Alazreg, Asma

Link to this page

Authority KeyName Variants
66a7efa3-96e4-4fc1-a356-be07096d2f68
  • Alazreg, Asma (2)
Projects

Author's Bibliography

Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles

Alazreg, Asma; Vuksanović, Marija M.; Mladenović, Ivana O.; Egelja, Adela; Janković-Mandić, Ljiljana; Marinković, Aleksandar; Jančić-Heinemann, Radmila

(2024)

TY  - JOUR
AU  - Alazreg, Asma
AU  - Vuksanović, Marija M.
AU  - Mladenović, Ivana O.
AU  - Egelja, Adela
AU  - Janković-Mandić, Ljiljana
AU  - Marinković, Aleksandar
AU  - Jančić-Heinemann, Radmila
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11720
AB  - The MgAl-LDH@SiO2 particles are prepared by the coprecipitation of LDH on silica originating from plants.Particles are of submicron size and are well dispersed in the matrix. Composites consisting of PMMA reinforcedwith MgAl-LDH@SiO2 particles have improved hardness and resistance to viscoelastic deformation, as tested bymicrohardness measurements.
T2  - Materials Letters
T1  - Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles
VL  - 354
SP  - 135354
DO  - 10.1016/j.matlet.2023.135354
ER  - 
@article{
author = "Alazreg, Asma and Vuksanović, Marija M. and Mladenović, Ivana O. and Egelja, Adela and Janković-Mandić, Ljiljana and Marinković, Aleksandar and Jančić-Heinemann, Radmila",
year = "2024",
abstract = "The MgAl-LDH@SiO2 particles are prepared by the coprecipitation of LDH on silica originating from plants.Particles are of submicron size and are well dispersed in the matrix. Composites consisting of PMMA reinforcedwith MgAl-LDH@SiO2 particles have improved hardness and resistance to viscoelastic deformation, as tested bymicrohardness measurements.",
journal = "Materials Letters",
title = "Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles",
volume = "354",
pages = "135354",
doi = "10.1016/j.matlet.2023.135354"
}
Alazreg, A., Vuksanović, M. M., Mladenović, I. O., Egelja, A., Janković-Mandić, L., Marinković, A.,& Jančić-Heinemann, R.. (2024). Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles. in Materials Letters, 354, 135354.
https://doi.org/10.1016/j.matlet.2023.135354
Alazreg A, Vuksanović MM, Mladenović IO, Egelja A, Janković-Mandić L, Marinković A, Jančić-Heinemann R. Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles. in Materials Letters. 2024;354:135354.
doi:10.1016/j.matlet.2023.135354 .
Alazreg, Asma, Vuksanović, Marija M., Mladenović, Ivana O., Egelja, Adela, Janković-Mandić, Ljiljana, Marinković, Aleksandar, Jančić-Heinemann, Radmila, "Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles" in Materials Letters, 354 (2024):135354,
https://doi.org/10.1016/j.matlet.2023.135354 . .
1

Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide

Alazreg, Asma; Vuksanović, Marija M.; Egelja, Adela; Mladenović, Ivana O.; Radovanović, Željko; Petrović, Miloš; Marinković, Aleksandar; Jančić-Heinemann, Radmila

(2023)

TY  - JOUR
AU  - Alazreg, Asma
AU  - Vuksanović, Marija M.
AU  - Egelja, Adela
AU  - Mladenović, Ivana O.
AU  - Radovanović, Željko
AU  - Petrović, Miloš
AU  - Marinković, Aleksandar
AU  - Jančić-Heinemann, Radmila
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11392
AB  - Acrylate polymers are used in several applications such as dentistry, medicine, and industry. The modification of their properties using the reinforcement is of key importance for the possible applications. Layered double hydroxides are materials that are easily synthesized by several techniques giving the possibility to modulate the chemical composition and morphology of the reinforcement and they consist of a divalent and a trivalent anion hydroxide and the layers can be exfoliated and thus provide a material interesting for composite reinforcement. In this paper, Mn was used as a divalent and Al as a trivalent cation. The obtained particles were used as reinforcement for the preparation of composites in 1, 3, and 5 wt% quantities and prepared samples were compared to the matrix consisting of PMMA. Physical mechanical properties of the sample having the best mechanical properties (with 3 wt% of MnAl-LDH filers) exhibited 6.38% modulus of elasticity, 27% hardness, and 10% tensile strength improved values compared to the clear PMMA matrix. Toughness was lowered in this sort of composite compared to the pure matrix. Highlights: MnAl-LDH-PMMA composites improved modulus, strength, hardness Loss of toughness is tolerable for 3 wt% reinforcement Viscoelastic properties are improved for composites compared to matrix.
T2  - Polymer Composites
T1  - Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide
DO  - 10.1002/pc.27597
ER  - 
@article{
author = "Alazreg, Asma and Vuksanović, Marija M. and Egelja, Adela and Mladenović, Ivana O. and Radovanović, Željko and Petrović, Miloš and Marinković, Aleksandar and Jančić-Heinemann, Radmila",
year = "2023",
abstract = "Acrylate polymers are used in several applications such as dentistry, medicine, and industry. The modification of their properties using the reinforcement is of key importance for the possible applications. Layered double hydroxides are materials that are easily synthesized by several techniques giving the possibility to modulate the chemical composition and morphology of the reinforcement and they consist of a divalent and a trivalent anion hydroxide and the layers can be exfoliated and thus provide a material interesting for composite reinforcement. In this paper, Mn was used as a divalent and Al as a trivalent cation. The obtained particles were used as reinforcement for the preparation of composites in 1, 3, and 5 wt% quantities and prepared samples were compared to the matrix consisting of PMMA. Physical mechanical properties of the sample having the best mechanical properties (with 3 wt% of MnAl-LDH filers) exhibited 6.38% modulus of elasticity, 27% hardness, and 10% tensile strength improved values compared to the clear PMMA matrix. Toughness was lowered in this sort of composite compared to the pure matrix. Highlights: MnAl-LDH-PMMA composites improved modulus, strength, hardness Loss of toughness is tolerable for 3 wt% reinforcement Viscoelastic properties are improved for composites compared to matrix.",
journal = "Polymer Composites",
title = "Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide",
doi = "10.1002/pc.27597"
}
Alazreg, A., Vuksanović, M. M., Egelja, A., Mladenović, I. O., Radovanović, Ž., Petrović, M., Marinković, A.,& Jančić-Heinemann, R.. (2023). Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide. in Polymer Composites.
https://doi.org/10.1002/pc.27597
Alazreg A, Vuksanović MM, Egelja A, Mladenović IO, Radovanović Ž, Petrović M, Marinković A, Jančić-Heinemann R. Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide. in Polymer Composites. 2023;.
doi:10.1002/pc.27597 .
Alazreg, Asma, Vuksanović, Marija M., Egelja, Adela, Mladenović, Ivana O., Radovanović, Željko, Petrović, Miloš, Marinković, Aleksandar, Jančić-Heinemann, Radmila, "Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide" in Polymer Composites (2023),
https://doi.org/10.1002/pc.27597 . .
1
1