Rakin, Marko

Link to this page

Authority KeyName Variants
orcid::0000-0002-3965-0380
  • Rakin, Marko (6)
Projects

Author's Bibliography

Laser-modified Ti-45Nb alloy’s response to bio-environment

Cvijović-Alagić, Ivana; Laketić, Slađana; Momčilović, M.; Ciganović, Jovan; Veljović, Đorđe; Bajat, Jelena; Kojić, Vesna; Rakin, Marko

(Slovak Republic : Institute of Inorganic Chemistry, SAS, 2023)

TY  - CONF
AU  - Cvijović-Alagić, Ivana
AU  - Laketić, Slađana
AU  - Momčilović, M.
AU  - Ciganović, Jovan
AU  - Veljović, Đorđe
AU  - Bajat, Jelena
AU  - Kojić, Vesna
AU  - Rakin, Marko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11343
AB  - Modern hard tissue replacements, used in orthopedic and dental surgery, are most commonly produced using commercially pure titanium (CP-Ti) and the (α+β) Ti-based alloys since their biomechanical compatibility is superior in comparison to other metallic biomaterials. However, these materials are still unable to meet all implantation requirements primarily due to their somewhat limited resistance to degradation in harsh bio-environment and/or presence of cytotoxic elements in their composition that can cause adverse health effects. Therefore, the potential biomedical application of the β-type Ti alloys, which contain non-toxic elements, is considered since these alloys can exhibit lower elastic modulus and improved biocompatibility compared with other Ti-based materials. The β-type Ti-45Nb (wt%) alloy shows significant potential for application as hard tissue implant material. Nevertheless, an additional improvement of its response in the bio-environment is necessary to maximize its medical applicability. Modification of the alloy’s microstructural and surface characteristics through the careful selection of the appropriate processing parameters can ensure the obtainment of favorable alloy biocompatible properties. High-pressure torsion (HPT), as a processing method for the obtainment of ultra-fine grained (UFG) microstructure with higher compatibility with biological systems, and laser surface scanning, as an easy-to-apply surface modification technique for the obtainment of developed bio-active surface, are singled-out as potential methods for the attainment of more durable orthopedic and dental implants. Having all this in mind, the present research aimed to attain improved corrosive and biocompatible response of the Ti-45Nb alloy in simulated physiological conditions through the alloy grain refinement and the formation of protective surface scales by the alloy combined HPT and laser irradiation processing. For that purpose, the alloy microstructural, electrochemical, and in vitro testing were conducted before and after its additional processing. Attained results indicated that the achieved grain size reduction from 2.76 µm to ~200 nm during HPT processing and the appearance of laser-induced morphologically altered and highly oxidized surface led to the significant improvement of the alloy corrosion resistance and the cellsimplant interaction. Moreover, an additional increase of the laser pulse energy from 5 mJ to 15 mJ during the alloy irradiation in air led to an increase in oxygen content at the alloy surface from 13.64% to 23.89% accompanied by an increase of cell viability from excellent 127.18% to superior 134.42%. Furthermore, as a result of the controlled alloy microstructural and surface morphological and chemical modifications, the formation of a thick, compact and protective bi-modal external scale, composed of mixed Ti- and Nboxides, was enabled in the simulated body conditions. Presence of this surface oxide scale, which consists of inner barrier and outer porous layer, enhanced the alloy’s resistance to corrosion deterioration and simultaneously boosted the cell viability and proliferation. Results of the present study showed that the additional HPT and laser surface processing can be successfully utilized to improve the biometallic’s response to a bio-environment
PB  - Slovak Republic : Institute of Inorganic Chemistry, SAS
C3  - EngCer 2023 : The Advanced Research Workshop: Engineering Ceramics
T1  - Laser-modified Ti-45Nb alloy’s response to bio-environment
SP  - 12
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11343
ER  - 
@conference{
author = "Cvijović-Alagić, Ivana and Laketić, Slađana and Momčilović, M. and Ciganović, Jovan and Veljović, Đorđe and Bajat, Jelena and Kojić, Vesna and Rakin, Marko",
year = "2023",
