Senćanski, Milan V.

Link to this page

Authority KeyName Variants
orcid::0000-0002-7296-3223
  • Senćanski, Milan V. (28)
  • Senćanski, Milan (7)
Projects
Application of the EIIP/ISM bioinformatics platform in discovery of novel therapeutic targets and potential therapeutic molecules Interactions of natural products, their derivatives and coordination compounds with proteins and nucleic acids
COVIDTARGET – Repurposing of drugs for prevention and treatment of Covid-19 Ministry of Education, Science and Technological Development of the Republic of Serbia
Modeling and Numerical Simulations of Complex Many-Body Systems An integral study to identify the regional genetic and environmental risk factors for the common noncommunicable diseases in the human population of Serbia - INGEMA_S
Slovenian Research Agency [P4-0053] Basileus program
COST Action [18240 (Adher´n Rise)] COST Action [CA15106 - CHAOS]
COST Action [CA15135 - MuTaLig] COST Action CA [18133 (ERNEST)]
COST Action CM1106 StemChem - Chemical Approaches to Targeting Drug Resistance in Cancer Stem Cells, European Commission COST Action [CM1307]
COST Action, Molecules in Motion (MOLIM) [CM1405] COST Actions [CA15135]
COST Actions [CA16119] COST Action [Stratagem "New diagnostic and therapeutic tools against multidrug resistant tumours"]
COST Action "Targeted chemotherapy towards diseases caused by endoparasites" (CM1307) COST Action Understanding Movement and Mechanism in Molecular Machines (CM1306)
ERA.Net RUS plus joint program grant [RUS_ST2017-309] Estonian Ministry for Education and Research [IUT34-14]
European Cooperation in Science and Technology (COST) European Union (FEDER funds through Programa Operacional Factores de Competitividade-COMPETE) [POCI/01/0145/FEDER/007728]
Foundation for Science and Technology (FCT) and Portugal 2020 [CEECIND/03708/2017] Foundation for Science and Technology (FCT) and Portugal 2020 [IF/01395/2013/CP1163/CT005]
Foundation for Science and Technology (FCT) and Portugal 2020 [LISBOA-01-0145FEDER-029697] Foundation for Science and Technology (FCT) and Portugal 2020 [SFRH/BSAB/150368]
Foundation for Science and Technology (FCT) and Portugal 2020 [UIDB/00100/2020] Fundacao para a Ciencia e a Tecnologia FCT (IF/01507/2015)

Author's Bibliography

QSAR and machine learning models of redox potentials of some organic pigments

Stevanović, Kristina; Maksimović, Jelena; Senćanski, Jelena; Pagnacco, Maja; Senćanski, Milan

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Stevanović, Kristina
AU  - Maksimović, Jelena
AU  - Senćanski, Jelena
AU  - Pagnacco, Maja
AU  - Senćanski, Milan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12310
AB  - The organic pigments offer promising opportunities for developing new sustainable electrode materials for lithium batteries. Some of them have been identified as cathode material with very encouraging reversible lithium ion storage characteristics. One of them is a naturally occurring purpurin extracted from the Madder plant (Rubia tinctorum) for which we confirmed this good electrochemical behavior by cyclic voltammetry. One of the strategies towards obtaining materials with even better characteristics is a structural modification of already existing pigments. Building a theoretical model that could predict the redox properties of these new compounds can be very useful towards achieving that goal. In order to build a 3D QSAR (quantitative structure–activity relationship) model for material redox potential prediction, 9 organic pigments with known redox potentials were extracted from the literature. Based on molecular interaction field (MIF) probes we calculated standard GRIND (grid-independent) descriptors and constructed following principal PLS (partial least squares) model. By validation with the literature data, but also with the obtained experimental data for purpurin, this model proved very reliable in predicting the redox potential. A comparison was also made with the machine learning model that was formed in parallel.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
T1  - QSAR and machine learning models of redox potentials of some organic pigments
SP  - 35
EP  - 35
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12310
ER  - 
@conference{
author = "Stevanović, Kristina and Maksimović, Jelena and Senćanski, Jelena and Pagnacco, Maja and Senćanski, Milan",
year = "2023",
abstract = "The organic pigments offer promising opportunities for developing new sustainable electrode materials for lithium batteries. Some of them have been identified as cathode material with very encouraging reversible lithium ion storage characteristics. One of them is a naturally occurring purpurin extracted from the Madder plant (Rubia tinctorum) for which we confirmed this good electrochemical behavior by cyclic voltammetry. One of the strategies towards obtaining materials with even better characteristics is a structural modification of already existing pigments. Building a theoretical model that could predict the redox properties of these new compounds can be very useful towards achieving that goal. In order to build a 3D QSAR (quantitative structure–activity relationship) model for material redox potential prediction, 9 organic pigments with known redox potentials were extracted from the literature. Based on molecular interaction field (MIF) probes we calculated standard GRIND (grid-independent) descriptors and constructed following principal PLS (partial least squares) model. By validation with the literature data, but also with the obtained experimental data for purpurin, this model proved very reliable in predicting the redox potential. A comparison was also made with the machine learning model that was formed in parallel.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts",
title = "QSAR and machine learning models of redox potentials of some organic pigments",
pages = "35-35",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12310"
}
Stevanović, K., Maksimović, J., Senćanski, J., Pagnacco, M.,& Senćanski, M.. (2023). QSAR and machine learning models of redox potentials of some organic pigments. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
Belgrade : Institute of Technical Sciences of SASA., 35-35.
https://hdl.handle.net/21.15107/rcub_vinar_12310
Stevanović K, Maksimović J, Senćanski J, Pagnacco M, Senćanski M. QSAR and machine learning models of redox potentials of some organic pigments. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts. 2023;:35-35.
https://hdl.handle.net/21.15107/rcub_vinar_12310 .
Stevanović, Kristina, Maksimović, Jelena, Senćanski, Jelena, Pagnacco, Maja, Senćanski, Milan, "QSAR and machine learning models of redox potentials of some organic pigments" in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts (2023):35-35,
https://hdl.handle.net/21.15107/rcub_vinar_12310 .

Inhibition of SARS-CoV-2 Mpro with Vitamin C, L-Arginine and a Vitamin C/L-Arginine Combination

Đukić, Ivana; Kaličanin, Nevena; Senćanski, Milan V.; Pajović, Snežana B.; Milićević, Jelena S.; Prljić, Jelena; Paessler, Slobodan; Prodanović, Radivoje; Glišić, Sanja

(2023)

TY  - JOUR
AU  - Đukić, Ivana
AU  - Kaličanin, Nevena
AU  - Senćanski, Milan V.
AU  - Pajović, Snežana B.
AU  - Milićević, Jelena S.
AU  - Prljić, Jelena
AU  - Paessler, Slobodan
AU  - Prodanović, Radivoje
AU  - Glišić, Sanja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10629
AB  - Drug resistance is a critical problem in health care that affects therapy outcomes and requires new approaches to drugdesign. SARS-CoV-2 Mpro mutations are of concern as they can potentially reduce therapeutic efficacy. Viral infections are amongst themany disorders for which nutraceuticals have been employed as an adjunct therapy. The aim of this study was to examine the potentialin vitro activity of L-arginine and vitamin C against SARS-CoV-2 Mpro. Methods: The Mpro inhibition assay was developed by cloning,expression, purification, and characterization of Mpro. Selected compounds were then screened for protease inhibition. Results: Largininewas found to be active against SARS-CoV-2 Mpro, while a vitamin C/L-arginine combination had a synergistic antiviral actionagainst Mpro. These findings confirm the results of our previous in silico repurposing study that showed L-arginine and vitamin C werepotential Mpro inhibitors. Moreover, they suggest a possible molecular mechanism to explain the beneficial effect of arginine in COVIDpatients. Conclusions: The findings of the current study are important because they help to identify COVID-19 treatments that areefficient, inexpensive, and have a favorable safety profile. The results of this study also suggest a possible adjuvant nutritional strategyfor COVID-19 that could be used in conjunction with pharmacological agents.
T2  - Frontiers in Bioscience - Landmark
T1  - Inhibition of SARS-CoV-2 Mpro with Vitamin C, L-Arginine and a Vitamin C/L-Arginine Combination
VL  - 28
IS  - 1
SP  - 8
DO  - 10.31083/j.fbl2801008
ER  - 
@article{
author = "Đukić, Ivana and Kaličanin, Nevena and Senćanski, Milan V. and Pajović, Snežana B. and Milićević, Jelena S. and Prljić, Jelena and Paessler, Slobodan and Prodanović, Radivoje and Glišić, Sanja",
year = "2023",
abstract = "Drug resistance is a critical problem in health care that affects therapy outcomes and requires new approaches to drugdesign. SARS-CoV-2 Mpro mutations are of concern as they can potentially reduce therapeutic efficacy. Viral infections are amongst themany disorders for which nutraceuticals have been employed as an adjunct therapy. The aim of this study was to examine the potentialin vitro activity of L-arginine and vitamin C against SARS-CoV-2 Mpro. Methods: The Mpro inhibition assay was developed by cloning,expression, purification, and characterization of Mpro. Selected compounds were then screened for protease inhibition. Results: Largininewas found to be active against SARS-CoV-2 Mpro, while a vitamin C/L-arginine combination had a synergistic antiviral actionagainst Mpro. These findings confirm the results of our previous in silico repurposing study that showed L-arginine and vitamin C werepotential Mpro inhibitors. Moreover, they suggest a possible molecular mechanism to explain the beneficial effect of arginine in COVIDpatients. Conclusions: The findings of the current study are important because they help to identify COVID-19 treatments that areefficient, inexpensive, and have a favorable safety profile. The results of this study also suggest a possible adjuvant nutritional strategyfor COVID-19 that could be used in conjunction with pharmacological agents.",
journal = "Frontiers in Bioscience - Landmark",
title = "Inhibition of SARS-CoV-2 Mpro with Vitamin C, L-Arginine and a Vitamin C/L-Arginine Combination",
volume = "28",
number = "1",
pages = "8",
doi = "10.31083/j.fbl2801008"
}
Đukić, I., Kaličanin, N., Senćanski, M. V., Pajović, S. B., Milićević, J. S., Prljić, J., Paessler, S., Prodanović, R.,& Glišić, S.. (2023). Inhibition of SARS-CoV-2 Mpro with Vitamin C, L-Arginine and a Vitamin C/L-Arginine Combination. in Frontiers in Bioscience - Landmark, 28(1), 8.
https://doi.org/10.31083/j.fbl2801008
Đukić I, Kaličanin N, Senćanski MV, Pajović SB, Milićević JS, Prljić J, Paessler S, Prodanović R, Glišić S. Inhibition of SARS-CoV-2 Mpro with Vitamin C, L-Arginine and a Vitamin C/L-Arginine Combination. in Frontiers in Bioscience - Landmark. 2023;28(1):8.
doi:10.31083/j.fbl2801008 .
Đukić, Ivana, Kaličanin, Nevena, Senćanski, Milan V., Pajović, Snežana B., Milićević, Jelena S., Prljić, Jelena, Paessler, Slobodan, Prodanović, Radivoje, Glišić, Sanja, "Inhibition of SARS-CoV-2 Mpro with Vitamin C, L-Arginine and a Vitamin C/L-Arginine Combination" in Frontiers in Bioscience - Landmark, 28, no. 1 (2023):8,
https://doi.org/10.31083/j.fbl2801008 . .
1
1
1

Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis

Mavri, Maša; Glišić, Sanja; Senćanski, Milan; Vrecl, Milka; Rosenkilde, Mette M.; Spiess, Katja; Kubale, Valentina

(2023)

TY  - JOUR
AU  - Mavri, Maša
AU  - Glišić, Sanja
AU  - Senćanski, Milan
AU  - Vrecl, Milka
AU  - Rosenkilde, Mette M.
AU  - Spiess, Katja
AU  - Kubale, Valentina
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10682
AB  - The viral G-protein-coupled receptor (vGPCR) BILF1 encoded by the Epstein–Barr virus (EBV) is an oncogene and immunoevasin and can downregulate MHC-I molecules at the surface of infected cells. MHC-I downregulation, which presumably occurs through co-internalization with EBV-BILF1, is preserved among BILF1 receptors, including the three BILF1 orthologs encoded by porcine lymphotropic herpesviruses (PLHV BILFs). This study aimed to understand the detailed mechanisms of BILF1 receptor constitutive internalization, to explore the translational potential of PLHV BILFs compared with EBV-BILF1.
T2  - Cellular and Molecular Biology Letters
T1  - Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis
VL  - 28
IS  - 1
SP  - 14
DO  - 10.1186/s11658-023-00427-y
ER  - 
@article{
author = "Mavri, Maša and Glišić, Sanja and Senćanski, Milan and Vrecl, Milka and Rosenkilde, Mette M. and Spiess, Katja and Kubale, Valentina",
year = "2023",
abstract = "The viral G-protein-coupled receptor (vGPCR) BILF1 encoded by the Epstein–Barr virus (EBV) is an oncogene and immunoevasin and can downregulate MHC-I molecules at the surface of infected cells. MHC-I downregulation, which presumably occurs through co-internalization with EBV-BILF1, is preserved among BILF1 receptors, including the three BILF1 orthologs encoded by porcine lymphotropic herpesviruses (PLHV BILFs). This study aimed to understand the detailed mechanisms of BILF1 receptor constitutive internalization, to explore the translational potential of PLHV BILFs compared with EBV-BILF1.",
journal = "Cellular and Molecular Biology Letters",
title = "Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis",
volume = "28",
number = "1",
pages = "14",
doi = "10.1186/s11658-023-00427-y"
}
Mavri, M., Glišić, S., Senćanski, M., Vrecl, M., Rosenkilde, M. M., Spiess, K.,& Kubale, V.. (2023). Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis. in Cellular and Molecular Biology Letters, 28(1), 14.
https://doi.org/10.1186/s11658-023-00427-y
Mavri M, Glišić S, Senćanski M, Vrecl M, Rosenkilde MM, Spiess K, Kubale V. Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis. in Cellular and Molecular Biology Letters. 2023;28(1):14.
doi:10.1186/s11658-023-00427-y .
Mavri, Maša, Glišić, Sanja, Senćanski, Milan, Vrecl, Milka, Rosenkilde, Mette M., Spiess, Katja, Kubale, Valentina, "Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis" in Cellular and Molecular Biology Letters, 28, no. 1 (2023):14,
https://doi.org/10.1186/s11658-023-00427-y . .
2
1
1

