "2024",
abstract = "This study aimed to investigate the adsorption of As(V), phosphate, and textile dye Acid Green 25 (AG-25) on layered double hydroxides Mn-Fe_LDH and corresponding membranes (wCell/Mn-Fe_LDH). The wCell membrane, derived from waste tobacco boxes, was formed by cross-linking of epoxy and amino modified cellulose fibers with epoxy modified Mn-Fe_LDH and lysine as cross-linker. Structural and morphological analyses were conducted for Mn-Fe_LDH and wCell/Mn-Fe_LDH. The batch system explored pH, contact time, temperature, and initial concentration effects on wCell/Mn-Fe_LDH adsorption efficiency. Adsorption capacities of 82.71, 106.9, and 130.3 mg g−1 were achieved for As(V), phosphate, and AG-25, respectively, indicating effective anionic species removal. Kinetic analysis suggested intraparticle diffusion as the rate-limiting step. Thermodynamic parameters and ionic strength effects indicated a physisorption mechanism for AG-25 and surface complexation for As(V) and phosphate. Biodegradation experiments after five adsorption/desorption cycles revealed the membrane’s decomposition, with phosphate’s strong bonding releasing essential elements valuable for soil fertilization. Effluent wastewater treatment demonstrated low environmental impact through the formation of insoluble As(V) salts and photocatalytic dye degradation.",
journal = "Journal of Polymers and the Environment",
title = "Mn-Fe Layered Double Hydroxide Modified Cellulose-Based Membrane for Sustainable Anionic Pollutant Removal",
number = "InPress",
doi = "10.1007/s10924-024-03192-x"
}
Abduarahman, M. A., Vuksanović, M. M., Milošević, M., Egelja, A., Savić, A. B., Veličković, Z.,& Marinković, A.. (2024). Mn-Fe Layered Double Hydroxide Modified Cellulose-Based Membrane for Sustainable Anionic Pollutant Removal. in Journal of Polymers and the Environment(InPress).
https://doi.org/10.1007/s10924-024-03192-x
Abduarahman MA, Vuksanović MM, Milošević M, Egelja A, Savić AB, Veličković Z, Marinković A. Mn-Fe Layered Double Hydroxide Modified Cellulose-Based Membrane for Sustainable Anionic Pollutant Removal. in Journal of Polymers and the Environment. 2024;(InPress).
doi:10.1007/s10924-024-03192-x .
Abduarahman, Muna Abdualatif, Vuksanović, Marija M., Milošević, Milena, Egelja, Adela, Savić, Andrija B., Veličković, Zlate, Marinković, Aleksandar, "Mn-Fe Layered Double Hydroxide Modified Cellulose-Based Membrane for Sustainable Anionic Pollutant Removal" in Journal of Polymers and the Environment, no. InPress (2024),
https://doi.org/10.1007/s10924-024-03192-x . .