abstract = "Modern hard tissue replacements, used in orthopedic and dental surgery, are most commonly produced using commercially pure titanium (CP-Ti) and the (α+β) Ti-based alloys since their biomechanical compatibility is superior in comparison to other metallic biomaterials. However, these materials are still unable to meet all implantation requirements primarily due to their somewhat limited resistance to degradation in harsh bio-environment and/or presence of cytotoxic elements in their composition that can cause adverse health effects. Therefore, the potential biomedical application of the β-type Ti alloys, which contain non-toxic elements, is considered since these alloys can exhibit lower elastic modulus and improved biocompatibility compared with other Ti-based materials. The β-type Ti-45Nb (wt%) alloy shows significant potential for application as hard tissue implant material. Nevertheless, an additional improvement of its response in the bio-environment is necessary to maximize its medical applicability. Modification of the alloy’s microstructural and surface characteristics through the careful selection of the appropriate processing parameters can ensure the obtainment of favorable alloy biocompatible properties. High-pressure torsion (HPT), as a processing method for the obtainment of ultra-fine grained (UFG) microstructure with higher compatibility with biological systems, and laser surface scanning, as an easy-to-apply surface modification technique for the obtainment of developed bio-active surface, are singled-out as potential methods for the attainment of more durable orthopedic and dental implants. Having all this in mind, the present research aimed to attain improved corrosive and biocompatible response of the Ti-45Nb alloy in simulated physiological conditions through the alloy grain refinement and the formation of protective surface scales by the alloy combined HPT and laser irradiation processing. For that purpose, the alloy microstructural, electrochemical, and in vitro testing were conducted before and after its additional processing. Attained results indicated that the achieved grain size reduction from 2.76 µm to ~200 nm during HPT processing and the appearance of laser-induced morphologically altered and highly oxidized surface led to the significant improvement of the alloy corrosion resistance and the cellsimplant interaction. Moreover, an additional increase of the laser pulse energy from 5 mJ to 15 mJ during the alloy irradiation in air led to an increase in oxygen content at the alloy surface from 13.64% to 23.89% accompanied by an increase of cell viability from excellent 127.18% to superior 134.42%. Furthermore, as a result of the controlled alloy microstructural and surface morphological and chemical modifications, the formation of a thick, compact and protective bi-modal external scale, composed of mixed Ti- and Nboxides, was enabled in the simulated body conditions. Presence of this surface oxide scale, which consists of inner barrier and outer porous layer, enhanced the alloy’s resistance to corrosion deterioration and simultaneously boosted the cell viability and proliferation. Results of the present study showed that the additional HPT and laser surface processing can be successfully utilized to improve the biometallic’s response to a bio-environment",
publisher = "Slovak Republic : Institute of Inorganic Chemistry, SAS",
journal = "EngCer 2023 : The Advanced Research Workshop: Engineering Ceramics",
title = "Laser-modified Ti-45Nb alloy’s response to bio-environment",
pages = "12",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11343"
}
Cvijović-Alagić, I., Laketić, S., Momčilović, M., Ciganović, J., Veljović, Đ., Bajat, J., Kojić, V.,& Rakin, M.. (2023). Laser-modified Ti-45Nb alloy’s response to bio-environment. in EngCer 2023 : The Advanced Research Workshop: Engineering Ceramics
Slovak Republic : Institute of Inorganic Chemistry, SAS., 12.
https://hdl.handle.net/21.15107/rcub_vinar_11343
Cvijović-Alagić I, Laketić S, Momčilović M, Ciganović J, Veljović Đ, Bajat J, Kojić V, Rakin M. Laser-modified Ti-45Nb alloy’s response to bio-environment. in EngCer 2023 : The Advanced Research Workshop: Engineering Ceramics. 2023;:12.
https://hdl.handle.net/21.15107/rcub_vinar_11343 .
Cvijović-Alagić, Ivana, Laketić, Slađana, Momčilović, M., Ciganović, Jovan, Veljović, Đorđe, Bajat, Jelena, Kojić, Vesna, Rakin, Marko, "Laser-modified Ti-45Nb alloy’s response to bio-environment" in EngCer 2023 : The Advanced Research Workshop: Engineering Ceramics (2023):12,
https://hdl.handle.net/21.15107/rcub_vinar_11343 .