In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D

Protić, Sara; Kaličanin, Nevena; Senćanski, Milan; Prodanović, Olivera; Milićević, Jelena S.; Perović, Vladimir; Paessler, Slobodan; Prodanović, Radivoje; Glišić, Sanja

(2023)

TY  - JOUR
AU  - Protić, Sara
AU  - Kaličanin, Nevena
AU  - Senćanski, Milan
AU  - Prodanović, Olivera
AU  - Milićević, Jelena S.
AU  - Perović, Vladimir
AU  - Paessler, Slobodan
AU  - Prodanović, Radivoje
AU  - Glišić, Sanja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10644
AB  - Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrentpandemic. Since developing a new treatment takes a significant amount of time, drug repurposingcan be an effective option for achieving a rapid response. This study used a combined in silico virtualscreening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searchedfirst, using the Informational Spectrum Method for Small Molecules, followed by molecular docking.Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro.After the expression and purification of PLpro, gramicidin D was screened for protease inhibitionin vitro and was found to be active against PLpro. The current study’s findings are significantbecause it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorablesafety profile.
T2  - International Journal of Molecular Sciences
T1  - In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D
VL  - 24
IS  - 3
SP  - 1955
DO  - 10.3390/ijms24031955
ER  - 
@article{
author = "Protić, Sara and Kaličanin, Nevena and Senćanski, Milan and Prodanović, Olivera and Milićević, Jelena S. and Perović, Vladimir and Paessler, Slobodan and Prodanović, Radivoje and Glišić, Sanja",
year = "2023",
abstract = "Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrentpandemic. Since developing a new treatment takes a significant amount of time, drug repurposingcan be an effective option for achieving a rapid response. This study used a combined in silico virtualscreening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searchedfirst, using the Informational Spectrum Method for Small Molecules, followed by molecular docking.Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro.After the expression and purification of PLpro, gramicidin D was screened for protease inhibitionin vitro and was found to be active against PLpro. The current study’s findings are significantbecause it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorablesafety profile.",
journal = "International Journal of Molecular Sciences",
title = "In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D",
volume = "24",
number = "3",
pages = "1955",
doi = "10.3390/ijms24031955"
}
Protić, S., Kaličanin, N., Senćanski, M., Prodanović, O., Milićević, J. S., Perović, V., Paessler, S., Prodanović, R.,& Glišić, S.. (2023). In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D. in International Journal of Molecular Sciences, 24(3), 1955.
https://doi.org/10.3390/ijms24031955
Protić S, Kaličanin N, Senćanski M, Prodanović O, Milićević JS, Perović V, Paessler S, Prodanović R, Glišić S. In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D. in International Journal of Molecular Sciences. 2023;24(3):1955.
doi:10.3390/ijms24031955 .
Protić, Sara, Kaličanin, Nevena, Senćanski, Milan, Prodanović, Olivera, Milićević, Jelena S., Perović, Vladimir, Paessler, Slobodan, Prodanović, Radivoje, Glišić, Sanja, "In Silico and In Vitro Inhibition of SARS-CoV-2 PLpro with Gramicidin D" in International Journal of Molecular Sciences, 24, no. 3 (2023):1955,
https://doi.org/10.3390/ijms24031955 . .
1
1

In Silico Screening of Natural Compounds for Candidates 5HT6 Receptor Antagonists against Alzheimer’s Disease

Bojić, Tijana; Senćanski, Milan V.; Perović, Vladimir R.; Milićević, Jelena S.; Glišić, Sanja

(2022)

TY  - JOUR
AU  - Bojić, Tijana
AU  - Senćanski, Milan V.
AU  - Perović, Vladimir R.
AU  - Milićević, Jelena S.
AU  - Glišić, Sanja
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10252
AB  - Alzheimer’s disease (AD), a devastating neurodegenerative disease, is the focus of pharmacological research. One of the targets that attract the most attention for the potential therapy of AD is the serotonin 5HT6 receptor, which is the receptor situated exclusively in CNS on glutamatergic and GABAergic neurons. The neurochemical impact of this receptor supports the hypothesis about its role in cognitive, learning, and memory systems, which are of critical importance for AD. Natural products are a promising source of novel bioactive compounds with potential therapeutic potential as a 5HT6 receptor antagonist in the treatment of AD dementia. The ZINC—natural product database was in silico screened in order to find the candidate antagonists of 5-HT6 receptor against AD. A virtual screening protocol that includes both short-and long-range interactions between interacting molecules was employed. First, the EIIP/AQVN filter was applied for in silico screening of the ZINC database followed by 3D QSAR and molecular docking. Ten best candidate compounds were selected from the ZINC Natural Product database as potential 5HT6 Receptor antagonists and were proposed for further evaluation. The best candidate was evaluated by molecular dynamics simulations and free energy calculations.
T2  - Molecules
T1  - In Silico Screening of Natural Compounds for Candidates 5HT6 Receptor Antagonists against Alzheimer’s Disease
VL  - 27
IS  - 9
SP  - 2626
DO  - 10.3390/molecules27092626
ER  - 
@article{
author = "Bojić, Tijana and Senćanski, Milan V. and Perović, Vladimir R. and Milićević, Jelena S. and Glišić, Sanja",
year = "2022",
abstract = "Alzheimer’s disease (AD), a devastating neurodegenerative disease, is the focus of pharmacological research. One of the targets that attract the most attention for the potential therapy of AD is the serotonin 5HT6 receptor, which is the receptor situated exclusively in CNS on glutamatergic and GABAergic neurons. The neurochemical impact of this receptor supports the hypothesis about its role in cognitive, learning, and memory systems, which are of critical importance for AD. Natural products are a promising source of novel bioactive compounds with potential therapeutic potential as a 5HT6 receptor antagonist in the treatment of AD dementia. The ZINC—natural product database was in silico screened in order to find the candidate antagonists of 5-HT6 receptor against AD. A virtual screening protocol that includes both short-and long-range interactions between interacting molecules was employed. First, the EIIP/AQVN filter was applied for in silico screening of the ZINC database followed by 3D QSAR and molecular docking. Ten best candidate compounds were selected from the ZINC Natural Product database as potential 5HT6 Receptor antagonists and were proposed for further evaluation. The best candidate was evaluated by molecular dynamics simulations and free energy calculations.",
journal = "Molecules",
title = "In Silico Screening of Natural Compounds for Candidates 5HT6 Receptor Antagonists against Alzheimer’s Disease",
volume = "27",
number = "9",
pages = "2626",
doi = "10.3390/molecules27092626"
}
Bojić, T., Senćanski, M. V., Perović, V. R., Milićević, J. S.,& Glišić, S.. (2022). In Silico Screening of Natural Compounds for Candidates 5HT6 Receptor Antagonists against Alzheimer’s Disease. in Molecules, 27(9), 2626.
https://doi.org/10.3390/molecules27092626
Bojić T, Senćanski MV, Perović VR, Milićević JS, Glišić S. In Silico Screening of Natural Compounds for Candidates 5HT6 Receptor Antagonists against Alzheimer’s Disease. in Molecules. 2022;27(9):2626.
doi:10.3390/molecules27092626 .
Bojić, Tijana, Senćanski, Milan V., Perović, Vladimir R., Milićević, Jelena S., Glišić, Sanja, "In Silico Screening of Natural Compounds for Candidates 5HT6 Receptor Antagonists against Alzheimer’s Disease" in Molecules, 27, no. 9 (2022):2626,
https://doi.org/10.3390/molecules27092626 . .
10
4
4

Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach

Senćanski, Milan; Perović, Vladimir; Milićević, Jelena S.; Todorović, Tamara; Prodanović, Radivoje; Veljković, Veljko; Paessler, Slobodan; Glišić, Sanja

(2022)

TY  - JOUR
AU  - Senćanski, Milan
AU  - Perović, Vladimir
AU  - Milićević, Jelena S.
AU  - Todorović, Tamara
AU  - Prodanović, Radivoje
AU  - Veljković, Veljko
AU  - Paessler, Slobodan
AU  - Glišić, Sanja
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10425
AB  - In the currentpandemic,findingan effectivedrugto preventortreatthe infectionis the highestpriority.A rapidand safeapproachto counteractCOVID-19is in silicodrugrepurposing.The SARS-CoV-2PLpropromotesviral replicationand modu-latesthe hostimmunesystem,resultingin inhibitionof thehostantiviralinnateimmuneresponse,and thereforeis anattractivedrugtarget.In this study,we useda combinedinsilicovirtualscreeningfor candidatesfor SARS-CoV-2PLproproteaseinhibitors.We usedthe Informationalspectrummethodappliedfor SmallMoleculesfor searchingthe Drugbankdatabasefollowedby moleculardocking.Afterin silicoscreen-ing of drugspace,we identified44 drugsas potentialSARS-CoV-2PLproinhibitorsthat we proposefor furtherexperimentaltesting.
T2  - ChemistryOpen
T1  - Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach
VL  - 11
IS  - 2
SP  - e202100248
DO  - 10.1002/open.202100248
ER  - 
@article{
author = "Senćanski, Milan and Perović, Vladimir and Milićević, Jelena S. and Todorović, Tamara and Prodanović, Radivoje and Veljković, Veljko and Paessler, Slobodan and Glišić, Sanja",
year = "2022",
abstract = "In the currentpandemic,findingan effectivedrugto preventortreatthe infectionis the highestpriority.A rapidand safeapproachto counteractCOVID-19is in silicodrugrepurposing.The SARS-CoV-2PLpropromotesviral replicationand modu-latesthe hostimmunesystem,resultingin inhibitionof thehostantiviralinnateimmuneresponse,and thereforeis anattractivedrugtarget.In this study,we useda combinedinsilicovirtualscreeningfor candidatesfor SARS-CoV-2PLproproteaseinhibitors.We usedthe Informationalspectrummethodappliedfor SmallMoleculesfor searchingthe Drugbankdatabasefollowedby moleculardocking.Afterin silicoscreen-ing of drugspace,we identified44 drugsas potentialSARS-CoV-2PLproinhibitorsthat we proposefor furtherexperimentaltesting.",
journal = "ChemistryOpen",
title = "Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach",
volume = "11",
number = "2",
pages = "e202100248",
doi = "10.1002/open.202100248"
}
Senćanski, M., Perović, V., Milićević, J. S., Todorović, T., Prodanović, R., Veljković, V., Paessler, S.,& Glišić, S.. (2022). Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach. in ChemistryOpen, 11(2), e202100248.
https://doi.org/10.1002/open.202100248
Senćanski M, Perović V, Milićević JS, Todorović T, Prodanović R, Veljković V, Paessler S, Glišić S. Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach. in ChemistryOpen. 2022;11(2):e202100248.
doi:10.1002/open.202100248 .
Senćanski, Milan, Perović, Vladimir, Milićević, Jelena S., Todorović, Tamara, Prodanović, Radivoje, Veljković, Veljko, Paessler, Slobodan, Glišić, Sanja, "Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach" in ChemistryOpen, 11, no. 2 (2022):e202100248,
https://doi.org/10.1002/open.202100248 . .
1
9
6

Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase

Stanišić, Marija D.; Popović Kokar, Nikolina; Ristić, Predrag; Balaž, Ana Marija; Senćanski, Milan; Ognjanović, Miloš; Đokić, Veljko R.; Prodanović, Radivoje; Todorović, Tamara

(2021)

TY  - JOUR
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Ognjanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10049
AB  - Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.
T2  - Polymers
T1  - Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase
VL  - 13
IS  - 22
SP  - 3875
DO  - 10.3390/polym13223875
ER  - 
@article{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Ognjanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2021",
abstract = "Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.",
journal = "Polymers",
title = "Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase",
volume = "13",
number = "22",
pages = "3875",
doi = "10.3390/polym13223875"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognjanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers, 13(22), 3875.
https://doi.org/10.3390/polym13223875
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Senćanski M, Ognjanović M, Đokić VR, Prodanović R, Todorović T. Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. in Polymers. 2021;13(22):3875.
doi:10.3390/polym13223875 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Ognjanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase" in Polymers, 13, no. 22 (2021):3875,
https://doi.org/10.3390/polym13223875 . .
3
1

Repurposing of antiparasitic drugs for Candidate SARS-CoV-2 Main Protease Inhibitors by combined in silico Method

Senćanski, Milan; Milićević, Jelena S.; Perović, Vladimir; Glišić, Sanja

(Department of Biology and Ecology : Faculty of Sciences University of Novi Sad, 2021)

