Bakić, Gordana

Link to this page

Authority KeyName Variants
orcid::0000-0003-2171-0063
  • Bakić, Gordana (6)
Projects

Author's Bibliography

Novel basalt-stainless steel composite materials with improved fracture toughness

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Cvijović-Alagić, Ivana; Bučevac, Dušan; Matović, Branko

(2023)

TY  - JOUR
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Cvijović-Alagić, Ivana
AU  - Bučevac, Dušan
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11323
AB  - This paper presents the technological process for obtaining basalt-stainless steel composite materials and testing their physical and mechanical properties. The phases of the technological process consist of: milling, homogenization, pressing, and sintering to obtain composite materials with improved fracture toughness. Andesite basalt from the deposit site "Donje Jarinje", Serbia, was used as a matrix in the composites, while commercial austenitic stainless steel 316L in the amount of 0-30 wt.% was used as a reinforcement. Although the increase of 316L amount caused a continuous decrease in the relative density of sintered samples, the relative density of sample containing 30 wt.% of 316L was above 94%. The 316L grains, which possess a larger coefficient of thermal expansion than the basalt matrix, shrinking faster during cooling from sintering temperature resulting in the formation of compressive residual stress in the basalt matrix surrounding the spherical steel grains. The presence of this stress activated toughening mechanisms such as crack deflection and toughening due to compressive residual stress. The addition of 20 wt.% of reinforcing 316L particles increased the fracture toughness of basalt by more than 30%. The relative density of these samples was measured to be 97%, whereas macrohardness was found to be 6.2 GPa.
T2  - Science of Sintering
T1  - Novel basalt-stainless steel composite materials with improved fracture toughness
VL  - 55
IS  - 2
SP  - 145
EP  - 158
DO  - 10.2298/SOS220429002P
ER  - 
@article{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Cvijović-Alagić, Ivana and Bučevac, Dušan and Matović, Branko",
year = "2023",
abstract = "This paper presents the technological process for obtaining basalt-stainless steel composite materials and testing their physical and mechanical properties. The phases of the technological process consist of: milling, homogenization, pressing, and sintering to obtain composite materials with improved fracture toughness. Andesite basalt from the deposit site "Donje Jarinje", Serbia, was used as a matrix in the composites, while commercial austenitic stainless steel 316L in the amount of 0-30 wt.% was used as a reinforcement. Although the increase of 316L amount caused a continuous decrease in the relative density of sintered samples, the relative density of sample containing 30 wt.% of 316L was above 94%. The 316L grains, which possess a larger coefficient of thermal expansion than the basalt matrix, shrinking faster during cooling from sintering temperature resulting in the formation of compressive residual stress in the basalt matrix surrounding the spherical steel grains. The presence of this stress activated toughening mechanisms such as crack deflection and toughening due to compressive residual stress. The addition of 20 wt.% of reinforcing 316L particles increased the fracture toughness of basalt by more than 30%. The relative density of these samples was measured to be 97%, whereas macrohardness was found to be 6.2 GPa.",
journal = "Science of Sintering",
title = "Novel basalt-stainless steel composite materials with improved fracture toughness",
volume = "55",
number = "2",
pages = "145-158",
doi = "10.2298/SOS220429002P"
}
Pavkov, V., Bakić, G., Maksimović, V., Cvijović-Alagić, I., Bučevac, D.,& Matović, B.. (2023). Novel basalt-stainless steel composite materials with improved fracture toughness. in Science of Sintering, 55(2), 145-158.
https://doi.org/10.2298/SOS220429002P
Pavkov V, Bakić G, Maksimović V, Cvijović-Alagić I, Bučevac D, Matović B. Novel basalt-stainless steel composite materials with improved fracture toughness. in Science of Sintering. 2023;55(2):145-158.
doi:10.2298/SOS220429002P .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Cvijović-Alagić, Ivana, Bučevac, Dušan, Matović, Branko, "Novel basalt-stainless steel composite materials with improved fracture toughness" in Science of Sintering, 55, no. 2 (2023):145-158,
https://doi.org/10.2298/SOS220429002P . .

