Kovačević, Aleksandra

Link to this page

Authority KeyName Variants
a31074fe-50be-4f39-a9be-4e7635a509ae
  • Kovačević, Aleksandra (1)
Projects

Author's Bibliography

The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan

Knežević, Sara; Ostojić, Jelena; Ognjanović, Miloš; Savić, Slađana; Kovačević, Aleksandra; Manojlović, Dragan; Stanković, Vesna; Stanković, Dalibor M.

(2023)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ostojić, Jelena
AU  - Ognjanović, Miloš
AU  - Savić, Slađana
AU  - Kovačević, Aleksandra
AU  - Manojlović, Dragan
AU  - Stanković, Vesna
AU  - Stanković, Dalibor M.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10468
AB  - Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants. This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis. © 2022 Elsevier B.V.
T2  - Science of the Total Environment
T1  - The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan
VL  - 857
DO  - 10.1016/j.scitotenv.2022.159250
ER  - 
@article{
author = "Knežević, Sara and Ostojić, Jelena and Ognjanović, Miloš and Savić, Slađana and Kovačević, Aleksandra and Manojlović, Dragan and Stanković, Vesna and Stanković, Dalibor M.",
year = "2023",
abstract = "Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants. This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 μM to 10 μM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 μM to 7 μM, LOD of 0.09 μM and LOQ of 0.28 μM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis. © 2022 Elsevier B.V.",
journal = "Science of the Total Environment",
title = "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan",
volume = "857",
doi = "10.1016/j.scitotenv.2022.159250"
}
Knežević, S., Ostojić, J., Ognjanović, M., Savić, S., Kovačević, A., Manojlović, D., Stanković, V.,& Stanković, D. M.. (2023). The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of the Total Environment, 857.
https://doi.org/10.1016/j.scitotenv.2022.159250
Knežević S, Ostojić J, Ognjanović M, Savić S, Kovačević A, Manojlović D, Stanković V, Stanković DM. The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan. in Science of the Total Environment. 2023;857.
doi:10.1016/j.scitotenv.2022.159250 .
Knežević, Sara, Ostojić, Jelena, Ognjanović, Miloš, Savić, Slađana, Kovačević, Aleksandra, Manojlović, Dragan, Stanković, Vesna, Stanković, Dalibor M., "The environmentally friendly approaches based on the heterojunction interface of the LaFeO3/Fe2O3@g-C3N4 composite for the disposable and laboratory sensing of triclosan" in Science of the Total Environment, 857 (2023),
https://doi.org/10.1016/j.scitotenv.2022.159250 . .
7
8