TY  - CONF
AU  - Senćanski, Milan
AU  - Milićević, Jelena S.
AU  - Perović, Vladimir
AU  - Glišić, Sanja
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11016
AB  - The SARS-CoV-2 outbreak that is spreading rapidly around the world requires urgently effective treatments. Therefore, in silico drug repurposing represents a powerful strategy to enable the acceleration of the identification of drug candidates with already known safety profiles. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. This study used the virtual screening protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. The Informational spectrum method developed for small molecules was first applied for searching the Drugbank database of antiparasitic agents and further followed by molecular docking. After in silico screening of drug space, we propose several drugs as potential SARS-CoV-2 main protease inhibitors for further experimental testing.
PB  - Department of Biology and Ecology : Faculty of Sciences University of Novi Sad
C3  - Biologia Serbica : Belgrade BioInformatics Conference : BelBi2021 : program and the book of abstracts; June 21-25
T1  - Repurposing of antiparasitic drugs for Candidate SARS-CoV-2 Main Protease Inhibitors by combined in silico Method
VL  - 43
IS  - 1
SP  - 111
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11016
ER  - 
@conference{
author = "Senćanski, Milan and Milićević, Jelena S. and Perović, Vladimir and Glišić, Sanja",
year = "2021",
abstract = "The SARS-CoV-2 outbreak that is spreading rapidly around the world requires urgently effective treatments. Therefore, in silico drug repurposing represents a powerful strategy to enable the acceleration of the identification of drug candidates with already known safety profiles. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. This study used the virtual screening protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. The Informational spectrum method developed for small molecules was first applied for searching the Drugbank database of antiparasitic agents and further followed by molecular docking. After in silico screening of drug space, we propose several drugs as potential SARS-CoV-2 main protease inhibitors for further experimental testing.",
publisher = "Department of Biology and Ecology : Faculty of Sciences University of Novi Sad",
journal = "Biologia Serbica : Belgrade BioInformatics Conference : BelBi2021 : program and the book of abstracts; June 21-25",
title = "Repurposing of antiparasitic drugs for Candidate SARS-CoV-2 Main Protease Inhibitors by combined in silico Method",
volume = "43",
number = "1",
pages = "111",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11016"
}
Senćanski, M., Milićević, J. S., Perović, V.,& Glišić, S.. (2021). Repurposing of antiparasitic drugs for Candidate SARS-CoV-2 Main Protease Inhibitors by combined in silico Method. in Biologia Serbica : Belgrade BioInformatics Conference : BelBi2021 : program and the book of abstracts; June 21-25
Department of Biology and Ecology : Faculty of Sciences University of Novi Sad., 43(1), 111.
https://hdl.handle.net/21.15107/rcub_vinar_11016
Senćanski M, Milićević JS, Perović V, Glišić S. Repurposing of antiparasitic drugs for Candidate SARS-CoV-2 Main Protease Inhibitors by combined in silico Method. in Biologia Serbica : Belgrade BioInformatics Conference : BelBi2021 : program and the book of abstracts; June 21-25. 2021;43(1):111.
https://hdl.handle.net/21.15107/rcub_vinar_11016 .
Senćanski, Milan, Milićević, Jelena S., Perović, Vladimir, Glišić, Sanja, "Repurposing of antiparasitic drugs for Candidate SARS-CoV-2 Main Protease Inhibitors by combined in silico Method" in Biologia Serbica : Belgrade BioInformatics Conference : BelBi2021 : program and the book of abstracts; June 21-25, 43, no. 1 (2021):111,
https://hdl.handle.net/21.15107/rcub_vinar_11016 .

Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action

Bondžić, Aleksandra M.; Senćanski, Milan V.; Vujačić Nikezić, Ana V.; Kirillova, Marina V.; André, Vania; Kirillov, Alexander M.; Bondžić, Bojan P.

(2020)

TY  - JOUR
AU  - Bondžić, Aleksandra M.
AU  - Senćanski, Milan V.
AU  - Vujačić Nikezić, Ana V.
AU  - Kirillova, Marina V.
AU  - André, Vania
AU  - Kirillov, Alexander M.
AU  - Bondžić, Bojan P.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8806
AB  - Three coordination compounds featuring different types of tetracopper(II) cores, namely [O ⊂ Cu4N(CH2CH2O)34(BOH)4][BF4]2 (1), [Cu4(μ4-H2edte)(μ5-H2edte)(sal)2]n·7nH2O, (H4edte = N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine, H2sal = salicylic acid) (2), and [Cu4(μ3-Hbes)4(μ-hba)K(H2O)3]n, H3bes = N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (3), were assayed for their potency to inhibit the acetyl (AChE) and butyrylcholinesterase (BuChE) enzymes aiming to test these compounds as potential dual inhibitors in the treatment of Alzheimer's disease. All the investigated compounds showed a strong inhibitory potency toward both enzymes with IC50 values in micromolar range of concentration; compound 1 displayed the most potent inhibitory behaviour toward both enzymes. The mechanism of the AChE and BuChE inhibition was examined by enzyme kinetic measurements. The obtained kinetic parameters, Vmax and Km indicated an uncompetitive type of inhibition of both enzymes by compound 1. For the other two compounds a non-competitive inhibition mode was observed. To get further insight into the mechanism of action and to elucidate binding modes in details we examined the interactions of 1–3 with acetylcholinesterase, using molecular docking approach. Grid based docking studies indicated that these compounds can bind to peripheral anionic site (PAS) of the AChE with Ki values in micromolar range. Moreover, blind docking revealed the capability of investigated compounds to bind to new allosteric site (i.e. binding site II) distinct from PAS. Showing that these Cu-based compounds can act as new allosteric inhibitors of AChE and identifying novel allosteric binding site on AChE represents a significant contribution toward the design of novel and more effective inhibitors of AChE. © 2020 Elsevier Inc.
T2  - Journal of Inorganic Biochemistry
T1  - Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action
VL  - 205
SP  - 110990
DO  - 10.1016/j.jinorgbio.2019.110990
ER  - 
@article{
author = "Bondžić, Aleksandra M. and Senćanski, Milan V. and Vujačić Nikezić, Ana V. and Kirillova, Marina V. and André, Vania and Kirillov, Alexander M. and Bondžić, Bojan P.",
year = "2020",
abstract = "Three coordination compounds featuring different types of tetracopper(II) cores, namely [O ⊂ Cu4N(CH2CH2O)34(BOH)4][BF4]2 (1), [Cu4(μ4-H2edte)(μ5-H2edte)(sal)2]n·7nH2O, (H4edte = N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine, H2sal = salicylic acid) (2), and [Cu4(μ3-Hbes)4(μ-hba)K(H2O)3]n, H3bes = N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (3), were assayed for their potency to inhibit the acetyl (AChE) and butyrylcholinesterase (BuChE) enzymes aiming to test these compounds as potential dual inhibitors in the treatment of Alzheimer's disease. All the investigated compounds showed a strong inhibitory potency toward both enzymes with IC50 values in micromolar range of concentration; compound 1 displayed the most potent inhibitory behaviour toward both enzymes. The mechanism of the AChE and BuChE inhibition was examined by enzyme kinetic measurements. The obtained kinetic parameters, Vmax and Km indicated an uncompetitive type of inhibition of both enzymes by compound 1. For the other two compounds a non-competitive inhibition mode was observed. To get further insight into the mechanism of action and to elucidate binding modes in details we examined the interactions of 1–3 with acetylcholinesterase, using molecular docking approach. Grid based docking studies indicated that these compounds can bind to peripheral anionic site (PAS) of the AChE with Ki values in micromolar range. Moreover, blind docking revealed the capability of investigated compounds to bind to new allosteric site (i.e. binding site II) distinct from PAS. Showing that these Cu-based compounds can act as new allosteric inhibitors of AChE and identifying novel allosteric binding site on AChE represents a significant contribution toward the design of novel and more effective inhibitors of AChE. © 2020 Elsevier Inc.",
journal = "Journal of Inorganic Biochemistry",
title = "Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action",
volume = "205",
pages = "110990",
doi = "10.1016/j.jinorgbio.2019.110990"
}
Bondžić, A. M., Senćanski, M. V., Vujačić Nikezić, A. V., Kirillova, M. V., André, V., Kirillov, A. M.,& Bondžić, B. P.. (2020). Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action. in Journal of Inorganic Biochemistry, 205, 110990.
https://doi.org/10.1016/j.jinorgbio.2019.110990
Bondžić AM, Senćanski MV, Vujačić Nikezić AV, Kirillova MV, André V, Kirillov AM, Bondžić BP. Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action. in Journal of Inorganic Biochemistry. 2020;205:110990.
doi:10.1016/j.jinorgbio.2019.110990 .
Bondžić, Aleksandra M., Senćanski, Milan V., Vujačić Nikezić, Ana V., Kirillova, Marina V., André, Vania, Kirillov, Alexander M., Bondžić, Bojan P., "Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action" in Journal of Inorganic Biochemistry, 205 (2020):110990,
https://doi.org/10.1016/j.jinorgbio.2019.110990 . .
10
9
5
9

Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel in Silico Method

Senćanski, Milan V.; Perović, Vladimir R.; Pajović, Snežana B.; Adžić, Miroslav; Paessler, Slobodan; Glišić, Sanja

(2020)

TY  - JOUR
AU  - Senćanski, Milan V.
AU  - Perović, Vladimir R.
AU  - Pajović, Snežana B.
AU  - Adžić, Miroslav
AU  - Paessler, Slobodan
AU  - Glišić, Sanja
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9611
AB  - The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the Informational spectrum method applied for small molecules was used for searching the Drugbank database and further followed by molecular docking. After in silico screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing. © 2020 by the authors.
T2  - Molecules
T1  - Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel in Silico Method
VL  - 25
IS  - 17
DO  - 10.3390/molecules25173830
ER  - 
@article{
author = "Senćanski, Milan V. and Perović, Vladimir R. and Pajović, Snežana B. and Adžić, Miroslav and Paessler, Slobodan and Glišić, Sanja",
year = "2020",
abstract = "The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the Informational spectrum method applied for small molecules was used for searching the Drugbank database and further followed by molecular docking. After in silico screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing. © 2020 by the authors.",
journal = "Molecules",
title = "Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel in Silico Method",
volume = "25",
number = "17",
doi = "10.3390/molecules25173830"
}
Senćanski, M. V., Perović, V. R., Pajović, S. B., Adžić, M., Paessler, S.,& Glišić, S.. (2020). Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel in Silico Method. in Molecules, 25(17).
https://doi.org/10.3390/molecules25173830
Senćanski MV, Perović VR, Pajović SB, Adžić M, Paessler S, Glišić S. Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel in Silico Method. in Molecules. 2020;25(17).
doi:10.3390/molecules25173830 .
Senćanski, Milan V., Perović, Vladimir R., Pajović, Snežana B., Adžić, Miroslav, Paessler, Slobodan, Glišić, Sanja, "Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel in Silico Method" in Molecules, 25, no. 17 (2020),
https://doi.org/10.3390/molecules25173830 . .
4
50
25
46

In vitro anti-influenza activity of in silico repurposed candidate drug Cycrimine

Matejin, Stanislava; Bukreyeva, Natalya; Radošević, Draginja; Senćanski, Milan V.; Mantlo, Emily; Veljković, Veljko; Glišić, Sanja; Paessler, Slobodan

(2020)

TY  - JOUR
AU  - Matejin, Stanislava
AU  - Bukreyeva, Natalya
AU  - Radošević, Draginja
AU  - Senćanski, Milan V.
AU  - Mantlo, Emily
AU  - Veljković, Veljko
AU  - Glišić, Sanja
AU  - Paessler, Slobodan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9036
AB  - Background: Due to the limitations of current antiviral therapies because of drug resistance and the emergence of new circulating viral strains, novel effective antivirals are urgently needed. Results of the previous drug repurposing by virtual screening of DrugBank revealed the anticholinergic drug cycrimine as a possible inhibitor of the influenza virus infection. Methods: In this study we examined the potential antiviral activity of cycrimine in vitro. Results: The experimental results showed the anti-influenza activity of cycrimine against two different influenza A subtypes in cell culture. Conclusions: The findings of this study suggest cycrimine as a potential therapeutic agent for influenza. ©2019 International Medical Press.
T2  - Antiviral Therapy
T1  - In vitro anti-influenza activity of in silico repurposed candidate drug Cycrimine
VL  - 24
IS  - 8
SP  - 589
EP  - 593
DO  - 10.3851/IMP3348
ER  - 
@article{
author = "Matejin, Stanislava and Bukreyeva, Natalya and Radošević, Draginja and Senćanski, Milan V. and Mantlo, Emily and Veljković, Veljko and Glišić, Sanja and Paessler, Slobodan",
year = "2020",
abstract = "Background: Due to the limitations of current antiviral therapies because of drug resistance and the emergence of new circulating viral strains, novel effective antivirals are urgently needed. Results of the previous drug repurposing by virtual screening of DrugBank revealed the anticholinergic drug cycrimine as a possible inhibitor of the influenza virus infection. Methods: In this study we examined the potential antiviral activity of cycrimine in vitro. Results: The experimental results showed the anti-influenza activity of cycrimine against two different influenza A subtypes in cell culture. Conclusions: The findings of this study suggest cycrimine as a potential therapeutic agent for influenza. ©2019 International Medical Press.",
journal = "Antiviral Therapy",
title = "In vitro anti-influenza activity of in silico repurposed candidate drug Cycrimine",
volume = "24",
number = "8",
pages = "589-593",
doi = "10.3851/IMP3348"
}
Matejin, S., Bukreyeva, N., Radošević, D., Senćanski, M. V., Mantlo, E., Veljković, V., Glišić, S.,& Paessler, S.. (2020). In vitro anti-influenza activity of in silico repurposed candidate drug Cycrimine. in Antiviral Therapy, 24(8), 589-593.
https://doi.org/10.3851/IMP3348
Matejin S, Bukreyeva N, Radošević D, Senćanski MV, Mantlo E, Veljković V, Glišić S, Paessler S. In vitro anti-influenza activity of in silico repurposed candidate drug Cycrimine. in Antiviral Therapy. 2020;24(8):589-593.
doi:10.3851/IMP3348 .
Matejin, Stanislava, Bukreyeva, Natalya, Radošević, Draginja, Senćanski, Milan V., Mantlo, Emily, Veljković, Veljko, Glišić, Sanja, Paessler, Slobodan, "In vitro anti-influenza activity of in silico repurposed candidate drug Cycrimine" in Antiviral Therapy, 24, no. 8 (2020):589-593,
https://doi.org/10.3851/IMP3348 . .
1
1