High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Cvijović-Alagić, Ivana; Prekajski-Đorđević, Marija D.; Bučevac, Dušan; Matović, Branko; Rakin, Marko

(Belgrade : Association of Metallurgical Engineers of Serbia (AMES), 2023)

TY  - CONF
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Cvijović-Alagić, Ivana
AU  - Prekajski-Đorđević, Marija D.
AU  - Bučevac, Dušan
AU  - Matović, Branko
AU  - Rakin, Marko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11345
AB  - In modern industry, there is an increasing demand for environmentally friendly and light structural materials with good physical and mechanical properties, produced from cheap natural raw materials available in large quantities. One of the materials that meet the mentioned criteria is basalt. Basalt is a natural igneous rock of volcanic origin, created by the pouring of magma on the Earth's surface, the amount of which is significant in the territory of Serbia. Since basalt does not exhibit toxic, carcinogenic, or mutagenic effects, it is in the true sense a non-hazardous material and belongs to the group of eco-friendly materials. In this research, andesite basalt aggregate from the "Donje Jarinje" site, in Serbia, was used to obtain high-density glass-ceramic materials. High-density glass-ceramic materials were obtained by powder metallurgy process, which consisted of the following methods: dry grinding, homogenization, cold uniaxial and isostatic powder pressing and sintering in the air. In order to achieve a high-density of the materials, the green compacts were sintered in the temperature range from 1040 to 1080 °C. After confirming that the highest density materials were achieved at the sintering temperature of 1060 °C, the sintering time was optimized in the time interval from 30 to 240 min. After the experimental test, the optimal sintering parameters for obtaining high-density glass-ceramic material at the temperature of 1060 °C for 60 min were achieved, whose relative density is 99.50%, and hardness is 6.70 GPa. The characterization of andesite basalt powder was performed using the laser light diffraction method, scanning electron microscopy and X-ray diffraction method, while the characterization of sintered glass-ceramic materials was performed using the Archimedes method, X-ray diffraction method, optical light microscopy and Vickers hardness test. The results of this research confirmed that by applying powder metallurgy and sintering in the air, high-density glass-ceramic materials could be obtained for various industrial applications in the civil engineering, chemical and food industries, as well as for the making of containers for the storage of nuclear waste. Also, high-density glass-ceramic materials would be suitable for making a matrix in modern composite materials.
PB  - Belgrade : Association of Metallurgical Engineers of Serbia (AMES)
C3  - MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina
T1  - High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy
SP  - 48
EP  - 48
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11345
ER  - 
@conference{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Cvijović-Alagić, Ivana and Prekajski-Đorđević, Marija D. and Bučevac, Dušan and Matović, Branko and Rakin, Marko",
year = "2023",
abstract = "In modern industry, there is an increasing demand for environmentally friendly and light structural materials with good physical and mechanical properties, produced from cheap natural raw materials available in large quantities. One of the materials that meet the mentioned criteria is basalt. Basalt is a natural igneous rock of volcanic origin, created by the pouring of magma on the Earth's surface, the amount of which is significant in the territory of Serbia. Since basalt does not exhibit toxic, carcinogenic, or mutagenic effects, it is in the true sense a non-hazardous material and belongs to the group of eco-friendly materials. In this research, andesite basalt aggregate from the "Donje Jarinje" site, in Serbia, was used to obtain high-density glass-ceramic materials. High-density glass-ceramic materials were obtained by powder metallurgy process, which consisted of the following methods: dry grinding, homogenization, cold uniaxial and isostatic powder pressing and sintering in the air. In order to achieve a high-density of the materials, the green compacts were sintered in the temperature range from 1040 to 1080 °C. After confirming that the highest density materials were achieved at the sintering temperature of 1060 °C, the sintering time was optimized in the time interval from 30 to 240 min. After the experimental test, the optimal sintering parameters for obtaining high-density glass-ceramic material at the temperature of 1060 °C for 60 min were achieved, whose relative density is 99.50%, and hardness is 6.70 GPa. The characterization of andesite basalt powder was performed using the laser light diffraction method, scanning electron microscopy and X-ray diffraction method, while the characterization of sintered glass-ceramic materials was performed using the Archimedes method, X-ray diffraction method, optical light microscopy and Vickers hardness test. The results of this research confirmed that by applying powder metallurgy and sintering in the air, high-density glass-ceramic materials could be obtained for various industrial applications in the civil engineering, chemical and food industries, as well as for the making of containers for the storage of nuclear waste. Also, high-density glass-ceramic materials would be suitable for making a matrix in modern composite materials.",
publisher = "Belgrade : Association of Metallurgical Engineers of Serbia (AMES)",
journal = "MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina",
title = "High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy",
pages = "48-48",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11345"
}
Pavkov, V., Bakić, G., Maksimović, V., Cvijović-Alagić, I., Prekajski-Đorđević, M. D., Bučevac, D., Matović, B.,& Rakin, M.. (2023). High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy. in MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina
Belgrade : Association of Metallurgical Engineers of Serbia (AMES)., 48-48.
https://hdl.handle.net/21.15107/rcub_vinar_11345
Pavkov V, Bakić G, Maksimović V, Cvijović-Alagić I, Prekajski-Đorđević MD, Bučevac D, Matović B, Rakin M. High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy. in MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina. 2023;:48-48.
https://hdl.handle.net/21.15107/rcub_vinar_11345 .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Cvijović-Alagić, Ivana, Prekajski-Đorđević, Marija D., Bučevac, Dušan, Matović, Branko, Rakin, Marko, "High-Density Glass-Ceramic Materials Obtained by Powder Metallurgy" in MME SEE : 5th Metallurgical & Materials Engineering Congress of South-East Europe, June 7-10, 2023; Trebinje, Bosnia and Herzegovina (2023):48-48,
https://hdl.handle.net/21.15107/rcub_vinar_11345 .