Microstructure, hardness and fracture resistance of P235TR1 seam steel pipes of different diameters

Musrati, Walid; Međo, Bojan; Cvijović-Alagić, Ivana; Gubeljak, Nenad; Štefane, Primož; Radosavljević, Zoran; Rakin, Marko

(2023)

TY  - JOUR
AU  - Musrati, Walid
AU  - Međo, Bojan
AU  - Cvijović-Alagić, Ivana
AU  - Gubeljak, Nenad
AU  - Štefane, Primož
AU  - Radosavljević, Zoran
AU  - Rakin, Marko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11325
AB  - Steel pipelines in industrial plants consist of different elements, including seamless and/or welded (seam) pipes. Properties of welded pipes, including their fracture behaviour, depend on the characteristics of both, the base metal, and the weld metal. In this work, two seam pipes are considered having different diameters and manufactured of P235TR1 steel. Hardness and microstructure were examined on the samples which contained the seam zone, to capture the influence of heterogeneity. Fracture resistance of the pipeline material, i.e. of both base metals and both seams, was determined by experimental examination of the recently proposed Pipe ring notch bending specimens with sharp stress concentrators. Differences between the two tested pipes, including the influence of the heterogeneity caused by the welded joint, were determined by comparison of the crack growth resistance curves. Effects of the initial stress concentrator shape, sharp machined notch or fatigue pre-crack are discussed.
AB  - Čelični cevovodi u industrijskim postrojenjima se sastoje od različitih elemenata, uključujući bešavne i/ili zavarene (šavne) cevi. Osobine šavnih cevi, uključujući ponašanje materijala cevi pri lomu, zavise i od osnovnog metala i od metala šava. U ovom radu razmatrane su dve šavne cevi različitih prečnika, izrađene od čelika P235TR1. Tvrdoća i mikrostruktura su analizirane na uzorcima isečenim iz cevi u zoni šava, da bi se odredio uticaj heterogenosti. Otpornost prema lomu materijala cevovoda, tj. oba osnovna metala i oba šava, je određena na osnovu ispitivanja epruveta oblika prstena sa oštrim koncentratorima napona, predloženih u prethodnim studijama. Poređenjem krivih otpornosti prema rastu prsline određene su razlike između dve ispitivane cevi, kao i uticaj heterogenosti izazvan postojanjem zavarenog spoja. Razmotren je uticaj oblika početnog koncentratora napona, oštrog žleba odnosno zamorne početne prsline.
T2  - Hemijska industrija
T1  - Microstructure, hardness and fracture resistance of P235TR1 seam steel pipes of different diameters
T1  - Otpornost prema lomu, tvrdoća i mikrostruktura šavnih cevi različitog prečnika izrađenih od čelika P235TR1
VL  - 77
IS  - 2
SP  - 155
EP  - 165
DO  - 10.2298/HEMIND230222016M
ER  - 
@article{
author = "Musrati, Walid and Međo, Bojan and Cvijović-Alagić, Ivana and Gubeljak, Nenad and Štefane, Primož and Radosavljević, Zoran and Rakin, Marko",
year = "2023",
abstract = "Steel pipelines in industrial plants consist of different elements, including seamless and/or welded (seam) pipes. Properties of welded pipes, including their fracture behaviour, depend on the characteristics of both, the base metal, and the weld metal. In this work, two seam pipes are considered having different diameters and manufactured of P235TR1 steel. Hardness and microstructure were examined on the samples which contained the seam zone, to capture the influence of heterogeneity. Fracture resistance of the pipeline material, i.e. of both base metals and both seams, was determined by experimental examination of the recently proposed Pipe ring notch bending specimens with sharp stress concentrators. Differences between the two tested pipes, including the influence of the heterogeneity caused by the welded joint, were determined by comparison of the crack growth resistance curves. Effects of the initial stress concentrator shape, sharp machined notch or fatigue pre-crack are discussed., Čelični cevovodi u industrijskim postrojenjima se sastoje od različitih elemenata, uključujući bešavne i/ili zavarene (šavne) cevi. Osobine šavnih cevi, uključujući ponašanje materijala cevi pri lomu, zavise i od osnovnog metala i od metala šava. U ovom radu razmatrane su dve šavne cevi različitih prečnika, izrađene od čelika P235TR1. Tvrdoća i mikrostruktura su analizirane na uzorcima isečenim iz cevi u zoni šava, da bi se odredio uticaj heterogenosti. Otpornost prema lomu materijala cevovoda, tj. oba osnovna metala i oba šava, je određena na osnovu ispitivanja epruveta oblika prstena sa oštrim koncentratorima napona, predloženih u prethodnim studijama. Poređenjem krivih otpornosti prema rastu prsline određene su razlike između dve ispitivane cevi, kao i uticaj heterogenosti izazvan postojanjem zavarenog spoja. Razmotren je uticaj oblika početnog koncentratora napona, oštrog žleba odnosno zamorne početne prsline.",
journal = "Hemijska industrija",
title = "Microstructure, hardness and fracture resistance of P235TR1 seam steel pipes of different diameters, Otpornost prema lomu, tvrdoća i mikrostruktura šavnih cevi različitog prečnika izrađenih od čelika P235TR1",
volume = "77",
number = "2",
pages = "155-165",
doi = "10.2298/HEMIND230222016M"
}
Musrati, W., Međo, B., Cvijović-Alagić, I., Gubeljak, N., Štefane, P., Radosavljević, Z.,& Rakin, M.. (2023). Microstructure, hardness and fracture resistance of P235TR1 seam steel pipes of different diameters. in Hemijska industrija, 77(2), 155-165.
https://doi.org/10.2298/HEMIND230222016M
Musrati W, Međo B, Cvijović-Alagić I, Gubeljak N, Štefane P, Radosavljević Z, Rakin M. Microstructure, hardness and fracture resistance of P235TR1 seam steel pipes of different diameters. in Hemijska industrija. 2023;77(2):155-165.
doi:10.2298/HEMIND230222016M .
Musrati, Walid, Međo, Bojan, Cvijović-Alagić, Ivana, Gubeljak, Nenad, Štefane, Primož, Radosavljević, Zoran, Rakin, Marko, "Microstructure, hardness and fracture resistance of P235TR1 seam steel pipes of different diameters" in Hemijska industrija, 77, no. 2 (2023):155-165,
https://doi.org/10.2298/HEMIND230222016M . .

