Giampieri, Francesca

Link to this page

Authority KeyName Variants
orcid::0000-0002-8151-9132
  • Giampieri, Francesca (2)
Projects

Author's Bibliography

Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro

Živković, Lada; Bajić, Vladan P.; Dekanski, Dragana; Čabarkapa-Pirković, Andrea; Giampieri, Francesca; Gasparrini, Massimiliano; Mazzoni, Luca; Spremo-Potparević, Biljana

(2018)

TY  - JOUR
AU  - Živković, Lada
AU  - Bajić, Vladan P.
AU  - Dekanski, Dragana
AU  - Čabarkapa-Pirković, Andrea
AU  - Giampieri, Francesca
AU  - Gasparrini, Massimiliano
AU  - Mazzoni, Luca
AU  - Spremo-Potparević, Biljana
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S027869151830334X
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7819
AB  - Manuka honey has been widely researched regarding its biological properties, in particular its antimicrobial and antioxidant capacities. We tested the genotoxic and genoprotective properties of Manuka honey, ranging from 25–1000 μg/mL, by performing an in vitro comet assay after exposure to human whole blood. No genotoxic effect on whole blood cells was observed within the tested concentration range (p = 0.154). Then, the antigenotoxic potency of Manuka honey against oxidative DNA damage to whole blood cells was assessed. Prior to Manuka honey treatment a modest decrease of H2O2-induced DNA damage was detected in cells, with no statistical significance (p = 0.087). Post-treatment, Manuka honey displayed a stronger potential to attenuate damaged cells at all tested concentrations, with a statistical significant difference (p < 0.001), where concentrations of 25 and 100 μg/mL were most efficient. Manuka honey exhibited a marked potential to protect DNA of whole blood cells from oxidative damage induced by hydrogen peroxide in vitro.
T2  - Food and Chemical Toxicology
T1  - Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro
VL  - 119
SP  - 61
EP  - 65
DO  - 10.1016/j.fct.2018.05.034
ER  - 
@article{
author = "Živković, Lada and Bajić, Vladan P. and Dekanski, Dragana and Čabarkapa-Pirković, Andrea and Giampieri, Francesca and Gasparrini, Massimiliano and Mazzoni, Luca and Spremo-Potparević, Biljana",
year = "2018",
abstract = "Manuka honey has been widely researched regarding its biological properties, in particular its antimicrobial and antioxidant capacities. We tested the genotoxic and genoprotective properties of Manuka honey, ranging from 25–1000 μg/mL, by performing an in vitro comet assay after exposure to human whole blood. No genotoxic effect on whole blood cells was observed within the tested concentration range (p = 0.154). Then, the antigenotoxic potency of Manuka honey against oxidative DNA damage to whole blood cells was assessed. Prior to Manuka honey treatment a modest decrease of H2O2-induced DNA damage was detected in cells, with no statistical significance (p = 0.087). Post-treatment, Manuka honey displayed a stronger potential to attenuate damaged cells at all tested concentrations, with a statistical significant difference (p < 0.001), where concentrations of 25 and 100 μg/mL were most efficient. Manuka honey exhibited a marked potential to protect DNA of whole blood cells from oxidative damage induced by hydrogen peroxide in vitro.",
journal = "Food and Chemical Toxicology",
title = "Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro",
volume = "119",
pages = "61-65",
doi = "10.1016/j.fct.2018.05.034"
}
Živković, L., Bajić, V. P., Dekanski, D., Čabarkapa-Pirković, A., Giampieri, F., Gasparrini, M., Mazzoni, L.,& Spremo-Potparević, B.. (2018). Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro. in Food and Chemical Toxicology, 119, 61-65.
https://doi.org/10.1016/j.fct.2018.05.034
Živković L, Bajić VP, Dekanski D, Čabarkapa-Pirković A, Giampieri F, Gasparrini M, Mazzoni L, Spremo-Potparević B. Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro. in Food and Chemical Toxicology. 2018;119:61-65.
doi:10.1016/j.fct.2018.05.034 .
Živković, Lada, Bajić, Vladan P., Dekanski, Dragana, Čabarkapa-Pirković, Andrea, Giampieri, Francesca, Gasparrini, Massimiliano, Mazzoni, Luca, Spremo-Potparević, Biljana, "Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro" in Food and Chemical Toxicology, 119 (2018):61-65,
https://doi.org/10.1016/j.fct.2018.05.034 . .
8
9
10

Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy

Čabarkapa, Andrea; Dekanski, Dragana; Živković, Lada; Milanovic-Cabarkapa, Mirjana; Bajić, Vladan P.; Topalović, Dijana; Giampieri, Francesca; Gasparrini, Massimiliano; Battino, Maurizio; Spremo-Potparević, Biljana

(2017)