Direct-acting antiviral drugs for treatment of hepatitis C virus infection-clinical trials data and chemistry of NS3/4A protease inhibitors

Senćanski, Milan V.; Glišić, Sanja

(2020)

TY  - CHAP
AU  - Senćanski, Milan V.
AU  - Glišić, Sanja
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9689
AB  - The hepatitis C virus (HCV) infection is a major and rising global health problem, affecting more than 71 million people worldwide. HCV is connected with several hepatic and extrahepatic disorders, containing several malignancies. Improved HCV detection with combined simple, well-tolerated treatments could reduce the need for liver transplantation and HCV related mortality. The latest therapeutic advances might convert chronic HCV into a routinely treatable disease. The introduction of direct-acting antivirals (DAAs) has improved efficacy and tolerance of treatments with high cure rates. DAAs target specific nonstructural proteins of the HCV with consequential interference with viral replication and consequently infection. The majority of the FDA approved drugs for HCV and those pending approval are small molecule drugs, especially those that utilize the viral inhibitor mechanisms of action and favor the HCV nonstructural proteins as their targets. Therefore, DAAs represent the most promising anti-HCV drugs that carry the least risk of drug failure during clinical trials. NS3/4a protease inhibitors have become the basis for HCV treatment as most new therapies contain an inhibitor from this class. It is reported that the approach for combating chronic viral infections is best achieved by a combination of several strategies, by means of inhibiting several targets. Moreover, the best promising strategy for fighting HCV is most similar to the anti-HIV therapy. A literature review was conducted to identify published clinical trial results regarding DAA combination therapy with third generation NS3/4a protease inhibitors. Detailed attention is given to the chemistry of the approved NS3/4a drugs and candidate therapeutics in the advanced stages of development. In this regard, a review of key drug design and organic synthesis stages is presented for anti-NS3/4A DAAs. © 2020 Bentham Science Publishers. All rights reserved.
T2  - Frontiers in Clinical Drug Research - Anti Infectives
T1  - Direct-acting antiviral drugs for treatment of hepatitis C virus infection-clinical trials data and chemistry of NS3/4A protease inhibitors
VL  - 6
IS  - 1
SP  - 1
EP  - 48
DO  - 10.2174/9789811425745120060001
ER  - 
@inbook{
author = "Senćanski, Milan V. and Glišić, Sanja",
year = "2020",
abstract = "The hepatitis C virus (HCV) infection is a major and rising global health problem, affecting more than 71 million people worldwide. HCV is connected with several hepatic and extrahepatic disorders, containing several malignancies. Improved HCV detection with combined simple, well-tolerated treatments could reduce the need for liver transplantation and HCV related mortality. The latest therapeutic advances might convert chronic HCV into a routinely treatable disease. The introduction of direct-acting antivirals (DAAs) has improved efficacy and tolerance of treatments with high cure rates. DAAs target specific nonstructural proteins of the HCV with consequential interference with viral replication and consequently infection. The majority of the FDA approved drugs for HCV and those pending approval are small molecule drugs, especially those that utilize the viral inhibitor mechanisms of action and favor the HCV nonstructural proteins as their targets. Therefore, DAAs represent the most promising anti-HCV drugs that carry the least risk of drug failure during clinical trials. NS3/4a protease inhibitors have become the basis for HCV treatment as most new therapies contain an inhibitor from this class. It is reported that the approach for combating chronic viral infections is best achieved by a combination of several strategies, by means of inhibiting several targets. Moreover, the best promising strategy for fighting HCV is most similar to the anti-HIV therapy. A literature review was conducted to identify published clinical trial results regarding DAA combination therapy with third generation NS3/4a protease inhibitors. Detailed attention is given to the chemistry of the approved NS3/4a drugs and candidate therapeutics in the advanced stages of development. In this regard, a review of key drug design and organic synthesis stages is presented for anti-NS3/4A DAAs. © 2020 Bentham Science Publishers. All rights reserved.",
journal = "Frontiers in Clinical Drug Research - Anti Infectives",
booktitle = "Direct-acting antiviral drugs for treatment of hepatitis C virus infection-clinical trials data and chemistry of NS3/4A protease inhibitors",
volume = "6",
number = "1",
pages = "1-48",
doi = "10.2174/9789811425745120060001"
}
Senćanski, M. V.,& Glišić, S.. (2020). Direct-acting antiviral drugs for treatment of hepatitis C virus infection-clinical trials data and chemistry of NS3/4A protease inhibitors. in Frontiers in Clinical Drug Research - Anti Infectives, 6(1), 1-48.
https://doi.org/10.2174/9789811425745120060001
Senćanski MV, Glišić S. Direct-acting antiviral drugs for treatment of hepatitis C virus infection-clinical trials data and chemistry of NS3/4A protease inhibitors. in Frontiers in Clinical Drug Research - Anti Infectives. 2020;6(1):1-48.
doi:10.2174/9789811425745120060001 .
Senćanski, Milan V., Glišić, Sanja, "Direct-acting antiviral drugs for treatment of hepatitis C virus infection-clinical trials data and chemistry of NS3/4A protease inhibitors" in Frontiers in Clinical Drug Research - Anti Infectives, 6, no. 1 (2020):1-48,
https://doi.org/10.2174/9789811425745120060001 . .
1
1

Biological Rationale for the Repurposing of BCG Vaccine against SARS-CoV-2

Glišić, Sanja; Perović, Vladimir R.; Senćanski, Milan V.; Paessler, Slobodan; Veljković, Veljko

(2020)

TY  - JOUR
AU  - Glišić, Sanja
AU  - Perović, Vladimir R.
AU  - Senćanski, Milan V.
AU  - Paessler, Slobodan
AU  - Veljković, Veljko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9723
AB  - The Bacillus Calmette–Guerin vaccine is still widely used in the developing world. The vaccination prevents infant death not only from tuberculosis but also from unrelated infectious agents, especially respiratory tract infections and neonatal sepsis. It is proposed that these off-target protective effects of the BCG vaccine are mediated by the general long-term boosting of innate immune mechanisms, also termed “trained innate immunity”. Recent studies indicate that both COVID-19 incidence and total deaths are strongly associated with the presence or absence of national mandatory BCG vaccination programs and encourage the initiation of several clinical studies with the expectation that revaccination with BCG could reduce the incidence and severity of COVID-19. Here, presented results from the bioinformatics analysis of the Mycobacterium bovis (strain BCG/Pasteur 1173P2) proteome suggests four immunodominant antigens that could induce an immune response against SARS-CoV-2.
T2  - Journal of Proteome Research
T2  - Journal of Proteome ResearchJ. Proteome Res.
T1  - Biological Rationale for the Repurposing of BCG Vaccine against SARS-CoV-2
VL  - 19
IS  - 11
SP  - 4649
EP  - 4654
DO  - 10.1021/acs.jproteome.0c00410
ER  - 
@article{
author = "Glišić, Sanja and Perović, Vladimir R. and Senćanski, Milan V. and Paessler, Slobodan and Veljković, Veljko",
year = "2020",
abstract = "The Bacillus Calmette–Guerin vaccine is still widely used in the developing world. The vaccination prevents infant death not only from tuberculosis but also from unrelated infectious agents, especially respiratory tract infections and neonatal sepsis. It is proposed that these off-target protective effects of the BCG vaccine are mediated by the general long-term boosting of innate immune mechanisms, also termed “trained innate immunity”. Recent studies indicate that both COVID-19 incidence and total deaths are strongly associated with the presence or absence of national mandatory BCG vaccination programs and encourage the initiation of several clinical studies with the expectation that revaccination with BCG could reduce the incidence and severity of COVID-19. Here, presented results from the bioinformatics analysis of the Mycobacterium bovis (strain BCG/Pasteur 1173P2) proteome suggests four immunodominant antigens that could induce an immune response against SARS-CoV-2.",
journal = "Journal of Proteome Research, Journal of Proteome ResearchJ. Proteome Res.",
title = "Biological Rationale for the Repurposing of BCG Vaccine against SARS-CoV-2",
volume = "19",
number = "11",
pages = "4649-4654",
doi = "10.1021/acs.jproteome.0c00410"
}
Glišić, S., Perović, V. R., Senćanski, M. V., Paessler, S.,& Veljković, V.. (2020). Biological Rationale for the Repurposing of BCG Vaccine against SARS-CoV-2. in Journal of Proteome Research, 19(11), 4649-4654.
https://doi.org/10.1021/acs.jproteome.0c00410
Glišić S, Perović VR, Senćanski MV, Paessler S, Veljković V. Biological Rationale for the Repurposing of BCG Vaccine against SARS-CoV-2. in Journal of Proteome Research. 2020;19(11):4649-4654.
doi:10.1021/acs.jproteome.0c00410 .
Glišić, Sanja, Perović, Vladimir R., Senćanski, Milan V., Paessler, Slobodan, Veljković, Veljko, "Biological Rationale for the Repurposing of BCG Vaccine against SARS-CoV-2" in Journal of Proteome Research, 19, no. 11 (2020):4649-4654,
https://doi.org/10.1021/acs.jproteome.0c00410 . .
6
10
5
9

Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones

Isca, Vera M. S.; Senćanski, Milan V.; Filipović, Nenad R.; Dos Santos, Daniel J. V. A.; Čipak Gašparović, Ana; Saraiva, Lucilia; Afonso, Carlos A M; Rijo, Patrícia; Garcia-Sosa, Alfonso T

(2020)

TY  - JOUR
AU  - Isca, Vera M. S.
AU  - Senćanski, Milan V.
AU  - Filipović, Nenad R.
AU  - Dos Santos, Daniel J. V. A.
AU  - Čipak Gašparović, Ana
AU  - Saraiva, Lucilia
AU  - Afonso, Carlos A M
AU  - Rijo, Patrícia
AU  - Garcia-Sosa, Alfonso T
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9017
AB  - Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6β-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones’ bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes.
AB  - Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6β-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones’ bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes.
T2  - International Journal of Molecular Sciences
T1  - Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones
VL  - 21
IS  - 10
SP  - 3671
DO  - 10.3390/ijms21103671
ER  - 
@article{
author = "Isca, Vera M. S. and Senćanski, Milan V. and Filipović, Nenad R. and Dos Santos, Daniel J. V. A. and Čipak Gašparović, Ana and Saraiva, Lucilia and Afonso, Carlos A M and Rijo, Patrícia and Garcia-Sosa, Alfonso T",
year = "2020",
abstract = "Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6β-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones’ bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes., Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6β-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones’ bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes.",
journal = "International Journal of Molecular Sciences",
title = "Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones",
volume = "21",
number = "10",
pages = "3671",
doi = "10.3390/ijms21103671"
}
Isca, V. M. S., Senćanski, M. V., Filipović, N. R., Dos Santos, D. J. V. A., Čipak Gašparović, A., Saraiva, L., Afonso, C. A. M., Rijo, P.,& Garcia-Sosa, A. T.. (2020). Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones. in International Journal of Molecular Sciences, 21(10), 3671.
https://doi.org/10.3390/ijms21103671
Isca VMS, Senćanski MV, Filipović NR, Dos Santos DJVA, Čipak Gašparović A, Saraiva L, Afonso CAM, Rijo P, Garcia-Sosa AT. Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones. in International Journal of Molecular Sciences. 2020;21(10):3671.
doi:10.3390/ijms21103671 .
Isca, Vera M. S., Senćanski, Milan V., Filipović, Nenad R., Dos Santos, Daniel J. V. A., Čipak Gašparović, Ana, Saraiva, Lucilia, Afonso, Carlos A M, Rijo, Patrícia, Garcia-Sosa, Alfonso T, "Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones" in International Journal of Molecular Sciences, 21, no. 10 (2020):3671,
https://doi.org/10.3390/ijms21103671 . .
6
7
4
5

Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets

Stevanović, Strahinja; Senćanski, Milan V.; Danel, Mathieu; Menendez, Christophe; Belguedj, Roumaissa; Bouraiou, Abdelmalek; Nikolić, Katarina M.; Cojean, Sandrine; Loiseau, Philippe Marie; Glišić, Sanja; Baltas, Michel; García-Sosa, Alfonso T.