Laser-induced chemical and mophological changes of the titanium alloy surface under different irradiation parameters

Laketić, Slađana; Rakin, Marko; Momčilović, Miloš; Ciganović, Jovan; Veljović, Đorđe; Cvijović-Alagić, Ivana

(Belgrade : Materials Research Society of Serbia – MRS-Serbia, 2022)

TY  - CONF
AU  - Laketić, Slađana
AU  - Rakin, Marko
AU  - Momčilović, Miloš
AU  - Ciganović, Jovan
AU  - Veljović, Đorđe
AU  - Cvijović-Alagić, Ivana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11328
AB  - Titanium alloys are finding increasing use as biomaterials due to their low elastic modulus and high damage tolerance. However, the somewhat inadequate alloy surface performance can impede their biomedical application. Surface modification methods have been therefore developed to improve the alloys' surface bioactivity and osseointegration. Laser treatment allows the alloy surface to be modified, providing it with new functionalized surface chemistry and morphology, without compromising the rest of the material properties. Thus, the aim of the study was to examine the laser-induced alterations generated on the Ti-45Nb alloy surface by an ultrashort pulsed laser. The obtained results reveal that laser beam interaction with the target material led to the formation of significant alterations in surface morphology. Surface craters, microcracks, and surface features in the form of periodic and rippled structures and solidified droplets can be observed in the irradiated area. Also, it was found that the higher damage degree along with the material depth and the higher surface roughness were achieved during the irradiation in the argon atmosphere due to the formation of the more pronounced morphological changes on the alloy surface that are induced by higher laser ablation. Furthermore, obtained results showed that alloy surface modification in air, argon, and nitrogen atmosphere additionally caused changes in the surface chemical composition. Namely, after irradiation, the presence of oxygen was observed in the central irradiated area indicating the formation of bioactive Ti-oxide surface film with content that varies with the irradiation parameters variation. Therefore, laser beam irradiation can be singled out as the surface modification method for efficient inducement of the specific surface characteristics that can provide titanium alloys with enhanced osseointegration properties.
PB  - Belgrade : Materials Research Society of Serbia – MRS-Serbia
C3  - 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts
T1  - Laser-induced chemical and mophological changes of the titanium alloy surface under different irradiation parameters
VL  - XLV
SP  - 92
EP  - 92
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11328
ER  - 
@conference{
author = "Laketić, Slađana and Rakin, Marko and Momčilović, Miloš and Ciganović, Jovan and Veljović, Đorđe and Cvijović-Alagić, Ivana",
year = "2022",
abstract = "Titanium alloys are finding increasing use as biomaterials due to their low elastic modulus and high damage tolerance. However, the somewhat inadequate alloy surface performance can impede their biomedical application. Surface modification methods have been therefore developed to improve the alloys' surface bioactivity and osseointegration. Laser treatment allows the alloy surface to be modified, providing it with new functionalized surface chemistry and morphology, without compromising the rest of the material properties. Thus, the aim of the study was to examine the laser-induced alterations generated on the Ti-45Nb alloy surface by an ultrashort pulsed laser. The obtained results reveal that laser beam interaction with the target material led to the formation of significant alterations in surface morphology. Surface craters, microcracks, and surface features in the form of periodic and rippled structures and solidified droplets can be observed in the irradiated area. Also, it was found that the higher damage degree along with the material depth and the higher surface roughness were achieved during the irradiation in the argon atmosphere due to the formation of the more pronounced morphological changes on the alloy surface that are induced by higher laser ablation. Furthermore, obtained results showed that alloy surface modification in air, argon, and nitrogen atmosphere additionally caused changes in the surface chemical composition. Namely, after irradiation, the presence of oxygen was observed in the central irradiated area indicating the formation of bioactive Ti-oxide surface film with content that varies with the irradiation parameters variation. Therefore, laser beam irradiation can be singled out as the surface modification method for efficient inducement of the specific surface characteristics that can provide titanium alloys with enhanced osseointegration properties.",
publisher = "Belgrade : Materials Research Society of Serbia – MRS-Serbia",
journal = "23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts",
title = "Laser-induced chemical and mophological changes of the titanium alloy surface under different irradiation parameters",
volume = "XLV",
pages = "92-92",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11328"
}
Laketić, S., Rakin, M., Momčilović, M., Ciganović, J., Veljović, Đ.,& Cvijović-Alagić, I.. (2022). Laser-induced chemical and mophological changes of the titanium alloy surface under different irradiation parameters. in 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts
Belgrade : Materials Research Society of Serbia – MRS-Serbia., XLV, 92-92.
https://hdl.handle.net/21.15107/rcub_vinar_11328
Laketić S, Rakin M, Momčilović M, Ciganović J, Veljović Đ, Cvijović-Alagić I. Laser-induced chemical and mophological changes of the titanium alloy surface under different irradiation parameters. in 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts. 2022;XLV:92-92.
https://hdl.handle.net/21.15107/rcub_vinar_11328 .
Laketić, Slađana, Rakin, Marko, Momčilović, Miloš, Ciganović, Jovan, Veljović, Đorđe, Cvijović-Alagić, Ivana, "Laser-induced chemical and mophological changes of the titanium alloy surface under different irradiation parameters" in 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts, XLV (2022):92-92,
https://hdl.handle.net/21.15107/rcub_vinar_11328 .