Erosion Wear Behavior of High Chromium Cast Irons

Rajičić, Bratislav; Maslarević, Aleksandar; Bakić, Gordana; Maksimović, Vesna; Đukić, Miloš B.

(2023)

TY  - JOUR
AU  - Rajičić, Bratislav
AU  - Maslarević, Aleksandar
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Đukić, Miloš B.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10614
AB  - In this study, two high chromium cast irons (HCCI) with different chromium content (15%Cr and 25%Cr), in as-cast and annealed conditions (heat-treated, HT), were tested to determine the erosion wear behavior of these alloys. Erosion tests were done using a gas blast sand facility with high erodent particle velocity (90 m/s) and high erodent feed rate, at an impact angle of 45°, which represents conditions similar to service conditions of some components of thermal power plants using pulverized high mineral content coals. To identify erosion mechanisms, microstructural characterization was done by a scanning electron microscope on samples before and after erosion tests. Identification of microstructural phases was done by X-ray diffraction analysis. The main results of the tests shown in this paper indicate that matrix plastic deformation and distribution of carbide phase have a significant contribution to erosion resistance of HCCI alloys in severe erosion service conditions.
T2  - Transactions of the Indian Institute of Metals
T1  - Erosion Wear Behavior of High Chromium Cast Irons
DO  - 10.1007/s12666-022-02860-7
ER  - 
@article{
author = "Rajičić, Bratislav and Maslarević, Aleksandar and Bakić, Gordana and Maksimović, Vesna and Đukić, Miloš B.",
year = "2023",
abstract = "In this study, two high chromium cast irons (HCCI) with different chromium content (15%Cr and 25%Cr), in as-cast and annealed conditions (heat-treated, HT), were tested to determine the erosion wear behavior of these alloys. Erosion tests were done using a gas blast sand facility with high erodent particle velocity (90 m/s) and high erodent feed rate, at an impact angle of 45°, which represents conditions similar to service conditions of some components of thermal power plants using pulverized high mineral content coals. To identify erosion mechanisms, microstructural characterization was done by a scanning electron microscope on samples before and after erosion tests. Identification of microstructural phases was done by X-ray diffraction analysis. The main results of the tests shown in this paper indicate that matrix plastic deformation and distribution of carbide phase have a significant contribution to erosion resistance of HCCI alloys in severe erosion service conditions.",
journal = "Transactions of the Indian Institute of Metals",
title = "Erosion Wear Behavior of High Chromium Cast Irons",
doi = "10.1007/s12666-022-02860-7"
}
Rajičić, B., Maslarević, A., Bakić, G., Maksimović, V.,& Đukić, M. B.. (2023). Erosion Wear Behavior of High Chromium Cast Irons. in Transactions of the Indian Institute of Metals.
https://doi.org/10.1007/s12666-022-02860-7
Rajičić B, Maslarević A, Bakić G, Maksimović V, Đukić MB. Erosion Wear Behavior of High Chromium Cast Irons. in Transactions of the Indian Institute of Metals. 2023;.
doi:10.1007/s12666-022-02860-7 .
Rajičić, Bratislav, Maslarević, Aleksandar, Bakić, Gordana, Maksimović, Vesna, Đukić, Miloš B., "Erosion Wear Behavior of High Chromium Cast Irons" in Transactions of the Indian Institute of Metals (2023),
https://doi.org/10.1007/s12666-022-02860-7 . .
1
1