(2019)

TY  - JOUR
AU  - Stevanović, Strahinja
AU  - Senćanski, Milan V.
AU  - Danel, Mathieu
AU  - Menendez, Christophe
AU  - Belguedj, Roumaissa
AU  - Bouraiou, Abdelmalek
AU  - Nikolić, Katarina M.
AU  - Cojean, Sandrine
AU  - Loiseau, Philippe Marie
AU  - Glišić, Sanja
AU  - Baltas, Michel
AU  - García-Sosa, Alfonso T.
PY  - 2019
UR  - https://www.mdpi.com/1420-3049/24/7/1282
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8137
AB  - Due to the lack of approved vaccines against human leishmaniasis and the limitations of the current chemotherapy inducing side effects and drug resistance, development of new, effective chemotherapeutic agents is essential. This study describes the synthesis of a series of novel oxadiazoles and indolizine-containing compounds. The compounds were screened in silico using an EIIP/AQVN filter followed by ligand-based virtual screening and molecular docking to parasite arginase. Top hits were further screened versus human arginase and finally against an anti-target battery to tag their possible interactions with proteins essential for the metabolism and clearance of many substances. Eight candidate compounds were selected for further experimental testing. The results show measurable in vitro anti-leishmanial activity for three compounds. One compound with an IC50 value of 2.18 µM on Leishmania donovani intramacrophage amastigotes is clearly better positioned than the others as an interesting molecular template for further development of new anti-leishmanial agents.
T2  - Molecules
T1  - Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets
VL  - 24
IS  - 7
SP  - 1282
DO  - 10.3390/molecules24071282
ER  - 
@article{
author = "Stevanović, Strahinja and Senćanski, Milan V. and Danel, Mathieu and Menendez, Christophe and Belguedj, Roumaissa and Bouraiou, Abdelmalek and Nikolić, Katarina M. and Cojean, Sandrine and Loiseau, Philippe Marie and Glišić, Sanja and Baltas, Michel and García-Sosa, Alfonso T.",
year = "2019",
abstract = "Due to the lack of approved vaccines against human leishmaniasis and the limitations of the current chemotherapy inducing side effects and drug resistance, development of new, effective chemotherapeutic agents is essential. This study describes the synthesis of a series of novel oxadiazoles and indolizine-containing compounds. The compounds were screened in silico using an EIIP/AQVN filter followed by ligand-based virtual screening and molecular docking to parasite arginase. Top hits were further screened versus human arginase and finally against an anti-target battery to tag their possible interactions with proteins essential for the metabolism and clearance of many substances. Eight candidate compounds were selected for further experimental testing. The results show measurable in vitro anti-leishmanial activity for three compounds. One compound with an IC50 value of 2.18 µM on Leishmania donovani intramacrophage amastigotes is clearly better positioned than the others as an interesting molecular template for further development of new anti-leishmanial agents.",
journal = "Molecules",
title = "Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets",
volume = "24",
number = "7",
pages = "1282",
doi = "10.3390/molecules24071282"
}
Stevanović, S., Senćanski, M. V., Danel, M., Menendez, C., Belguedj, R., Bouraiou, A., Nikolić, K. M., Cojean, S., Loiseau, P. M., Glišić, S., Baltas, M.,& García-Sosa, A. T.. (2019). Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets. in Molecules, 24(7), 1282.
https://doi.org/10.3390/molecules24071282
Stevanović S, Senćanski MV, Danel M, Menendez C, Belguedj R, Bouraiou A, Nikolić KM, Cojean S, Loiseau PM, Glišić S, Baltas M, García-Sosa AT. Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets. in Molecules. 2019;24(7):1282.
doi:10.3390/molecules24071282 .
Stevanović, Strahinja, Senćanski, Milan V., Danel, Mathieu, Menendez, Christophe, Belguedj, Roumaissa, Bouraiou, Abdelmalek, Nikolić, Katarina M., Cojean, Sandrine, Loiseau, Philippe Marie, Glišić, Sanja, Baltas, Michel, García-Sosa, Alfonso T., "Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets" in Molecules, 24, no. 7 (2019):1282,
https://doi.org/10.3390/molecules24071282 . .
3
16
8
16

Virtual Screen for Repurposing of Drugs for Candidate Influenza a M2 Ion-Channel Inhibitors

Radošević, Draginja; Senćanski, Milan V.; Perović, Vladimir R.; Veljković, Nevena V.; Prljić, Jelena; Veljković, Veljko; Mantlo, Emily; Bukreyeva, Natalya; Paessler, Slobodan; Glišić, Sanja

(2019)

TY  - JOUR
AU  - Radošević, Draginja
AU  - Senćanski, Milan V.
AU  - Perović, Vladimir R.
AU  - Veljković, Nevena V.
AU  - Prljić, Jelena
AU  - Veljković, Veljko
AU  - Mantlo, Emily
AU  - Bukreyeva, Natalya
AU  - Paessler, Slobodan
AU  - Glišić, Sanja
PY  - 2019
UR  - https://www.frontiersin.org/article/10.3389/fcimb.2019.00067/full
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8163
AB  - Influenza A virus (IAV) matrix protein 2 (M2), an ion channel, is crucial for virus infection, and therefore, an important anti-influenza drug target. Adamantanes, also known as M2 channel blockers, are one of the two classes of Food and Drug Administration-approved anti-influenza drugs, although their use was discontinued due to prevalent drug resistance. Fast emergence of resistance to current anti-influenza drugs have raised an urgent need for developing new anti-influenza drugs against resistant forms of circulating viruses. Here we propose a simple theoretical criterion for fast virtual screening of molecular libraries for candidate anti-influenza ion channel inhibitors both for wild type and adamantane-resistant influenza A viruses. After in silico screening of drug space using the EIIP/AQVN filter and further filtering of drugs by ligand based virtual screening and molecular docking we propose the best candidate drugs as potential dual inhibitors of wild type and adamantane-resistant influenza A viruses. Finally, guanethidine, the best ranked drug selected from ligand-based virtual screening, was experimentally tested. The experimental results show measurable anti-influenza activity of guanethidine in cell culture. © 2019 Radosevic, Sencanski, Perovic, Veljkovic, Prljic, Veljkovic, Mantlo, Bukreyeva, Paessler and Glisic.
T2  - Frontiers in Cellular and Infection Microbiology
T1  - Virtual Screen for Repurposing of Drugs for Candidate Influenza a M2 Ion-Channel Inhibitors
VL  - 9
SP  - 67
DO  - 10.3389/fcimb.2019.00067
ER  - 
@article{
author = "Radošević, Draginja and Senćanski, Milan V. and Perović, Vladimir R. and Veljković, Nevena V. and Prljić, Jelena and Veljković, Veljko and Mantlo, Emily and Bukreyeva, Natalya and Paessler, Slobodan and Glišić, Sanja",
year = "2019",
abstract = "Influenza A virus (IAV) matrix protein 2 (M2), an ion channel, is crucial for virus infection, and therefore, an important anti-influenza drug target. Adamantanes, also known as M2 channel blockers, are one of the two classes of Food and Drug Administration-approved anti-influenza drugs, although their use was discontinued due to prevalent drug resistance. Fast emergence of resistance to current anti-influenza drugs have raised an urgent need for developing new anti-influenza drugs against resistant forms of circulating viruses. Here we propose a simple theoretical criterion for fast virtual screening of molecular libraries for candidate anti-influenza ion channel inhibitors both for wild type and adamantane-resistant influenza A viruses. After in silico screening of drug space using the EIIP/AQVN filter and further filtering of drugs by ligand based virtual screening and molecular docking we propose the best candidate drugs as potential dual inhibitors of wild type and adamantane-resistant influenza A viruses. Finally, guanethidine, the best ranked drug selected from ligand-based virtual screening, was experimentally tested. The experimental results show measurable anti-influenza activity of guanethidine in cell culture. © 2019 Radosevic, Sencanski, Perovic, Veljkovic, Prljic, Veljkovic, Mantlo, Bukreyeva, Paessler and Glisic.",
journal = "Frontiers in Cellular and Infection Microbiology",
title = "Virtual Screen for Repurposing of Drugs for Candidate Influenza a M2 Ion-Channel Inhibitors",
volume = "9",
pages = "67",
doi = "10.3389/fcimb.2019.00067"
}
Radošević, D., Senćanski, M. V., Perović, V. R., Veljković, N. V., Prljić, J., Veljković, V., Mantlo, E., Bukreyeva, N., Paessler, S.,& Glišić, S.. (2019). Virtual Screen for Repurposing of Drugs for Candidate Influenza a M2 Ion-Channel Inhibitors. in Frontiers in Cellular and Infection Microbiology, 9, 67.
https://doi.org/10.3389/fcimb.2019.00067
Radošević D, Senćanski MV, Perović VR, Veljković NV, Prljić J, Veljković V, Mantlo E, Bukreyeva N, Paessler S, Glišić S. Virtual Screen for Repurposing of Drugs for Candidate Influenza a M2 Ion-Channel Inhibitors. in Frontiers in Cellular and Infection Microbiology. 2019;9:67.
doi:10.3389/fcimb.2019.00067 .
Radošević, Draginja, Senćanski, Milan V., Perović, Vladimir R., Veljković, Nevena V., Prljić, Jelena, Veljković, Veljko, Mantlo, Emily, Bukreyeva, Natalya, Paessler, Slobodan, Glišić, Sanja, "Virtual Screen for Repurposing of Drugs for Candidate Influenza a M2 Ion-Channel Inhibitors" in Frontiers in Cellular and Infection Microbiology, 9 (2019):67,
https://doi.org/10.3389/fcimb.2019.00067 . .
1
19
7
18

Functional characterization of β2-adrenergic and insulin receptor heteromers

Susec, Maja; Senćanski, Milan V.; Glišić, Sanja; Veljković, Nevena V.; Pedersen, Christina; Drinovec, Luka; Stojan, Jurij; Nøhr, Jane; Vrecl, Milka

(2019)

TY  - JOUR
AU  - Susec, Maja
AU  - Senćanski, Milan V.
AU  - Glišić, Sanja
AU  - Veljković, Nevena V.
AU  - Pedersen, Christina
AU  - Drinovec, Luka
AU  - Stojan, Jurij
AU  - Nøhr, Jane
AU  - Vrecl, Milka
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8490
AB  - This study aimed to functionally characterize β2-adrenergic (β2AR) and insulin receptor (IR) heteromers in regard to β-arrestin 2 (βarr2) recruitment and cAMP signaling and to examine the involvement of the cytoplasmic portion of the IR β chain in heteromerization with β2AR. Evidence for β2AR:IR:βarr2 complex formation and the specificity of the IR:βarr2 interaction was first provided by bioinfomatics analysis. Receptor-heteromer investigation technology (HIT) then provided functional evidence of β2AR:IR heterodimerization by showing isoproterenol-induced but not insulin-induced GFP2-βarr2 recruitment to the β2AR:IR complex; the IR:βarr2 interaction was found to only be constitutive. The constitutive IR:βarr2 BRET signal (BRETconst) was significantly smaller in cells coexpressing IR-RLuc8 and a GFP2-βarr2 1–185 mutant lacking the proposed IR binding domain. β2AR:IR heteromerization also influenced the pharmacological phenotype of β2AR, i.e., its efficacy in recruiting βarr2 and activating cAMP signaling. Evidence suggesting involvement of the cytoplasmic portion of the IR β chain in the interaction with β2AR was provided by BRET2 saturation and HIT assays using an IR 1–1271 stop mutant lacking the IR C-terminal tail region. For the complex consisting of IR 1–1271–RLuc8:β2AR-GFP2, saturation was not reached, most likely reflecting random collisions between IR 1–1271 and β2AR. Furthermore, in the HIT assay, no substantial agonist-induced increase in the BRET2 signal was detected that would be indicative of βarr2 recruitment to the IR 1–1271:β2AR heteromer. Complementary 3D visualization of β2AR:IR provided supporting evidence for stability of the heterotetramer complex and identified amino acid residues involved in β2AR:IR heteromerization. © 2019
T2  - Neuropharmacology
T1  - Functional characterization of β2-adrenergic and insulin receptor heteromers
VL  - 152
SP  - 78
EP  - 89
DO  - 10.1016/j.neuropharm.2019.01.025
ER  - 
@article{
author = "Susec, Maja and Senćanski, Milan V. and Glišić, Sanja and Veljković, Nevena V. and Pedersen, Christina and Drinovec, Luka and Stojan, Jurij and Nøhr, Jane and Vrecl, Milka",
year = "2019",
abstract = "This study aimed to functionally characterize β2-adrenergic (β2AR) and insulin receptor (IR) heteromers in regard to β-arrestin 2 (βarr2) recruitment and cAMP signaling and to examine the involvement of the cytoplasmic portion of the IR β chain in heteromerization with β2AR. Evidence for β2AR:IR:βarr2 complex formation and the specificity of the IR:βarr2 interaction was first provided by bioinfomatics analysis. Receptor-heteromer investigation technology (HIT) then provided functional evidence of β2AR:IR heterodimerization by showing isoproterenol-induced but not insulin-induced GFP2-βarr2 recruitment to the β2AR:IR complex; the IR:βarr2 interaction was found to only be constitutive. The constitutive IR:βarr2 BRET signal (BRETconst) was significantly smaller in cells coexpressing IR-RLuc8 and a GFP2-βarr2 1–185 mutant lacking the proposed IR binding domain. β2AR:IR heteromerization also influenced the pharmacological phenotype of β2AR, i.e., its efficacy in recruiting βarr2 and activating cAMP signaling. Evidence suggesting involvement of the cytoplasmic portion of the IR β chain in the interaction with β2AR was provided by BRET2 saturation and HIT assays using an IR 1–1271 stop mutant lacking the IR C-terminal tail region. For the complex consisting of IR 1–1271–RLuc8:β2AR-GFP2, saturation was not reached, most likely reflecting random collisions between IR 1–1271 and β2AR. Furthermore, in the HIT assay, no substantial agonist-induced increase in the BRET2 signal was detected that would be indicative of βarr2 recruitment to the IR 1–1271:β2AR heteromer. Complementary 3D visualization of β2AR:IR provided supporting evidence for stability of the heterotetramer complex and identified amino acid residues involved in β2AR:IR heteromerization. © 2019",
journal = "Neuropharmacology",
title = "Functional characterization of β2-adrenergic and insulin receptor heteromers",
volume = "152",
pages = "78-89",
doi = "10.1016/j.neuropharm.2019.01.025"
}
Susec, M., Senćanski, M. V., Glišić, S., Veljković, N. V., Pedersen, C., Drinovec, L., Stojan, J., Nøhr, J.,& Vrecl, M.. (2019). Functional characterization of β2-adrenergic and insulin receptor heteromers. in Neuropharmacology, 152, 78-89.
https://doi.org/10.1016/j.neuropharm.2019.01.025
Susec M, Senćanski MV, Glišić S, Veljković NV, Pedersen C, Drinovec L, Stojan J, Nøhr J, Vrecl M. Functional characterization of β2-adrenergic and insulin receptor heteromers. in Neuropharmacology. 2019;152:78-89.
doi:10.1016/j.neuropharm.2019.01.025 .
Susec, Maja, Senćanski, Milan V., Glišić, Sanja, Veljković, Nevena V., Pedersen, Christina, Drinovec, Luka, Stojan, Jurij, Nøhr, Jane, Vrecl, Milka, "Functional characterization of β2-adrenergic and insulin receptor heteromers" in Neuropharmacology, 152 (2019):78-89,
https://doi.org/10.1016/j.neuropharm.2019.01.025 . .
6
3
6

Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR)

Senćanski, Milan V.; Glišić, Sanja; Šnajder, Marko; Veljković, Nevena V.; Poklar Ulrih, Nataša; Mavri, Janez; Vrecl, Milka

(2019)

TY  - JOUR
AU  - Senćanski, Milan V.
AU  - Glišić, Sanja
AU  - Šnajder, Marko
AU  - Veljković, Nevena V.
AU  - Poklar Ulrih, Nataša
AU  - Mavri, Janez
AU  - Vrecl, Milka
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8648
AB  - This study aimed to design and functionally characterize peptide mimetics of the nanobody (Nb) related to the β2-adrenergic receptor (β2-AR) (nanobody-derived peptide, NDP). We postulated that the computationally derived and optimized complementarity-determining region 3 (CDR3) of Nb is sufficient for its interaction with receptor. Sequence-related Nb-families preferring the agonist-bound active conformation of β2-AR were analysed using the informational spectrum method (ISM) and β2-AR:NDP complexes studied using protein-peptide docking and molecular dynamics (MD) simulations in conjunction with metadynamics calculations of free energy binding. The selected NDP of Nb71, designated P3, was 17 amino acids long and included CDR3. Metadynamics calculations yielded a binding free energy for the β2-AR:P3 complex of ΔG = (−7.23 ± 0.04) kcal/mol, or a Kd of (7.9 ± 0.5) μM, for T = 310 K. In vitro circular dichroism (CD) spectropolarimetry and microscale thermophoresis (MST) data provided additional evidence for P3 interaction with agonist-activated β2-AR, which displayed ~10-fold higher affinity for P3 than the unstimulated receptor (MST-derived EC50 of 3.57 µM vs. 58.22 µM), while its ability to inhibit the agonist-induced interaction of β2-AR with β-arrestin 2 was less evident. In summary, theoretical and experimental evidence indicated that P3 preferentially binds agonist-activated β2-AR. © 2019, The Author(s).
T2  - Scientific Reports
T1  - Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR)
VL  - 9
IS  - 1
SP  - 16555
DO  - 10.1038/s41598-019-52934-8
ER  - 
@article{
author = "Senćanski, Milan V. and Glišić, Sanja and Šnajder, Marko and Veljković, Nevena V. and Poklar Ulrih, Nataša and Mavri, Janez and Vrecl, Milka",
year = "2019",
abstract = "This study aimed to design and functionally characterize peptide mimetics of the nanobody (Nb) related to the β2-adrenergic receptor (β2-AR) (nanobody-derived peptide, NDP). We postulated that the computationally derived and optimized complementarity-determining region 3 (CDR3) of Nb is sufficient for its interaction with receptor. Sequence-related Nb-families preferring the agonist-bound active conformation of β2-AR were analysed using the informational spectrum method (ISM) and β2-AR:NDP complexes studied using protein-peptide docking and molecular dynamics (MD) simulations in conjunction with metadynamics calculations of free energy binding. The selected NDP of Nb71, designated P3, was 17 amino acids long and included CDR3. Metadynamics calculations yielded a binding free energy for the β2-AR:P3 complex of ΔG = (−7.23 ± 0.04) kcal/mol, or a Kd of (7.9 ± 0.5) μM, for T = 310 K. In vitro circular dichroism (CD) spectropolarimetry and microscale thermophoresis (MST) data provided additional evidence for P3 interaction with agonist-activated β2-AR, which displayed ~10-fold higher affinity for P3 than the unstimulated receptor (MST-derived EC50 of 3.57 µM vs. 58.22 µM), while its ability to inhibit the agonist-induced interaction of β2-AR with β-arrestin 2 was less evident. In summary, theoretical and experimental evidence indicated that P3 preferentially binds agonist-activated β2-AR. © 2019, The Author(s).",
journal = "Scientific Reports",
title = "Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR)",
volume = "9",
number = "1",
pages = "16555",
doi = "10.1038/s41598-019-52934-8"
}
Senćanski, M. V., Glišić, S., Šnajder, M., Veljković, N. V., Poklar Ulrih, N., Mavri, J.,& Vrecl, M.. (2019). Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR). in Scientific Reports, 9(1), 16555.
https://doi.org/10.1038/s41598-019-52934-8
Senćanski MV, Glišić S, Šnajder M, Veljković NV, Poklar Ulrih N, Mavri J, Vrecl M. Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR). in Scientific Reports. 2019;9(1):16555.
doi:10.1038/s41598-019-52934-8 .
Senćanski, Milan V., Glišić, Sanja, Šnajder, Marko, Veljković, Nevena V., Poklar Ulrih, Nataša, Mavri, Janez, Vrecl, Milka, "Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR)" in Scientific Reports, 9, no. 1 (2019):16555,
https://doi.org/10.1038/s41598-019-52934-8 . .
4
11
4
9

Novel electrophilic amides amenable by the Ugi reaction perturb thioredoxin system via thioredoxin reductase 1 (TrxR1) inhibition: Identification of DVD-445 as a new lead compound for anticancer therapy

Jovanović, Mirna; Zhukovsky, Daniil; Podolski-Renić, Ana; Domračeva, Ilona; Žalubovskis, Raivis; Senćanski, Milan V.; Glišić, Sanja; Sharoyko, Vladimir; Tennikova, Tatiana; Dar'in, Dmitry; Pešić, Milica; Krasavin, Mikhail

(2019)

TY  - JOUR
AU  - Jovanović, Mirna
AU  - Zhukovsky, Daniil
AU  - Podolski-Renić, Ana
AU  - Domračeva, Ilona
AU  - Žalubovskis, Raivis
AU  - Senćanski, Milan V.
AU  - Glišić, Sanja
AU  - Sharoyko, Vladimir
AU  - Tennikova, Tatiana
AU  - Dar'in, Dmitry
AU  - Pešić, Milica
AU  - Krasavin, Mikhail
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8532
AB  - A series of peptidomimetic compounds incorporating an electrophilic moiety was synthesized using the Ugi reaction. These compounds (termed the Ugi Michael acceptors or UMAs) were designed to target the selenocysteine catalytic residue of thioredoxin reductase 1 (TrxR1), a promising cancer target. The compounds were assessed for their potential to inhibit TrxR1 using human neuroblastoma (SH-SY5Y) cell lysate. Based on this initial screening, six compounds were selected for testing against recombinant rat TrxR1 and in the insulin assay to reveal low-micromolar to submicromolar potency of these inhibitors. The same frontrunner compounds were evaluated for their ability to exert antiproliferative activity and induce cell death and this activity was compared to the UMA effects on the levels of reactive oxygen and nitrogen species (RONS). Collectively, the UMA compounds class presented itself as a rich source of leads for TrxR1 inhibitor discovery for anticancer application. Compound 7 (DVD-445) was nominated a lead for further optimization. © 2019 Elsevier Masson SAS
T2  - European Journal of Medicinal Chemistry
T1  - Novel electrophilic amides amenable by the Ugi reaction perturb thioredoxin system via thioredoxin reductase 1 (TrxR1) inhibition: Identification of DVD-445 as a new lead compound for anticancer therapy
VL  - 181
SP  - 111580
DO  - 10.1016/j.ejmech.2019.111580
ER  - 
@article{
author = "Jovanović, Mirna and Zhukovsky, Daniil and Podolski-Renić, Ana and Domračeva, Ilona and Žalubovskis, Raivis and Senćanski, Milan V. and Glišić, Sanja and Sharoyko, Vladimir and Tennikova, Tatiana and Dar'in, Dmitry and Pešić, Milica and Krasavin, Mikhail",
year = "2019",
abstract = "A series of peptidomimetic compounds incorporating an electrophilic moiety was synthesized using the Ugi reaction. These compounds (termed the Ugi Michael acceptors or UMAs) were designed to target the selenocysteine catalytic residue of thioredoxin reductase 1 (TrxR1), a promising cancer target. The compounds were assessed for their potential to inhibit TrxR1 using human neuroblastoma (SH-SY5Y) cell lysate. Based on this initial screening, six compounds were selected for testing against recombinant rat TrxR1 and in the insulin assay to reveal low-micromolar to submicromolar potency of these inhibitors. The same frontrunner compounds were evaluated for their ability to exert antiproliferative activity and induce cell death and this activity was compared to the UMA effects on the levels of reactive oxygen and nitrogen species (RONS). Collectively, the UMA compounds class presented itself as a rich source of leads for TrxR1 inhibitor discovery for anticancer application. Compound 7 (DVD-445) was nominated a lead for further optimization. © 2019 Elsevier Masson SAS",
journal = "European Journal of Medicinal Chemistry",
title = "Novel electrophilic amides amenable by the Ugi reaction perturb thioredoxin system via thioredoxin reductase 1 (TrxR1) inhibition: Identification of DVD-445 as a new lead compound for anticancer therapy",
volume = "181",
pages = "111580",
doi = "10.1016/j.ejmech.2019.111580"
}
Jovanović, M., Zhukovsky, D., Podolski-Renić, A., Domračeva, I., Žalubovskis, R., Senćanski, M. V., Glišić, S., Sharoyko, V., Tennikova, T., Dar'in, D., Pešić, M.,& Krasavin, M.. (2019). Novel electrophilic amides amenable by the Ugi reaction perturb thioredoxin system via thioredoxin reductase 1 (TrxR1) inhibition: Identification of DVD-445 as a new lead compound for anticancer therapy. in European Journal of Medicinal Chemistry, 181, 111580.
https://doi.org/10.1016/j.ejmech.2019.111580
Jovanović M, Zhukovsky D, Podolski-Renić A, Domračeva I, Žalubovskis R, Senćanski MV, Glišić S, Sharoyko V, Tennikova T, Dar'in D, Pešić M, Krasavin M. Novel electrophilic amides amenable by the Ugi reaction perturb thioredoxin system via thioredoxin reductase 1 (TrxR1) inhibition: Identification of DVD-445 as a new lead compound for anticancer therapy. in European Journal of Medicinal Chemistry. 2019;181:111580.
doi:10.1016/j.ejmech.2019.111580 .
Jovanović, Mirna, Zhukovsky, Daniil, Podolski-Renić, Ana, Domračeva, Ilona, Žalubovskis, Raivis, Senćanski, Milan V., Glišić, Sanja, Sharoyko, Vladimir, Tennikova, Tatiana, Dar'in, Dmitry, Pešić, Milica, Krasavin, Mikhail, "Novel electrophilic amides amenable by the Ugi reaction perturb thioredoxin system via thioredoxin reductase 1 (TrxR1) inhibition: Identification of DVD-445 as a new lead compound for anticancer therapy" in European Journal of Medicinal Chemistry, 181 (2019):111580,
https://doi.org/10.1016/j.ejmech.2019.111580 . .
1
19
13
20

Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification

Bjelogrlić, Snežana K.; Todorović, Tamara; Kojić, Milan O.; Senćanski, Milan V.; Nikolić, Milan R.; Višnjevac, Aleksandar; Araškov, Jovana; Miljković, Marija S.; Muller, Christian D.; Filipović, Nenad R.