Microstructural refinement influence on the Ti-45Nb alloy properties in physiological conditions

Cvijović-Alagić, Ivana; Laketić, Slađana; Zagorac, Dejan; Bajat, Jelena; Veljović, Đorđe; Kojić, Vesna; Rakin, Marko

(Beograd : Serbian Society of Corrosion and Materials Protection UISKOZAM = Udruženje inženjera Srbije za koroziju i zaštitu materijala UISKOZAM, 2021)

TY  - CONF
AU  - Cvijović-Alagić, Ivana
AU  - Laketić, Slađana
AU  - Zagorac, Dejan
AU  - Bajat, Jelena
AU  - Veljović, Đorđe
AU  - Kojić, Vesna
AU  - Rakin, Marko
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11342
AB  - The high-pressure torsion (HPT) post-processing treatment influence on the grain refinement, corrosion behavior, and biocompatible properties of the Ti-45Nb (mass%) alloy, as a promising new hard-tissue replacement material, was investigated in the present study. The HPT-induced microstructural alterations were experimentally analyzed by electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), x-ray diffraction (XRD), and Vickers microhardness measurements, while additional theoretical investigations on the ab initio level were conducted to fully investigate the HPT influence on the alloy microstructural properties. Results showed that significant microstructural refinement was achieved through the HPT processing while a change in alloy phase composition was not detected. In both, unrefined and refined, microstructures the β-Ti and Ti4Nb phases were identified and confirmed by the ab initio modeling results. The microstructural alterations effect on the alloy corrosion behavior in simulated physiological conditions was examined through the potentiodynamic polarization measurements. In vitro tests were conducted to determine the grain refinement influence on the investigated alloy and live cells interaction. Attained results indicated that the HPT treatment can be successfully applied to improve the Ti-45Nb alloy bio-corrosive performance through an increase of the alloy hardness, corrosion resistance, and live cells viability during the alloy-cells interaction.
AB  - Tokom prezentovanog istraživanja ispitan je uticaj postupka uvijanja pod visokim pritiskom (UVP) na rafinaciju zrna, koroziono ponašanje i biokompatibilna svojstva Ti-45Nb (mas.%) legure, kao potencijalnog materijala za izradu kostnih implanata. Mikrostrukturne promene, uslovljene primenom UVP postupka, analizirane su elektronskom difrakcijom, transmisionom elektronskom mikroskopijom, difrakcijom x-zraka i određivanjem mikrotvrdoće, dok su teorijska istraživanja na ab initio nivou izvršena u cilju potpunog ispitivanja uticaja UVP metode na mikrostrukturna svojstva legure. Primenom UVP postupka postignuto je značajno usitnjavanje mikrostrukture bez promene faznog sastava legure. U nerafinisanoj i rafinisanoj mikrostrukturi identifikovane su β-Ti i Ti4Nb faze, što su potvrdili i rezultati ab initio modelovanja. Uticaj promene mikrostrukturnih svojstava na korozionu postojanost legure u simuliranim fiziološkim uslovima ispitan je potenciodinamičkom metodom. Uticaj rafinacije zrna na potencijalnu interakciju implantne legure sa živim ćelijama ispitan je primenom in vitro metoda. Potvrđeno je da se UVP obrada može uspešno primeniti za poboljšanje bio-korozionog ponašanja Ti-45Nb legure kroz povećanje tvrdoće i korozione otpornosti legure, kao i vijabilnosti ćelija tokom interakcije legure sa živim ćelijama
PB  - Beograd : Serbian Society of Corrosion and Materials Protection UISKOZAM = Udruženje inženjera Srbije za koroziju i zaštitu materijala UISKOZAM
C3  - XXII YuCorr International Conference : Proceedings
T1  - Microstructural refinement influence on the Ti-45Nb alloy properties in physiological conditions
T1  - Uticaj usitnjavanja mikrostrukture na svojstva Ti-45Nb legure u fiziološkim uslovima
SP  - 138
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11342
ER  - 
@conference{
author = "Cvijović-Alagić, Ivana and Laketić, Slađana and Zagorac, Dejan and Bajat, Jelena and Veljović, Đorđe and Kojić, Vesna and Rakin, Marko",
year = "2021",
