Moshayedi, Milad

Link to this page

Authority KeyName Variants
0c0f5ff6-5f13-4d6d-8c6e-2a3fcccc8bc8
  • Moshayedi, Milad (1)
Projects

Author's Bibliography

Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene

Mišković, Zoran L.; Moshayedi, Milad; Preciado-Rivas, Maria Rosa; Jakovac, Josip; Radović, Ivan; Despoja, Vito

(2023)

TY  - JOUR
AU  - Mišković, Zoran L.
AU  - Moshayedi, Milad
AU  - Preciado-Rivas, Maria Rosa
AU  - Jakovac, Josip
AU  - Radović, Ivan
AU  - Despoja, Vito
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11030
AB  - We use Kramers-Kronig analysis and ab initio calculations to develop a simple analytical method for including the effects of high-energy interband electron transitions in the density polarization function of doped graphene and doped phosphorene in the optical limit. The resulting formulas are suitable for applications in the terahertz to the mid-infrared range of frequencies, where the interband electron transitions are shown to give rise to static screening with a suitably chosen in-plane polarizability. In the case of phosphorene, each component of its static polarizability tensor can be computed from a sum-rule–like formula using the ab initio data for the real part of the corresponding component of the full optical interband conductivity tensor of that material.
T2  - Radiation Effects and Defects in Solids
T1  - Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene
VL  - 178
IS  - 1-2
SP  - 54
EP  - 71
DO  - 10.1080/10420150.2023.2186870
ER  - 
@article{
author = "Mišković, Zoran L. and Moshayedi, Milad and Preciado-Rivas, Maria Rosa and Jakovac, Josip and Radović, Ivan and Despoja, Vito",
year = "2023",
abstract = "We use Kramers-Kronig analysis and ab initio calculations to develop a simple analytical method for including the effects of high-energy interband electron transitions in the density polarization function of doped graphene and doped phosphorene in the optical limit. The resulting formulas are suitable for applications in the terahertz to the mid-infrared range of frequencies, where the interband electron transitions are shown to give rise to static screening with a suitably chosen in-plane polarizability. In the case of phosphorene, each component of its static polarizability tensor can be computed from a sum-rule–like formula using the ab initio data for the real part of the corresponding component of the full optical interband conductivity tensor of that material.",
journal = "Radiation Effects and Defects in Solids",
title = "Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene",
volume = "178",
number = "1-2",
pages = "54-71",
doi = "10.1080/10420150.2023.2186870"
}
Mišković, Z. L., Moshayedi, M., Preciado-Rivas, M. R., Jakovac, J., Radović, I.,& Despoja, V.. (2023). Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene. in Radiation Effects and Defects in Solids, 178(1-2), 54-71.
https://doi.org/10.1080/10420150.2023.2186870
Mišković ZL, Moshayedi M, Preciado-Rivas MR, Jakovac J, Radović I, Despoja V. Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene. in Radiation Effects and Defects in Solids. 2023;178(1-2):54-71.
doi:10.1080/10420150.2023.2186870 .
Mišković, Zoran L., Moshayedi, Milad, Preciado-Rivas, Maria Rosa, Jakovac, Josip, Radović, Ivan, Despoja, Vito, "Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene" in Radiation Effects and Defects in Solids, 178, no. 1-2 (2023):54-71,
https://doi.org/10.1080/10420150.2023.2186870 . .
2
2