Mladenović, Ivana O.

Link to this page

Authority KeyName Variants
8408a5ad-738b-4118-aba8-5b710c8b9870
  • Mladenović, Ivana O. (2)

Author's Bibliography

Unsaturated polyester resin based composites: A case study of lignin valorisation

Salah Adeen Embirsh, Hifa; Vuksanović, Marija M.; Mladenović, Ivana O.; Knežević, Nataša; Milošević, Milena; Mijatov, Slavko; Jančić Heinemann, Radmila; Marinković, Aleksandar

(2024)

TY  - JOUR
AU  - Salah Adeen Embirsh, Hifa
AU  - Vuksanović, Marija M.
AU  - Mladenović, Ivana O.
AU  - Knežević, Nataša
AU  - Milošević, Milena
AU  - Mijatov, Slavko
AU  - Jančić Heinemann, Radmila
AU  - Marinković, Aleksandar
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13225
AB  - Materials from green resources boast a low carbon footprint, forming the foundation of the circular economy approach in materials science. Thus, in this study, waste poly(ethylene terephthalate) (PET) was subjected to depolymerization using propylene glycol (PG), and subsequent polycondensation with bio-based maleic anhydride (MA) produced unsaturated polyester resin (b-UPR). Bio-derived acryloyl-modified Kraft lignin (KfL-A) served as a vinyl reactive filler in the b-UPR matrix to create b-UPR/KfL-A composites. The structural characterization of KfL-A and b-UPR involved the use of FTIR and NMR techniques. The mechanical properties of the newly fabricated composites were assessed through tensile strength, Vickers microhardness, and dynamic mechanical tests. The addition of KfL-A to the rigid b-UPR matrix enhanced material flexibility, resulting in less stiff and hard materials while preserving composite toughness. For instance, incorporating 10 wt.% of KfL-A in b-UPR led to a 17% reduction in hardness, a 48% decrease in tensile strength, and a 20% reduction in toughness. Positive environmental impact was achieved by incorporation of 64 wt.% of renewable and recycled raw material. Analogously prepared b-UPR/KfL composites showed structural inhomogeneity and somewhat better mechanical properties. Transmission (TEM) and scanning (SEM) electron microscopies revealed a suitable relationship between mechanical and structural properties of composites in relation to the extent of KfL-A addition. The UL94V flammability rating confirmed that flame resistance increased proportionally with the KfL-A addition. Once deposited in a landfill, these composites are expected to disintegrate more easily than PET, causing less harm to the environment and contributing to sustainability in the plastics cycle.
T2  - Chemosphere
T1  - Unsaturated polyester resin based composites: A case study of lignin valorisation
IS  - InPress
SP  - 142144
DO  - 10.1016/j.chemosphere.2024.142144
ER  - 
@article{
author = "Salah Adeen Embirsh, Hifa and Vuksanović, Marija M. and Mladenović, Ivana O. and Knežević, Nataša and Milošević, Milena and Mijatov, Slavko and Jančić Heinemann, Radmila and Marinković, Aleksandar",
year = "2024",
abstract = "Materials from green resources boast a low carbon footprint, forming the foundation of the circular economy approach in materials science. Thus, in this study, waste poly(ethylene terephthalate) (PET) was subjected to depolymerization using propylene glycol (PG), and subsequent polycondensation with bio-based maleic anhydride (MA) produced unsaturated polyester resin (b-UPR). Bio-derived acryloyl-modified Kraft lignin (KfL-A) served as a vinyl reactive filler in the b-UPR matrix to create b-UPR/KfL-A composites. The structural characterization of KfL-A and b-UPR involved the use of FTIR and NMR techniques. The mechanical properties of the newly fabricated composites were assessed through tensile strength, Vickers microhardness, and dynamic mechanical tests. The addition of KfL-A to the rigid b-UPR matrix enhanced material flexibility, resulting in less stiff and hard materials while preserving composite toughness. For instance, incorporating 10 wt.% of KfL-A in b-UPR led to a 17% reduction in hardness, a 48% decrease in tensile strength, and a 20% reduction in toughness. Positive environmental impact was achieved by incorporation of 64 wt.% of renewable and recycled raw material. Analogously prepared b-UPR/KfL composites showed structural inhomogeneity and somewhat better mechanical properties. Transmission (TEM) and scanning (SEM) electron microscopies revealed a suitable relationship between mechanical and structural properties of composites in relation to the extent of KfL-A addition. The UL94V flammability rating confirmed that flame resistance increased proportionally with the KfL-A addition. Once deposited in a landfill, these composites are expected to disintegrate more easily than PET, causing less harm to the environment and contributing to sustainability in the plastics cycle.",
journal = "Chemosphere",
title = "Unsaturated polyester resin based composites: A case study of lignin valorisation",
number = "InPress",
pages = "142144",
doi = "10.1016/j.chemosphere.2024.142144"
}
Salah Adeen Embirsh, H., Vuksanović, M. M., Mladenović, I. O., Knežević, N., Milošević, M., Mijatov, S., Jančić Heinemann, R.,& Marinković, A.. (2024). Unsaturated polyester resin based composites: A case study of lignin valorisation. in Chemosphere(InPress), 142144.
https://doi.org/10.1016/j.chemosphere.2024.142144
Salah Adeen Embirsh H, Vuksanović MM, Mladenović IO, Knežević N, Milošević M, Mijatov S, Jančić Heinemann R, Marinković A. Unsaturated polyester resin based composites: A case study of lignin valorisation. in Chemosphere. 2024;(InPress):142144.
doi:10.1016/j.chemosphere.2024.142144 .
Salah Adeen Embirsh, Hifa, Vuksanović, Marija M., Mladenović, Ivana O., Knežević, Nataša, Milošević, Milena, Mijatov, Slavko, Jančić Heinemann, Radmila, Marinković, Aleksandar, "Unsaturated polyester resin based composites: A case study of lignin valorisation" in Chemosphere, no. InPress (2024):142144,
https://doi.org/10.1016/j.chemosphere.2024.142144 . .

Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles

Mladenović, Ivana O.; Vuksanović, Marija M.; Dimitrijević, Stevan P.; Vasilić, Rastko; Radojević, Vesna J.; Vasiljević-Radović, Dana G.; Nikolić, Nebojša D.

(2023)

TY  - JOUR
AU  - Mladenović, Ivana O.
AU  - Vuksanović, Marija M.
AU  - Dimitrijević, Stevan P.
AU  - Vasilić, Rastko
AU  - Radojević, Vesna J.
AU  - Vasiljević-Radović, Dana G.
AU  - Nikolić, Nebojša D.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12396
AB  - Copper from sulfate baths without and with added inorganic pigment particles based on strontium aluminate doped with europium and dysprosium (SrAl2O4: Eu2+, Dy3+) was electrodeposited on a brass cathode by a galvanostatic regime. Morphological, structural, and roughness analysis of the pigment particles, the pure (pigment-free) Cu coating, and the Cu coatings with incorporated pigment particles were performed using SEM, XRD, and AFM techniques, respectively. Hardness and creep resistance were considered for the examination of the mechanical properties of the Cu coatings, applying Chicot–Lesage (for hardness) and Sargent–Ashby (for creep resistance) mathematical models. The wettability of the Cu coatings was examined by the static sessile drop method by a measurement of the water contact angle. The incorporation of pigment particles in the Cu deposits did not significantly affect the morphology or texture of the coatings, while the roughness of the deposits rose with the rise in pigment particle concentrations. The hardness of the Cu coatings also increased with the increasing concentration of pigments and was greater than that obtained for the pigment-free Cu coating. The presence of the pigments caused a change in the wettability of the Cu coatings from hydrophilic (for the pigment-free Cu coating) to hydrophobic (for Cu coatings with incorporated particles) surface areas.
T2  - Metals
T1  - Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles
VL  - 13
IS  - 12
SP  - 1979
DO  - 10.3390/met13121979
ER  - 
@article{
author = "Mladenović, Ivana O. and Vuksanović, Marija M. and Dimitrijević, Stevan P. and Vasilić, Rastko and Radojević, Vesna J. and Vasiljević-Radović, Dana G. and Nikolić, Nebojša D.",
year = "2023",
abstract = "Copper from sulfate baths without and with added inorganic pigment particles based on strontium aluminate doped with europium and dysprosium (SrAl2O4: Eu2+, Dy3+) was electrodeposited on a brass cathode by a galvanostatic regime. Morphological, structural, and roughness analysis of the pigment particles, the pure (pigment-free) Cu coating, and the Cu coatings with incorporated pigment particles were performed using SEM, XRD, and AFM techniques, respectively. Hardness and creep resistance were considered for the examination of the mechanical properties of the Cu coatings, applying Chicot–Lesage (for hardness) and Sargent–Ashby (for creep resistance) mathematical models. The wettability of the Cu coatings was examined by the static sessile drop method by a measurement of the water contact angle. The incorporation of pigment particles in the Cu deposits did not significantly affect the morphology or texture of the coatings, while the roughness of the deposits rose with the rise in pigment particle concentrations. The hardness of the Cu coatings also increased with the increasing concentration of pigments and was greater than that obtained for the pigment-free Cu coating. The presence of the pigments caused a change in the wettability of the Cu coatings from hydrophilic (for the pigment-free Cu coating) to hydrophobic (for Cu coatings with incorporated particles) surface areas.",
journal = "Metals",
title = "Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles",
volume = "13",
number = "12",
pages = "1979",
doi = "10.3390/met13121979"
}
Mladenović, I. O., Vuksanović, M. M., Dimitrijević, S. P., Vasilić, R., Radojević, V. J., Vasiljević-Radović, D. G.,& Nikolić, N. D.. (2023). Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles. in Metals, 13(12), 1979.
https://doi.org/10.3390/met13121979
Mladenović IO, Vuksanović MM, Dimitrijević SP, Vasilić R, Radojević VJ, Vasiljević-Radović DG, Nikolić ND. Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles. in Metals. 2023;13(12):1979.
doi:10.3390/met13121979 .
Mladenović, Ivana O., Vuksanović, Marija M., Dimitrijević, Stevan P., Vasilić, Rastko, Radojević, Vesna J., Vasiljević-Radović, Dana G., Nikolić, Nebojša D., "Mechanical Properties of Electrolytically Produced Copper Coatings Reinforced with Pigment Particles" in Metals, 13, no. 12 (2023):1979,
https://doi.org/10.3390/met13121979 . .
1