abstract = "The high-pressure torsion (HPT) post-processing treatment influence on the grain refinement, corrosion behavior, and biocompatible properties of the Ti-45Nb (mass%) alloy, as a promising new hard-tissue replacement material, was investigated in the present study. The HPT-induced microstructural alterations were experimentally analyzed by electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), x-ray diffraction (XRD), and Vickers microhardness measurements, while additional theoretical investigations on the ab initio level were conducted to fully investigate the HPT influence on the alloy microstructural properties. Results showed that significant microstructural refinement was achieved through the HPT processing while a change in alloy phase composition was not detected. In both, unrefined and refined, microstructures the β-Ti and Ti4Nb phases were identified and confirmed by the ab initio modeling results. The microstructural alterations effect on the alloy corrosion behavior in simulated physiological conditions was examined through the potentiodynamic polarization measurements. In vitro tests were conducted to determine the grain refinement influence on the investigated alloy and live cells interaction. Attained results indicated that the HPT treatment can be successfully applied to improve the Ti-45Nb alloy bio-corrosive performance through an increase of the alloy hardness, corrosion resistance, and live cells viability during the alloy-cells interaction., Tokom prezentovanog istraživanja ispitan je uticaj postupka uvijanja pod visokim pritiskom (UVP) na rafinaciju zrna, koroziono ponašanje i biokompatibilna svojstva Ti-45Nb (mas.%) legure, kao potencijalnog materijala za izradu kostnih implanata. Mikrostrukturne promene, uslovljene primenom UVP postupka, analizirane su elektronskom difrakcijom, transmisionom elektronskom mikroskopijom, difrakcijom x-zraka i određivanjem mikrotvrdoće, dok su teorijska istraživanja na ab initio nivou izvršena u cilju potpunog ispitivanja uticaja UVP metode na mikrostrukturna svojstva legure. Primenom UVP postupka postignuto je značajno usitnjavanje mikrostrukture bez promene faznog sastava legure. U nerafinisanoj i rafinisanoj mikrostrukturi identifikovane su β-Ti i Ti4Nb faze, što su potvrdili i rezultati ab initio modelovanja. Uticaj promene mikrostrukturnih svojstava na korozionu postojanost legure u simuliranim fiziološkim uslovima ispitan je potenciodinamičkom metodom. Uticaj rafinacije zrna na potencijalnu interakciju implantne legure sa živim ćelijama ispitan je primenom in vitro metoda. Potvrđeno je da se UVP obrada može uspešno primeniti za poboljšanje bio-korozionog ponašanja Ti-45Nb legure kroz povećanje tvrdoće i korozione otpornosti legure, kao i vijabilnosti ćelija tokom interakcije legure sa živim ćelijama",
publisher = "Beograd : Serbian Society of Corrosion and Materials Protection UISKOZAM = Udruženje inženjera Srbije za koroziju i zaštitu materijala UISKOZAM",
journal = "XXII YuCorr International Conference : Proceedings",
title = "Microstructural refinement influence on the Ti-45Nb alloy properties in physiological conditions, Uticaj usitnjavanja mikrostrukture na svojstva Ti-45Nb legure u fiziološkim uslovima",
pages = "138",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11342"
}
Cvijović-Alagić, I., Laketić, S., Zagorac, D., Bajat, J., Veljović, Đ., Kojić, V.,& Rakin, M.. (2021). Microstructural refinement influence on the Ti-45Nb alloy properties in physiological conditions. in XXII YuCorr International Conference : Proceedings
Beograd : Serbian Society of Corrosion and Materials Protection UISKOZAM = Udruženje inženjera Srbije za koroziju i zaštitu materijala UISKOZAM., 138.
https://hdl.handle.net/21.15107/rcub_vinar_11342
Cvijović-Alagić I, Laketić S, Zagorac D, Bajat J, Veljović Đ, Kojić V, Rakin M. Microstructural refinement influence on the Ti-45Nb alloy properties in physiological conditions. in XXII YuCorr International Conference : Proceedings. 2021;:138.
https://hdl.handle.net/21.15107/rcub_vinar_11342 .
Cvijović-Alagić, Ivana, Laketić, Slađana, Zagorac, Dejan, Bajat, Jelena, Veljović, Đorđe, Kojić, Vesna, Rakin, Marko, "Microstructural refinement influence on the Ti-45Nb alloy properties in physiological conditions" in XXII YuCorr International Conference : Proceedings (2021):138,
https://hdl.handle.net/21.15107/rcub_vinar_11342 .