(2019)

TY  - JOUR
AU  - Bjelogrlić, Snežana K.
AU  - Todorović, Tamara
AU  - Kojić, Milan O.
AU  - Senćanski, Milan V.
AU  - Nikolić, Milan R.
AU  - Višnjevac, Aleksandar
AU  - Araškov, Jovana
AU  - Miljković, Marija S.
AU  - Muller, Christian D.
AU  - Filipović, Nenad R.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8382
AB  - Anticancer activity of Pd complexes 1–5 with bidentate N-heteroaromatic hydrazone ligands was investigated on human acute monocytic leukemia (THP-1; cells in a suspension) and human mammary adenocarcinoma (MCF-7; two-dimensional layer and three-dimensional spheroid tumor model) cell lines. For the Pd(II) complexes with condensation products of ethyl hydrazainoacetate and quinoline-8-carboxaldehyde (complex 1) and 2-formylpyridine (complex 3), for which apoptosis was determined as a mechanism of anticancer activity, further investigation revealed that they arrest the cell cycle in G0/G1 phase, induce generation of reactive oxygen species and inhibit Topoisomerase I in vitro. In silico studies corroborate experimental findings that these complexes show topoisomerase inhibition activity in the micromolar range and indicate binding to a DNA's minor groove as another potential target. Based on the results obtained by circular dichroism and fluorescence spectroscopy measurements, the most active complexes are suitable to be delivered to a blood stream via human serum albumin.
T2  - Journal of Inorganic Biochemistry
T1  - Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification
VL  - 199
SP  - UNSP 110758
DO  - 10.1016/j.jinorgbio.2019.110758
ER  - 
@article{
author = "Bjelogrlić, Snežana K. and Todorović, Tamara and Kojić, Milan O. and Senćanski, Milan V. and Nikolić, Milan R. and Višnjevac, Aleksandar and Araškov, Jovana and Miljković, Marija S. and Muller, Christian D. and Filipović, Nenad R.",
year = "2019",
abstract = "Anticancer activity of Pd complexes 1–5 with bidentate N-heteroaromatic hydrazone ligands was investigated on human acute monocytic leukemia (THP-1; cells in a suspension) and human mammary adenocarcinoma (MCF-7; two-dimensional layer and three-dimensional spheroid tumor model) cell lines. For the Pd(II) complexes with condensation products of ethyl hydrazainoacetate and quinoline-8-carboxaldehyde (complex 1) and 2-formylpyridine (complex 3), for which apoptosis was determined as a mechanism of anticancer activity, further investigation revealed that they arrest the cell cycle in G0/G1 phase, induce generation of reactive oxygen species and inhibit Topoisomerase I in vitro. In silico studies corroborate experimental findings that these complexes show topoisomerase inhibition activity in the micromolar range and indicate binding to a DNA's minor groove as another potential target. Based on the results obtained by circular dichroism and fluorescence spectroscopy measurements, the most active complexes are suitable to be delivered to a blood stream via human serum albumin.",
journal = "Journal of Inorganic Biochemistry",
title = "Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification",
volume = "199",
pages = "UNSP 110758",
doi = "10.1016/j.jinorgbio.2019.110758"
}
Bjelogrlić, S. K., Todorović, T., Kojić, M. O., Senćanski, M. V., Nikolić, M. R., Višnjevac, A., Araškov, J., Miljković, M. S., Muller, C. D.,& Filipović, N. R.. (2019). Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification. in Journal of Inorganic Biochemistry, 199, UNSP 110758.
https://doi.org/10.1016/j.jinorgbio.2019.110758
Bjelogrlić SK, Todorović T, Kojić MO, Senćanski MV, Nikolić MR, Višnjevac A, Araškov J, Miljković MS, Muller CD, Filipović NR. Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification. in Journal of Inorganic Biochemistry. 2019;199:UNSP 110758.
doi:10.1016/j.jinorgbio.2019.110758 .
Bjelogrlić, Snežana K., Todorović, Tamara, Kojić, Milan O., Senćanski, Milan V., Nikolić, Milan R., Višnjevac, Aleksandar, Araškov, Jovana, Miljković, Marija S., Muller, Christian D., Filipović, Nenad R., "Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification" in Journal of Inorganic Biochemistry, 199 (2019):UNSP 110758,
https://doi.org/10.1016/j.jinorgbio.2019.110758 . .
19
9
16

Ibuprofen as a template molecule for drug design against Ebola virus

Paessler, Slobodan; Huang, Cheng; Senćanski, Milan V.; Veljković, Nevena V.; Perović, Vladimir R.; Glišić, Sanja; Veljković, Veljko

(2018)

TY  - JOUR
AU  - Paessler, Slobodan
AU  - Huang, Cheng
AU  - Senćanski, Milan V.
AU  - Veljković, Nevena V.
AU  - Perović, Vladimir R.
AU  - Glišić, Sanja
AU  - Veljković, Veljko
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7695
AB  - The Ebola virus outbreak in West Africa 2015 and Congo 2017, point out an urgent need for development of drugs against this important pathogen. Previously, by repurposing virtual screening of 6438 drugs from DrugBank, ibuprofen was selected as a possible inhibitor of the Ebola virus infection. The results of an additional docking analysis as well as experimental results showing measurable anti-Ebola effect of ibuprofen in cell culture suggest ibuprofen as a promising molecular template for the development of drugs for treatment of the infection by Ebola virus.
T2  - Frontiers in Bioscience - Landmark
T1  - Ibuprofen as a template molecule for drug design against Ebola virus
VL  - 23
IS  - 5
SP  - 947
EP  - 953
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7695
ER  - 
@article{
author = "Paessler, Slobodan and Huang, Cheng and Senćanski, Milan V. and Veljković, Nevena V. and Perović, Vladimir R. and Glišić, Sanja and Veljković, Veljko",
year = "2018",
abstract = "The Ebola virus outbreak in West Africa 2015 and Congo 2017, point out an urgent need for development of drugs against this important pathogen. Previously, by repurposing virtual screening of 6438 drugs from DrugBank, ibuprofen was selected as a possible inhibitor of the Ebola virus infection. The results of an additional docking analysis as well as experimental results showing measurable anti-Ebola effect of ibuprofen in cell culture suggest ibuprofen as a promising molecular template for the development of drugs for treatment of the infection by Ebola virus.",
journal = "Frontiers in Bioscience - Landmark",
title = "Ibuprofen as a template molecule for drug design against Ebola virus",
volume = "23",
number = "5",
pages = "947-953",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7695"
}
Paessler, S., Huang, C., Senćanski, M. V., Veljković, N. V., Perović, V. R., Glišić, S.,& Veljković, V.. (2018). Ibuprofen as a template molecule for drug design against Ebola virus. in Frontiers in Bioscience - Landmark, 23(5), 947-953.
https://hdl.handle.net/21.15107/rcub_vinar_7695
Paessler S, Huang C, Senćanski MV, Veljković NV, Perović VR, Glišić S, Veljković V. Ibuprofen as a template molecule for drug design against Ebola virus. in Frontiers in Bioscience - Landmark. 2018;23(5):947-953.
https://hdl.handle.net/21.15107/rcub_vinar_7695 .
Paessler, Slobodan, Huang, Cheng, Senćanski, Milan V., Veljković, Nevena V., Perović, Vladimir R., Glišić, Sanja, Veljković, Veljko, "Ibuprofen as a template molecule for drug design against Ebola virus" in Frontiers in Bioscience - Landmark, 23, no. 5 (2018):947-953,
https://hdl.handle.net/21.15107/rcub_vinar_7695 .
18

Combined in silico and experimental approach to identify the peptide mimetic of the nanobody that stabilize functional conformational state of the beta2 adrenergic receptor (β2AR)

Senćanski, Milan; Vrecl, Milka; Veljković, Nevena V.; Glišić, Sanja

(Department of Biology and Ecology : Faculty of Sciences University of Novi Sad, 2018)

TY  - CONF
AU  - Senćanski, Milan
AU  - Vrecl, Milka
AU  - Veljković, Nevena V.
AU  - Glišić, Sanja
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11013
AB  - Stabilization of specific G-protein coupled receptor (GPCR) conformation is achieved by ligand binding to orthosteric or allosteric sites on a GPCRs. A crucial unresolved issue in GPCRs activation/signaling is the role of receptor structural conformations in G protein/effector protein selection. One of the possible approaches to get comprehensive depiction of GPCRs activation dynamics are molecular simulations and recently described nanobody-derived intrabodies. Monomeric single-domain antibody (nanobody) from the Camelid family was found to allosterically bind to and stabilizes distinct conformational states of the β2AR. By applying informational spectrum method (ISM), a virtual spectroscopy method for investigation of the protein-protein interactions, we have designed peptide mimetic of the nanobody related to the β2AR (nanobody derived peptide, NDP). Further, interaction between NDP and the ligand-bound β2AR active conformation have been studied by protein-peptide docking, molecular dynamics simulations and metadynamics calculations of free energy binding. Finally, the affinity of selected NDPs towards agonist-activated β2AR was also studied by microscale thermophoresis (MST) and by bioluminescence resonance energy transfer (BRET) based β-arrestin 2 recruitment assay. MST data predicted micromolar range interaction of selected NDPs with the β2AR, while the preliminary β-arrestin 2 recruitment results suggest prospective further modification and optimization of NDPs toward effective modulators of the β2AR.
PB  - Department of Biology and Ecology : Faculty of Sciences University of Novi Sad
C3  - Biologia Serbica : Belgrade BioInformatics Conference : BelBi2018 : program and the book of abstracts; June 18-22
T1  - Combined in silico and experimental approach to identify the peptide mimetic of the nanobody that stabilize functional conformational state of the beta2 adrenergic receptor (β2AR)
VL  - 40
IS  - 1
SP  - 58
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11013
ER  - 
@conference{
author = "Senćanski, Milan and Vrecl, Milka and Veljković, Nevena V. and Glišić, Sanja",
year = "2018",
abstract = "Stabilization of specific G-protein coupled receptor (GPCR) conformation is achieved by ligand binding to orthosteric or allosteric sites on a GPCRs. A crucial unresolved issue in GPCRs activation/signaling is the role of receptor structural conformations in G protein/effector protein selection. One of the possible approaches to get comprehensive depiction of GPCRs activation dynamics are molecular simulations and recently described nanobody-derived intrabodies. Monomeric single-domain antibody (nanobody) from the Camelid family was found to allosterically bind to and stabilizes distinct conformational states of the β2AR. By applying informational spectrum method (ISM), a virtual spectroscopy method for investigation of the protein-protein interactions, we have designed peptide mimetic of the nanobody related to the β2AR (nanobody derived peptide, NDP). Further, interaction between NDP and the ligand-bound β2AR active conformation have been studied by protein-peptide docking, molecular dynamics simulations and metadynamics calculations of free energy binding. Finally, the affinity of selected NDPs towards agonist-activated β2AR was also studied by microscale thermophoresis (MST) and by bioluminescence resonance energy transfer (BRET) based β-arrestin 2 recruitment assay. MST data predicted micromolar range interaction of selected NDPs with the β2AR, while the preliminary β-arrestin 2 recruitment results suggest prospective further modification and optimization of NDPs toward effective modulators of the β2AR.",
publisher = "Department of Biology and Ecology : Faculty of Sciences University of Novi Sad",
journal = "Biologia Serbica : Belgrade BioInformatics Conference : BelBi2018 : program and the book of abstracts; June 18-22",
title = "Combined in silico and experimental approach to identify the peptide mimetic of the nanobody that stabilize functional conformational state of the beta2 adrenergic receptor (β2AR)",
volume = "40",
number = "1",
pages = "58",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11013"
}
Senćanski, M., Vrecl, M., Veljković, N. V.,& Glišić, S.. (2018). Combined in silico and experimental approach to identify the peptide mimetic of the nanobody that stabilize functional conformational state of the beta2 adrenergic receptor (β2AR). in Biologia Serbica : Belgrade BioInformatics Conference : BelBi2018 : program and the book of abstracts; June 18-22
Department of Biology and Ecology : Faculty of Sciences University of Novi Sad., 40(1), 58.
https://hdl.handle.net/21.15107/rcub_vinar_11013
Senćanski M, Vrecl M, Veljković NV, Glišić S. Combined in silico and experimental approach to identify the peptide mimetic of the nanobody that stabilize functional conformational state of the beta2 adrenergic receptor (β2AR). in Biologia Serbica : Belgrade BioInformatics Conference : BelBi2018 : program and the book of abstracts; June 18-22. 2018;40(1):58.
https://hdl.handle.net/21.15107/rcub_vinar_11013 .
Senćanski, Milan, Vrecl, Milka, Veljković, Nevena V., Glišić, Sanja, "Combined in silico and experimental approach to identify the peptide mimetic of the nanobody that stabilize functional conformational state of the beta2 adrenergic receptor (β2AR)" in Biologia Serbica : Belgrade BioInformatics Conference : BelBi2018 : program and the book of abstracts; June 18-22, 40, no. 1 (2018):58,
https://hdl.handle.net/21.15107/rcub_vinar_11013 .