High-density ceramics obtained by andesite basalt sintering

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Cvijović-Alagić, Ivana; Prekajski-Đorđević, Marija D.; Bučevac, Dušan; Matović, Branko

(2022)

TY  - JOUR
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Cvijović-Alagić, Ivana
AU  - Prekajski-Đorđević, Marija D.
AU  - Bučevac, Dušan
AU  - Matović, Branko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10384
AB  - In the present study, andesite basalt originated from the deposit site “Donje Jarinje”, Serbia, was examined as a potential raw material for high-density ceramics production. The production of high-density ceramics included dry milling, homogenization, cold isostatic pressing and sintering in the air. To determine the optimal processing parameters the sintering was conducted at 1040, 1050, 1060, 1070 and 1080°C, and afterwards the sintering duration was varied from 30 to 240min at the optimal sintering temperature of 1060°C. Characterization of the starting and sintered materials included the estimation of particle size distribution, density, hardness and fracture toughness complemented with X-ray diffraction, optical light microscopy, scanning electron microscopy and energy dispersive spectroscopy analysis. Phase transformations did not occur during processing in the investigated temperature range from 1040 to 1080°C. The obtained research results showed that 99.5% of relative density and the highest hardness and fracture toughness values of 6.7GPa and 2.2MPa•m1/2, respectively, were achieved for the andesite basalt sintered at 1060°C for 60min in the air. The results of the present study confirmed that the sintered andesite basalt can be used as a high-density ceramic material for various industrial applications.
T2  - Processing and Application of Ceramics
T1  - High-density ceramics obtained by andesite basalt sintering
VL  - 16
IS  - 2
SP  - 143
EP  - 152
DO  - 10.2298/PAC2202143P
ER  - 
@article{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Cvijović-Alagić, Ivana and Prekajski-Đorđević, Marija D. and Bučevac, Dušan and Matović, Branko",
year = "2022",
abstract = "In the present study, andesite basalt originated from the deposit site “Donje Jarinje”, Serbia, was examined as a potential raw material for high-density ceramics production. The production of high-density ceramics included dry milling, homogenization, cold isostatic pressing and sintering in the air. To determine the optimal processing parameters the sintering was conducted at 1040, 1050, 1060, 1070 and 1080°C, and afterwards the sintering duration was varied from 30 to 240min at the optimal sintering temperature of 1060°C. Characterization of the starting and sintered materials included the estimation of particle size distribution, density, hardness and fracture toughness complemented with X-ray diffraction, optical light microscopy, scanning electron microscopy and energy dispersive spectroscopy analysis. Phase transformations did not occur during processing in the investigated temperature range from 1040 to 1080°C. The obtained research results showed that 99.5% of relative density and the highest hardness and fracture toughness values of 6.7GPa and 2.2MPa•m1/2, respectively, were achieved for the andesite basalt sintered at 1060°C for 60min in the air. The results of the present study confirmed that the sintered andesite basalt can be used as a high-density ceramic material for various industrial applications.",
journal = "Processing and Application of Ceramics",
title = "High-density ceramics obtained by andesite basalt sintering",
volume = "16",
number = "2",
pages = "143-152",
doi = "10.2298/PAC2202143P"
}
Pavkov, V., Bakić, G., Maksimović, V., Cvijović-Alagić, I., Prekajski-Đorđević, M. D., Bučevac, D.,& Matović, B.. (2022). High-density ceramics obtained by andesite basalt sintering. in Processing and Application of Ceramics, 16(2), 143-152.
https://doi.org/10.2298/PAC2202143P
Pavkov V, Bakić G, Maksimović V, Cvijović-Alagić I, Prekajski-Đorđević MD, Bučevac D, Matović B. High-density ceramics obtained by andesite basalt sintering. in Processing and Application of Ceramics. 2022;16(2):143-152.
doi:10.2298/PAC2202143P .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Cvijović-Alagić, Ivana, Prekajski-Đorđević, Marija D., Bučevac, Dušan, Matović, Branko, "High-density ceramics obtained by andesite basalt sintering" in Processing and Application of Ceramics, 16, no. 2 (2022):143-152,
https://doi.org/10.2298/PAC2202143P . .
2
2