Surface damage caused by laser irradiation of the Ti45Nb alloy processed by high-pressure torsion

Laketić, Slađana; Rakin, Marko; Momčilović, Miloš; Ciganović, Jovan; Veljović, Đorđe; Cvijović-Alagić, Ivana

(Novi Sad : Faculty of Technology, University of Novi Sad, 2021)

TY  - CONF
AU  - Laketić, Slađana
AU  - Rakin, Marko
AU  - Momčilović, Miloš
AU  - Ciganović, Jovan
AU  - Veljović, Đorđe
AU  - Cvijović-Alagić, Ivana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11327
PB  - Novi Sad : Faculty of Technology, University of Novi Sad
C3  - 14th EcerS Conference for Young Scientists in Ceramics, CYSC
T1  - Surface damage caused by laser irradiation of the Ti45Nb alloy processed by high-pressure torsion
SP  - 53
EP  - 53
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11327
ER  - 
@conference{
author = "Laketić, Slađana and Rakin, Marko and Momčilović, Miloš and Ciganović, Jovan and Veljović, Đorđe and Cvijović-Alagić, Ivana",
year = "2021",
publisher = "Novi Sad : Faculty of Technology, University of Novi Sad",
journal = "14th EcerS Conference for Young Scientists in Ceramics, CYSC",
title = "Surface damage caused by laser irradiation of the Ti45Nb alloy processed by high-pressure torsion",
pages = "53-53",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11327"
}
Laketić, S., Rakin, M., Momčilović, M., Ciganović, J., Veljović, Đ.,& Cvijović-Alagić, I.. (2021). Surface damage caused by laser irradiation of the Ti45Nb alloy processed by high-pressure torsion. in 14th EcerS Conference for Young Scientists in Ceramics, CYSC
Novi Sad : Faculty of Technology, University of Novi Sad., 53-53.
https://hdl.handle.net/21.15107/rcub_vinar_11327
Laketić S, Rakin M, Momčilović M, Ciganović J, Veljović Đ, Cvijović-Alagić I. Surface damage caused by laser irradiation of the Ti45Nb alloy processed by high-pressure torsion. in 14th EcerS Conference for Young Scientists in Ceramics, CYSC. 2021;:53-53.
https://hdl.handle.net/21.15107/rcub_vinar_11327 .
Laketić, Slađana, Rakin, Marko, Momčilović, Miloš, Ciganović, Jovan, Veljović, Đorđe, Cvijović-Alagić, Ivana, "Surface damage caused by laser irradiation of the Ti45Nb alloy processed by high-pressure torsion" in 14th EcerS Conference for Young Scientists in Ceramics, CYSC (2021):53-53,
https://hdl.handle.net/21.15107/rcub_vinar_11327 .