In Silico Discovery of a Substituted 6-Methoxy-quinalidine with Leishmanicidal Activity in Leishmania infantum

Stevanović, Strahinja; Perdih, Andrej; Senćanski, Milan V.; Glišić, Sanja; Duarte, Margarida; Tomas, Ana; Sena, Filipa; Sousa, Filipe; Pereira, Manuela M.; Šolmajer, Tom

(2018)

TY  - JOUR
AU  - Stevanović, Strahinja
AU  - Perdih, Andrej
AU  - Senćanski, Milan V.
AU  - Glišić, Sanja
AU  - Duarte, Margarida
AU  - Tomas, Ana
AU  - Sena, Filipa
AU  - Sousa, Filipe
AU  - Pereira, Manuela M.
AU  - Šolmajer, Tom
PY  - 2018
UR  - http://www.mdpi.com/1420-3049/23/4/772
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7774
AB  - There is an urgent need for the discovery of new antileishmanial drugs with a new mechanism of action. Type 2 NADH dehydrogenase from Leishmania infantum (LiNDH2) is an enzyme of the parasite's respiratory system, which catalyzes the electron transfer from NADH to ubiquinone without coupled proton pumping. In previous studies of the related NADH: ubiquinone oxidoreductase crystal structure from Saccharomyces cerevisiae, two ubiquinone-binding sites (UQI and UQII) were identified and shown to play an important role in the NDH-2-catalyzed oxidoreduction reaction. Based on the available structural data, we developed a three-dimensional structural model of LiNDH2 using homology detection methods and performed an in silico virtual screening campaign to search for potential inhibitors targeting the LiNDH2 ubiquinone-binding site 1-UQI. Selected compounds displaying favorable properties in the computational screening experiments were assayed for inhibitory activity in the structurally similar recombinant NDH-2 from S. aureus and leishmanicidal activity was determined in the wild-type axenic amastigotes and promastigotes of L. infantum. The identified compound, a substituted 6-methoxy-quinalidine, showed promising nanomolar leishmanicidal activity on wild-type axenic promastigotes and amastigotes of L. infantum and the potential for further development.
T2  - Molecules
T1  - In Silico Discovery of a Substituted 6-Methoxy-quinalidine with Leishmanicidal Activity in Leishmania infantum
VL  - 23
IS  - 4
SP  - 772
DO  - 10.3390/molecules23040772
ER  - 
@article{
author = "Stevanović, Strahinja and Perdih, Andrej and Senćanski, Milan V. and Glišić, Sanja and Duarte, Margarida and Tomas, Ana and Sena, Filipa and Sousa, Filipe and Pereira, Manuela M. and Šolmajer, Tom",
year = "2018",
abstract = "There is an urgent need for the discovery of new antileishmanial drugs with a new mechanism of action. Type 2 NADH dehydrogenase from Leishmania infantum (LiNDH2) is an enzyme of the parasite's respiratory system, which catalyzes the electron transfer from NADH to ubiquinone without coupled proton pumping. In previous studies of the related NADH: ubiquinone oxidoreductase crystal structure from Saccharomyces cerevisiae, two ubiquinone-binding sites (UQI and UQII) were identified and shown to play an important role in the NDH-2-catalyzed oxidoreduction reaction. Based on the available structural data, we developed a three-dimensional structural model of LiNDH2 using homology detection methods and performed an in silico virtual screening campaign to search for potential inhibitors targeting the LiNDH2 ubiquinone-binding site 1-UQI. Selected compounds displaying favorable properties in the computational screening experiments were assayed for inhibitory activity in the structurally similar recombinant NDH-2 from S. aureus and leishmanicidal activity was determined in the wild-type axenic amastigotes and promastigotes of L. infantum. The identified compound, a substituted 6-methoxy-quinalidine, showed promising nanomolar leishmanicidal activity on wild-type axenic promastigotes and amastigotes of L. infantum and the potential for further development.",
journal = "Molecules",
title = "In Silico Discovery of a Substituted 6-Methoxy-quinalidine with Leishmanicidal Activity in Leishmania infantum",
volume = "23",
number = "4",
pages = "772",
doi = "10.3390/molecules23040772"
}
Stevanović, S., Perdih, A., Senćanski, M. V., Glišić, S., Duarte, M., Tomas, A., Sena, F., Sousa, F., Pereira, M. M.,& Šolmajer, T.. (2018). In Silico Discovery of a Substituted 6-Methoxy-quinalidine with Leishmanicidal Activity in Leishmania infantum. in Molecules, 23(4), 772.
https://doi.org/10.3390/molecules23040772
Stevanović S, Perdih A, Senćanski MV, Glišić S, Duarte M, Tomas A, Sena F, Sousa F, Pereira MM, Šolmajer T. In Silico Discovery of a Substituted 6-Methoxy-quinalidine with Leishmanicidal Activity in Leishmania infantum. in Molecules. 2018;23(4):772.
doi:10.3390/molecules23040772 .
Stevanović, Strahinja, Perdih, Andrej, Senćanski, Milan V., Glišić, Sanja, Duarte, Margarida, Tomas, Ana, Sena, Filipa, Sousa, Filipe, Pereira, Manuela M., Šolmajer, Tom, "In Silico Discovery of a Substituted 6-Methoxy-quinalidine with Leishmanicidal Activity in Leishmania infantum" in Molecules, 23, no. 4 (2018):772,
https://doi.org/10.3390/molecules23040772 . .
1
22
13
21

Identification of Candidate Allosteric Modulators of the M1 Muscarinic Acetylcholine Receptor Which May Improve Vagus Nerve Stimulation in ChronicTinnitus

Bojić, Tijana; Perović, Vladimir R.; Senćanski, Milan V.; Glišić, Sanja

(2017)

TY  - JOUR
AU  - Bojić, Tijana
AU  - Perović, Vladimir R.
AU  - Senćanski, Milan V.
AU  - Glišić, Sanja
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1823
AB  - Chronic tinnitus is characterized by neuroplastic changes of the auditory cortex. A promising method for therapy of chronic tinnitus is vagus nerve stimulation (VNS) combined with auditory stimulation. The principle of VNS is reversal of pathological neuroplastic changes of the auditory cortex toward physiological neural activity and synchronicity. The VNS mechanism of action in chronic tinnitus patients is prevailingly through the muscarinic neuromodulation of the auditory cortex by the activation of nc. basalis Meynerti. The aim of this study is to propose potential pharmaceutics which may improve the neuromodulatory effects of VNS. The working hypothesis is that M1 receptors have a dominant role in the neural plasticity of the auditory cortex. We propose that allosteric agonists of the muscarinic receptor type 1 (M1) receptor could improve specificity and selectivity of the neuromodulatory effect of VNS on the auditory cortex of chronic tinnitus patients even in the circumstances of lower acetylcholine brain concentration. This intervention would also reinforce the re-learning process of tinnitus (sub) networks by acting on cholinergic memory and learning mechanisms. We performed in silico screening of drug space using the EIIP/AQVN filter and selected 50 drugs as candidates for allosteric modulators of muscarinic receptors. Further filtering of these compounds by means of 3D QSAR and docking revealed 3 approved drugs-bromazepam, estazolam and flumazenil as the most promising candidates for combined chronic tinnitus therapy. These drugs should be further evaluated by biological tests and clinical trials.
T2  - Frontiers in Neuroscience
T1  - Identification of Candidate Allosteric Modulators of the M1 Muscarinic Acetylcholine Receptor Which May Improve Vagus Nerve Stimulation in ChronicTinnitus
VL  - 11
SP  - 636
DO  - 10.3389/fnins.2017.00636
ER  - 
@article{
author = "Bojić, Tijana and Perović, Vladimir R. and Senćanski, Milan V. and Glišić, Sanja",
year = "2017",
abstract = "Chronic tinnitus is characterized by neuroplastic changes of the auditory cortex. A promising method for therapy of chronic tinnitus is vagus nerve stimulation (VNS) combined with auditory stimulation. The principle of VNS is reversal of pathological neuroplastic changes of the auditory cortex toward physiological neural activity and synchronicity. The VNS mechanism of action in chronic tinnitus patients is prevailingly through the muscarinic neuromodulation of the auditory cortex by the activation of nc. basalis Meynerti. The aim of this study is to propose potential pharmaceutics which may improve the neuromodulatory effects of VNS. The working hypothesis is that M1 receptors have a dominant role in the neural plasticity of the auditory cortex. We propose that allosteric agonists of the muscarinic receptor type 1 (M1) receptor could improve specificity and selectivity of the neuromodulatory effect of VNS on the auditory cortex of chronic tinnitus patients even in the circumstances of lower acetylcholine brain concentration. This intervention would also reinforce the re-learning process of tinnitus (sub) networks by acting on cholinergic memory and learning mechanisms. We performed in silico screening of drug space using the EIIP/AQVN filter and selected 50 drugs as candidates for allosteric modulators of muscarinic receptors. Further filtering of these compounds by means of 3D QSAR and docking revealed 3 approved drugs-bromazepam, estazolam and flumazenil as the most promising candidates for combined chronic tinnitus therapy. These drugs should be further evaluated by biological tests and clinical trials.",
journal = "Frontiers in Neuroscience",
title = "Identification of Candidate Allosteric Modulators of the M1 Muscarinic Acetylcholine Receptor Which May Improve Vagus Nerve Stimulation in ChronicTinnitus",
volume = "11",
pages = "636",
doi = "10.3389/fnins.2017.00636"
}
Bojić, T., Perović, V. R., Senćanski, M. V.,& Glišić, S.. (2017). Identification of Candidate Allosteric Modulators of the M1 Muscarinic Acetylcholine Receptor Which May Improve Vagus Nerve Stimulation in ChronicTinnitus. in Frontiers in Neuroscience, 11, 636.
https://doi.org/10.3389/fnins.2017.00636
Bojić T, Perović VR, Senćanski MV, Glišić S. Identification of Candidate Allosteric Modulators of the M1 Muscarinic Acetylcholine Receptor Which May Improve Vagus Nerve Stimulation in ChronicTinnitus. in Frontiers in Neuroscience. 2017;11:636.
doi:10.3389/fnins.2017.00636 .
Bojić, Tijana, Perović, Vladimir R., Senćanski, Milan V., Glišić, Sanja, "Identification of Candidate Allosteric Modulators of the M1 Muscarinic Acetylcholine Receptor Which May Improve Vagus Nerve Stimulation in ChronicTinnitus" in Frontiers in Neuroscience, 11 (2017):636,
https://doi.org/10.3389/fnins.2017.00636 . .
5
7
3
8

Assessing the dispersive and electrostatic components of the selenium-aromatic interaction energy by DFT

Senćanski, Milan V.; Đorđević, Ivana; Grubišić, Sonja

(2017)

TY  - JOUR
AU  - Senćanski, Milan V.
AU  - Đorđević, Ivana
AU  - Grubišić, Sonja
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1563
AB  - Selenium has been increasingly recognized as an important element in biological systems, which participates in numerous biochemical processes in organisms, notably in enzyme reactions. Selenium can substitute sulfur of cysteine and methionine to form their selenium analogues, selenocysteine (Sec) and selenomethionine (SeM). The nature of amino acid pockets in proteins is dependent on their composition and thus different non-covalent forces determine the interactions between selenium of Sec or SeM and other functional groups, resulting in specific biophysical behavior. The discrimination of selenium toward sulfur has been reported. In order to elucidate the difference between the nature of S-pi and Se-pi interactions, we performed extensive DFT calculations of dispersive and electrostatic contributions of Se-pi interactions in substituted benzenes/hydrogen selenide (H2Se) complexes. The results are compared with our earlier reported S-pi calculations, as well as with available experimental data. Our results show a larger contribution of dispersive interactions in Se-pi systems than in S-pi ones, which mainly originate from the attraction between Se and substituent groups. We found that selenium exhibits a strong interaction with aromatic systems and may thus play a significant role in stabilizing protein folds and protein-inhibitor complexes. Our findings can also provide molecular insights for understanding enzymatic specificity discrimination between single selenium versus a sulfur atom, notwithstanding their very similar chemical properties.
T2  - Journal of Molecular Modeling
T1  - Assessing the dispersive and electrostatic components of the selenium-aromatic interaction energy by DFT
VL  - 23
IS  - 5
DO  - 10.1007/s00894-017-3330-z
ER  - 
@article{
author = "Senćanski, Milan V. and Đorđević, Ivana and Grubišić, Sonja",
year = "2017",
abstract = "Selenium has been increasingly recognized as an important element in biological systems, which participates in numerous biochemical processes in organisms, notably in enzyme reactions. Selenium can substitute sulfur of cysteine and methionine to form their selenium analogues, selenocysteine (Sec) and selenomethionine (SeM). The nature of amino acid pockets in proteins is dependent on their composition and thus different non-covalent forces determine the interactions between selenium of Sec or SeM and other functional groups, resulting in specific biophysical behavior. The discrimination of selenium toward sulfur has been reported. In order to elucidate the difference between the nature of S-pi and Se-pi interactions, we performed extensive DFT calculations of dispersive and electrostatic contributions of Se-pi interactions in substituted benzenes/hydrogen selenide (H2Se) complexes. The results are compared with our earlier reported S-pi calculations, as well as with available experimental data. Our results show a larger contribution of dispersive interactions in Se-pi systems than in S-pi ones, which mainly originate from the attraction between Se and substituent groups. We found that selenium exhibits a strong interaction with aromatic systems and may thus play a significant role in stabilizing protein folds and protein-inhibitor complexes. Our findings can also provide molecular insights for understanding enzymatic specificity discrimination between single selenium versus a sulfur atom, notwithstanding their very similar chemical properties.",
journal = "Journal of Molecular Modeling",
title = "Assessing the dispersive and electrostatic components of the selenium-aromatic interaction energy by DFT",
volume = "23",
number = "5",
doi = "10.1007/s00894-017-3330-z"
}
Senćanski, M. V., Đorđević, I.,& Grubišić, S.. (2017). Assessing the dispersive and electrostatic components of the selenium-aromatic interaction energy by DFT. in Journal of Molecular Modeling, 23(5).
https://doi.org/10.1007/s00894-017-3330-z
Senćanski MV, Đorđević I, Grubišić S. Assessing the dispersive and electrostatic components of the selenium-aromatic interaction energy by DFT. in Journal of Molecular Modeling. 2017;23(5).
doi:10.1007/s00894-017-3330-z .
Senćanski, Milan V., Đorđević, Ivana, Grubišić, Sonja, "Assessing the dispersive and electrostatic components of the selenium-aromatic interaction energy by DFT" in Journal of Molecular Modeling, 23, no. 5 (2017),
https://doi.org/10.1007/s00894-017-3330-z . .
2
2
2