TY  - JOUR
AU  - Čabarkapa, Andrea
AU  - Dekanski, Dragana
AU  - Živković, Lada
AU  - Milanovic-Cabarkapa, Mirjana
AU  - Bajić, Vladan P.
AU  - Topalović, Dijana
AU  - Giampieri, Francesca
AU  - Gasparrini, Massimiliano
AU  - Battino, Maurizio
AU  - Spremo-Potparević, Biljana
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1679
AB  - The CaNa(2)EDTA chelation therapy is often practiced with antioxidant supplementation. Dry olive leaf extract (DOLE) is natural product with antioxidant and DNA protective properties. The effects of DOLE on the levels of DNA damage were investigated ex vivo in peripheral blood lymphocytes (PBLs) of 19 workers occupationally exposed to lead (Pb), before and after CaNa(2)EDTA chelation therapy. POLE demonstrated pronounced radical scavenging activity in concentrations GT = 1 mg/mL, and showed no genotoxicity per se, in concentrations 0.125-1 mg/mL. The level of DNA damage in PBLs of workers before chelation therapy was elevated (24.21 +/- 14.26) compared to controls (6.0 +/- 3.37). The incubation of PBLs before chelation therapy with selected concentration of DOLE lead to a severe increase of DNA damage (64.03 +/- 20.96), exhibiting prooxidant rather than antioxidant effect. After the five-day CaNa2EDTA chelation regimen, DNA damage in PBLs of workers decreased (8.26 +/- 4.62) significantly compared to baseline. Treatment of PBLs with DOLE after chelation, again produced high level of damage (41.82 +/- 23.17) and the acute prooxidant effects of DOLE remained, but, DNA damage was less severe than before chelation. The DOLE exhibits prooxidant effect in presence of Pb in lymphocytes of exposed workers, and its effect is less pronounced following the removal of Pb after standard chelation therapy. (C) 2016 Elsevier Ltd. All rights reserved.
T2  - Food and Chemical Toxicology
T1  - Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy
VL  - 106
SP  - 616
EP  - 623
DO  - 10.1016/j.fct.2016.12.023
ER  - 
@article{
author = "Čabarkapa, Andrea and Dekanski, Dragana and Živković, Lada and Milanovic-Cabarkapa, Mirjana and Bajić, Vladan P. and Topalović, Dijana and Giampieri, Francesca and Gasparrini, Massimiliano and Battino, Maurizio and Spremo-Potparević, Biljana",
year = "2017",
abstract = "The CaNa(2)EDTA chelation therapy is often practiced with antioxidant supplementation. Dry olive leaf extract (DOLE) is natural product with antioxidant and DNA protective properties. The effects of DOLE on the levels of DNA damage were investigated ex vivo in peripheral blood lymphocytes (PBLs) of 19 workers occupationally exposed to lead (Pb), before and after CaNa(2)EDTA chelation therapy. POLE demonstrated pronounced radical scavenging activity in concentrations GT = 1 mg/mL, and showed no genotoxicity per se, in concentrations 0.125-1 mg/mL. The level of DNA damage in PBLs of workers before chelation therapy was elevated (24.21 +/- 14.26) compared to controls (6.0 +/- 3.37). The incubation of PBLs before chelation therapy with selected concentration of DOLE lead to a severe increase of DNA damage (64.03 +/- 20.96), exhibiting prooxidant rather than antioxidant effect. After the five-day CaNa2EDTA chelation regimen, DNA damage in PBLs of workers decreased (8.26 +/- 4.62) significantly compared to baseline. Treatment of PBLs with DOLE after chelation, again produced high level of damage (41.82 +/- 23.17) and the acute prooxidant effects of DOLE remained, but, DNA damage was less severe than before chelation. The DOLE exhibits prooxidant effect in presence of Pb in lymphocytes of exposed workers, and its effect is less pronounced following the removal of Pb after standard chelation therapy. (C) 2016 Elsevier Ltd. All rights reserved.",
journal = "Food and Chemical Toxicology",
title = "Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy",
volume = "106",
pages = "616-623",
doi = "10.1016/j.fct.2016.12.023"
}
Čabarkapa, A., Dekanski, D., Živković, L., Milanovic-Cabarkapa, M., Bajić, V. P., Topalović, D., Giampieri, F., Gasparrini, M., Battino, M.,& Spremo-Potparević, B.. (2017). Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy. in Food and Chemical Toxicology, 106, 616-623.
https://doi.org/10.1016/j.fct.2016.12.023
Čabarkapa A, Dekanski D, Živković L, Milanovic-Cabarkapa M, Bajić VP, Topalović D, Giampieri F, Gasparrini M, Battino M, Spremo-Potparević B. Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy. in Food and Chemical Toxicology. 2017;106:616-623.
doi:10.1016/j.fct.2016.12.023 .
Čabarkapa, Andrea, Dekanski, Dragana, Živković, Lada, Milanovic-Cabarkapa, Mirjana, Bajić, Vladan P., Topalović, Dijana, Giampieri, Francesca, Gasparrini, Massimiliano, Battino, Maurizio, Spremo-Potparević, Biljana, "Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy" in Food and Chemical Toxicology, 106 (2017):616-623,
https://doi.org/10.1016/j.fct.2016.12.023 . .
13
7
10