Physical and mechanical properties of glass-ceramic-metal composite materials after sintering

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Cvijović-Alagić, Ivana; Matović, Branko

(Beograd : Serbian Society of Corrosion and Materials Protection UISKOZAM = Udruženje inženjera Srbije za koroziju i zaštitu materijala UISKOZAM, 2022)

TY  - CONF
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Cvijović-Alagić, Ivana
AU  - Matović, Branko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11336
AB  - The aim of this paper is to examine the physical and mechanical properties of glass-ceramic-metal composite materials obtained by sintering. Andesite basalt rock from Serbia was used as the starting material for obtaining the glass-ceramic matrix. Commercial powder of austenitic stainless steel 316L in the content of 10, 20, and 30 wt. % was used as the reinforcement. The technological process for obtaining glass-ceramic-metal composite materials consists of the following phases: crushing of andesite basalt rock to obtain the fine powder, homogenization of andesite basalt powder and 316L stainless steel powder with a binder, uniaxial pressing of powders with the pressure of 50 MPa, cold isostatic pressing green compacts with the pressure of 230 MPa, and sintering at 1060 °C/1h in the air. Based on the obtained experimental results, it could be concluded that the relative density of the sintered composite materials decreases with the increasing content of 316L steel in the glass-ceramic matrix. Also, there is a hardness decrease of the composite materials with increased content of 316L steel, which is expected due to the reduction in the relative density. However, the fracture toughness increases with increasing 316L steel content in the composite materials. The presence of a metal reinforcer in the glass-ceramic matrix contributed to the increase of fracture toughness of composite materials and thus the prevention of the catastrophic fracture common in glass-ceramic
AB  - Cilj ovog rada je ispitivanje fizičko-mehaničkih svojstava kompozitnih materijala staklo-keramikametal dobijenih sinterovanjem. Kao polazni materijal za dobijanje staklo-keramičke matrice korišćena je andezit bazaltna stena iz Srbije, dok je kao ojačivač korišćen prah komercijalnog austenitnog nerđajućeg čelika 316L sadržaja 10, 20 i 30 tež. %. Tehnološki proces dobijanja kompozitnih materijala staklo-keramika-metal sastoji se iz sledećih faza: drobljenja andezit bazaltne stene u cilju dobijanja finog praha, homogenizacije andezit bazaltnog praha i praha nerđajućeg čelika 316L sa vezivom, jednoosnog presovanja pritiskom od 50 MPa, hladnog izostatičkog presovanja pritiskom od 230 MPa i sinterovanja na 1060 °C/1h u vazduhu. Na osnovu dobijenih eksperimentalnih rezultata može se zaključiti da se relativna gustina sinterovanih kompozitnih materijala smanjuje sa povećanjem sadržaja čelika 316L u staklo-keramičkoj matrici. Takođe, dolazi do smanjenja tvrdoće kompozitnih materijala sa povećanjem sadržaja čelika 316L u kompozitu, zbog smanjenja relativne gustine. Sa povećanjem sadržaja čelika 316L u kompozitnom materijalu žilavost loma se povećava. Prisustvo metalnog ojačivača u staklo-keramičkoj matrici doprinelo je povećanju žilavosti loma kompozitnih materijala i prevenciji loma koji je uobičajen u staklo-keramici.
PB  - Beograd : Serbian Society of Corrosion and Materials Protection UISKOZAM = Udruženje inženjera Srbije za koroziju i zaštitu materijala UISKOZAM
C3  - XXIII YuCorr International Conference : Proceedings
T1  - Physical and mechanical properties of glass-ceramic-metal composite materials after sintering
T1  - Fizička i mehanička svojstva staklo-keramika-metal kompozitnih materijala nakon sinterovanja
SP  - 149
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11336
ER  - 
@conference{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Cvijović-Alagić, Ivana and Matović, Branko",
year = "2022",