The corrosion resistance in artificial saliva of titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion

Barjaktarević, Dragana; Bajat, Jelena; Cvijović-Alagić, Ivana; Dimić, Ivana; Hohenwarter, Anton; Đokić, Veljko; Rakin, Marko

(2018)

TY  - JOUR
AU  - Barjaktarević, Dragana
AU  - Bajat, Jelena
AU  - Cvijović-Alagić, Ivana
AU  - Dimić, Ivana
AU  - Hohenwarter, Anton
AU  - Đokić, Veljko
AU  - Rakin, Marko
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11334
AB  - In order to optimize and enhance the implant material properties, metallic materials may be modified by severe plastic deformation (SPD) procedures. One of the most attracting SPD methods is high-pressure torsion (HPT), which is method where deformation is obtained mainly by simple shear. In the present study ultrafine-grained titanium (UFG cpTi) and ultrafine-grained Ti-13Nb-13Zr (UFG TNZ) alloy were obtained by high pressure torsion (HPT) under a pressure of 4.1 GPa with a rotational speed of 0.2 rpm up to 5 rotations at room temperature. In order to analyse microstructure of materials before and after HPT process, scanning electron microscope (SEM) was used. The aim of this study was to determine the corrosion resistance of titanium and its alloy after HPT process. Electrochemical measurements were performed in artificial saliva with a pH value of 5.5 at 37 degrees C, in order to simulate the oral environment. The materials were analysed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. All examined materials showed good corrosion resistance, but results indicate that HPT process can improves corrosion resistance.
T2  - Procedia Structural Integrity
T1  - The corrosion resistance in artificial saliva of titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion
VL  - 13
SP  - 1834
EP  - 1839
DO  - 10.1016/j.prostr.2018.12.332
ER  - 
@article{
author = "Barjaktarević, Dragana and Bajat, Jelena and Cvijović-Alagić, Ivana and Dimić, Ivana and Hohenwarter, Anton and Đokić, Veljko and Rakin, Marko",
year = "2018",
abstract = "In order to optimize and enhance the implant material properties, metallic materials may be modified by severe plastic deformation (SPD) procedures. One of the most attracting SPD methods is high-pressure torsion (HPT), which is method where deformation is obtained mainly by simple shear. In the present study ultrafine-grained titanium (UFG cpTi) and ultrafine-grained Ti-13Nb-13Zr (UFG TNZ) alloy were obtained by high pressure torsion (HPT) under a pressure of 4.1 GPa with a rotational speed of 0.2 rpm up to 5 rotations at room temperature. In order to analyse microstructure of materials before and after HPT process, scanning electron microscope (SEM) was used. The aim of this study was to determine the corrosion resistance of titanium and its alloy after HPT process. Electrochemical measurements were performed in artificial saliva with a pH value of 5.5 at 37 degrees C, in order to simulate the oral environment. The materials were analysed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. All examined materials showed good corrosion resistance, but results indicate that HPT process can improves corrosion resistance.",
journal = "Procedia Structural Integrity",
title = "The corrosion resistance in artificial saliva of titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion",
volume = "13",
pages = "1834-1839",
doi = "10.1016/j.prostr.2018.12.332"
}
Barjaktarević, D., Bajat, J., Cvijović-Alagić, I., Dimić, I., Hohenwarter, A., Đokić, V.,& Rakin, M.. (2018). The corrosion resistance in artificial saliva of titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion. in Procedia Structural Integrity, 13, 1834-1839.
https://doi.org/10.1016/j.prostr.2018.12.332
Barjaktarević D, Bajat J, Cvijović-Alagić I, Dimić I, Hohenwarter A, Đokić V, Rakin M. The corrosion resistance in artificial saliva of titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion. in Procedia Structural Integrity. 2018;13:1834-1839.
doi:10.1016/j.prostr.2018.12.332 .
Barjaktarević, Dragana, Bajat, Jelena, Cvijović-Alagić, Ivana, Dimić, Ivana, Hohenwarter, Anton, Đokić, Veljko, Rakin, Marko, "The corrosion resistance in artificial saliva of titanium and Ti-13Nb-13Zr alloy processed by high pressure torsion" in Procedia Structural Integrity, 13 (2018):1834-1839,
https://doi.org/10.1016/j.prostr.2018.12.332 . .
5
3
5