abstract = "The aim of this paper is to examine the physical and mechanical properties of glass-ceramic-metal composite materials obtained by sintering. Andesite basalt rock from Serbia was used as the starting material for obtaining the glass-ceramic matrix. Commercial powder of austenitic stainless steel 316L in the content of 10, 20, and 30 wt. % was used as the reinforcement. The technological process for obtaining glass-ceramic-metal composite materials consists of the following phases: crushing of andesite basalt rock to obtain the fine powder, homogenization of andesite basalt powder and 316L stainless steel powder with a binder, uniaxial pressing of powders with the pressure of 50 MPa, cold isostatic pressing green compacts with the pressure of 230 MPa, and sintering at 1060 °C/1h in the air. Based on the obtained experimental results, it could be concluded that the relative density of the sintered composite materials decreases with the increasing content of 316L steel in the glass-ceramic matrix. Also, there is a hardness decrease of the composite materials with increased content of 316L steel, which is expected due to the reduction in the relative density. However, the fracture toughness increases with increasing 316L steel content in the composite materials. The presence of a metal reinforcer in the glass-ceramic matrix contributed to the increase of fracture toughness of composite materials and thus the prevention of the catastrophic fracture common in glass-ceramic, Cilj ovog rada je ispitivanje fizičko-mehaničkih svojstava kompozitnih materijala staklo-keramikametal dobijenih sinterovanjem. Kao polazni materijal za dobijanje staklo-keramičke matrice korišćena je andezit bazaltna stena iz Srbije, dok je kao ojačivač korišćen prah komercijalnog austenitnog nerđajućeg čelika 316L sadržaja 10, 20 i 30 tež. %. Tehnološki proces dobijanja kompozitnih materijala staklo-keramika-metal sastoji se iz sledećih faza: drobljenja andezit bazaltne stene u cilju dobijanja finog praha, homogenizacije andezit bazaltnog praha i praha nerđajućeg čelika 316L sa vezivom, jednoosnog presovanja pritiskom od 50 MPa, hladnog izostatičkog presovanja pritiskom od 230 MPa i sinterovanja na 1060 °C/1h u vazduhu. Na osnovu dobijenih eksperimentalnih rezultata može se zaključiti da se relativna gustina sinterovanih kompozitnih materijala smanjuje sa povećanjem sadržaja čelika 316L u staklo-keramičkoj matrici. Takođe, dolazi do smanjenja tvrdoće kompozitnih materijala sa povećanjem sadržaja čelika 316L u kompozitu, zbog smanjenja relativne gustine. Sa povećanjem sadržaja čelika 316L u kompozitnom materijalu žilavost loma se povećava. Prisustvo metalnog ojačivača u staklo-keramičkoj matrici doprinelo je povećanju žilavosti loma kompozitnih materijala i prevenciji loma koji je uobičajen u staklo-keramici.",
publisher = "Beograd : Serbian Society of Corrosion and Materials Protection UISKOZAM = Udruženje inženjera Srbije za koroziju i zaštitu materijala UISKOZAM",
journal = "XXIII YuCorr International Conference : Proceedings",
title = "Physical and mechanical properties of glass-ceramic-metal composite materials after sintering, Fizička i mehanička svojstva staklo-keramika-metal kompozitnih materijala nakon sinterovanja",
pages = "149",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11336"
}
Pavkov, V., Bakić, G., Maksimović, V., Cvijović-Alagić, I.,& Matović, B.. (2022). Physical and mechanical properties of glass-ceramic-metal composite materials after sintering. in XXIII YuCorr International Conference : Proceedings
Beograd : Serbian Society of Corrosion and Materials Protection UISKOZAM = Udruženje inženjera Srbije za koroziju i zaštitu materijala UISKOZAM., 149.
https://hdl.handle.net/21.15107/rcub_vinar_11336
Pavkov V, Bakić G, Maksimović V, Cvijović-Alagić I, Matović B. Physical and mechanical properties of glass-ceramic-metal composite materials after sintering. in XXIII YuCorr International Conference : Proceedings. 2022;:149.
https://hdl.handle.net/21.15107/rcub_vinar_11336 .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Cvijović-Alagić, Ivana, Matović, Branko, "Physical and mechanical properties of glass-ceramic-metal composite materials after sintering" in XXIII YuCorr International Conference : Proceedings (2022):149,
https://hdl.handle.net/21.15107/rcub_vinar_11336 .

Postupak izrade elemenata podnih obloga za unutrašnje i spoljašnje popločavanje i element podne obloge

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Luković, Jelena M.; Matović, Branko

(2022)

TY  - PAT
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Luković, Jelena M.
AU  - Matović, Branko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11251
AB  - Postupak izrade elemenata podnih obloga za unutrašnje i spoljašnje popločavanje i element podne obloge, pripada oblasti hemije, obrade materijala i građevinarstva, u širem smislu, a odnosi se na završne radove i oblikovane keramičke proizvode karakteristične po svom sastavu i svojstvima u užem smislu. Uz pravilnu tehnološku proceduru, koju čine: mlevenje, mešanje, presovanje i sinterovanje materijala, nastaje element (5) željenih mehaničkih svojstava, koj može biti u obliku cigle ili ploče različitih geometrijskih oblika u osnovi. Za izradu elemenata (5) koristi se mleveni bazaltni prah (2.2) u koji se kao vezivno sredstvo dodaje paraplast, čijim mešanjem se dobije smeša (S). Radi poboljšanja mehaničkih svojstava elemenata (5), u smešu (S) se dodaju čelična vlakna (2.1) kako bi se formirala mešavina (M). Element (5) se sastoji od jezgra (J), koje je izrađeno od mešavine smeše (S) i čeličnih vlakana (2.1) i omotača (4) koji je izrađen od smeše (S) koju čini bazaltni prah (2.2) i paraplast. Element (5) se potom može brusiti i polirati u cilju dobijanja željenih tolerancija i kvaliteta površine za finalnu industrijsku primenu.
T2  - Zavod za intelektualnu svojinu Republike Srbije
T1  - Postupak izrade elemenata podnih obloga za unutrašnje i spoljašnje popločavanje i element podne obloge
T1  - The Process of Making Flooring Elements for Interior and Exterior Paving and a Flooring Element
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11251
ER  - 
@misc{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Luković, Jelena M. and Matović, Branko",
year = "2022",
abstract = "Postupak izrade elemenata podnih obloga za unutrašnje i spoljašnje popločavanje i element podne obloge, pripada oblasti hemije, obrade materijala i građevinarstva, u širem smislu, a odnosi se na završne radove i oblikovane keramičke proizvode karakteristične po svom sastavu i svojstvima u užem smislu. Uz pravilnu tehnološku proceduru, koju čine: mlevenje, mešanje, presovanje i sinterovanje materijala, nastaje element (5) željenih mehaničkih svojstava, koj može biti u obliku cigle ili ploče različitih geometrijskih oblika u osnovi. Za izradu elemenata (5) koristi se mleveni bazaltni prah (2.2) u koji se kao vezivno sredstvo dodaje paraplast, čijim mešanjem se dobije smeša (S). Radi poboljšanja mehaničkih svojstava elemenata (5), u smešu (S) se dodaju čelična vlakna (2.1) kako bi se formirala mešavina (M). Element (5) se sastoji od jezgra (J), koje je izrađeno od mešavine smeše (S) i čeličnih vlakana (2.1) i omotača (4) koji je izrađen od smeše (S) koju čini bazaltni prah (2.2) i paraplast. Element (5) se potom može brusiti i polirati u cilju dobijanja željenih tolerancija i kvaliteta površine za finalnu industrijsku primenu.",
journal = "Zavod za intelektualnu svojinu Republike Srbije",
title = "Postupak izrade elemenata podnih obloga za unutrašnje i spoljašnje popločavanje i element podne obloge, The Process of Making Flooring Elements for Interior and Exterior Paving and a Flooring Element",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11251"
}
Pavkov, V., Bakić, G., Maksimović, V., Luković, J. M.,& Matović, B.. (2022). Postupak izrade elemenata podnih obloga za unutrašnje i spoljašnje popločavanje i element podne obloge. in Zavod za intelektualnu svojinu Republike Srbije.
https://hdl.handle.net/21.15107/rcub_vinar_11251
Pavkov V, Bakić G, Maksimović V, Luković JM, Matović B. Postupak izrade elemenata podnih obloga za unutrašnje i spoljašnje popločavanje i element podne obloge. in Zavod za intelektualnu svojinu Republike Srbije. 2022;.
https://hdl.handle.net/21.15107/rcub_vinar_11251 .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Luković, Jelena M., Matović, Branko, "Postupak izrade elemenata podnih obloga za unutrašnje i spoljašnje popločavanje i element podne obloge" in Zavod za intelektualnu svojinu Republike Srbije (2022),
https://hdl.handle.net/21.15107/rcub_vinar_11251 .