Bursać, Biljana

Link to this page

Authority KeyName Variants
5b98a539-a349-4d89-8764-b8433fddcd09
  • Bursać, Biljana (1)
Projects

Author's Bibliography

Fructose-rich diet differently affects angiotensin II receptor content in the nucleus and a plasma membrane fraction of visceral adipose tissue

Bundalo, Maja M.; Đorđević, Ana D.; Bursać, Biljana; Živković, Maja; Korićanac, Goran; Stanković, Aleksandra

(2017)

TY  - JOUR
AU  - Bundalo, Maja M.
AU  - Đorđević, Ana D.
AU  - Bursać, Biljana
AU  - Živković, Maja
AU  - Korićanac, Goran
AU  - Stanković, Aleksandra
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1839
AB  - The adipose tissue renin-angiotensin system (RAS) is proposed to be a pathophysiological link between adipose tissue dysregulation and metabolic disorders induced by a fructose-rich diet (FRD). RAS can act intracellularly. We hypothesized that adipocyte nuclear membranes possess angiotensin receptor types 1 and 2 (AT1R and AT2R), which couple to nuclear signaling pathways and regulate oxidative gene expression under FRD conditions. We analyzed the effect of consumption of 10% fructose solution for 9 weeks on biochemical parameters, adipocyte morphology, and expression of AT1R, AT2R, AT1R-associated protein (ATRAP), NADPH oxidase 4 (NOX4), matrix metalloproteinase-9 (MMP-9), and manganese superoxide dismutase (MnSOD) in adipose tissue of Wistar rats. We detected AT1R and AT2R in the nuclear fraction. FRD reduced the level of angiotensin receptors in the nucleus, while increased AT1R and decreased AT2R levels were observed in the plasma membrane. FRD increased the ATRAP mRNA level and decreased MnSOD mRNA and protein levels. No significant differences were observed for MMP-9 and NOX4 mRNA levels. These findings coincided with hyperleptinemia, elevated blood pressure and triglycerides, and unchanged visceral adipose tissue mass and morphology in FRD rats. Besides providing evidence for nuclear localization of angiotensin receptors in visceral adipose tissue, this study demonstrates the different effects of FRD on AT1R expression in different cellular compartments. Elevated blood pressure and decreased antioxidant capacity in visceral fat of fructose-fed rats were accompanied by an increased AT1R level in the plasma membrane, while upregulation of ATRAP and a decrease of nuclear membrane AT1R suggest an increased capacity for attenuation of excessive AT1R signaling and visceral adiposity.
T2  - Applied Physiology Nutrition and Metabolism
T1  - Fructose-rich diet differently affects angiotensin II receptor content in the nucleus and a plasma membrane fraction of visceral adipose tissue
VL  - 42
IS  - 12
SP  - 1254
EP  - 1263
DO  - 10.1139/apnm-2016-0725
ER  - 
@article{
author = "Bundalo, Maja M. and Đorđević, Ana D. and Bursać, Biljana and Živković, Maja and Korićanac, Goran and Stanković, Aleksandra",
year = "2017",
abstract = "The adipose tissue renin-angiotensin system (RAS) is proposed to be a pathophysiological link between adipose tissue dysregulation and metabolic disorders induced by a fructose-rich diet (FRD). RAS can act intracellularly. We hypothesized that adipocyte nuclear membranes possess angiotensin receptor types 1 and 2 (AT1R and AT2R), which couple to nuclear signaling pathways and regulate oxidative gene expression under FRD conditions. We analyzed the effect of consumption of 10% fructose solution for 9 weeks on biochemical parameters, adipocyte morphology, and expression of AT1R, AT2R, AT1R-associated protein (ATRAP), NADPH oxidase 4 (NOX4), matrix metalloproteinase-9 (MMP-9), and manganese superoxide dismutase (MnSOD) in adipose tissue of Wistar rats. We detected AT1R and AT2R in the nuclear fraction. FRD reduced the level of angiotensin receptors in the nucleus, while increased AT1R and decreased AT2R levels were observed in the plasma membrane. FRD increased the ATRAP mRNA level and decreased MnSOD mRNA and protein levels. No significant differences were observed for MMP-9 and NOX4 mRNA levels. These findings coincided with hyperleptinemia, elevated blood pressure and triglycerides, and unchanged visceral adipose tissue mass and morphology in FRD rats. Besides providing evidence for nuclear localization of angiotensin receptors in visceral adipose tissue, this study demonstrates the different effects of FRD on AT1R expression in different cellular compartments. Elevated blood pressure and decreased antioxidant capacity in visceral fat of fructose-fed rats were accompanied by an increased AT1R level in the plasma membrane, while upregulation of ATRAP and a decrease of nuclear membrane AT1R suggest an increased capacity for attenuation of excessive AT1R signaling and visceral adiposity.",
journal = "Applied Physiology Nutrition and Metabolism",
title = "Fructose-rich diet differently affects angiotensin II receptor content in the nucleus and a plasma membrane fraction of visceral adipose tissue",
volume = "42",
number = "12",
pages = "1254-1263",
doi = "10.1139/apnm-2016-0725"
}
Bundalo, M. M., Đorđević, A. D., Bursać, B., Živković, M., Korićanac, G.,& Stanković, A.. (2017). Fructose-rich diet differently affects angiotensin II receptor content in the nucleus and a plasma membrane fraction of visceral adipose tissue. in Applied Physiology Nutrition and Metabolism, 42(12), 1254-1263.
https://doi.org/10.1139/apnm-2016-0725
Bundalo MM, Đorđević AD, Bursać B, Živković M, Korićanac G, Stanković A. Fructose-rich diet differently affects angiotensin II receptor content in the nucleus and a plasma membrane fraction of visceral adipose tissue. in Applied Physiology Nutrition and Metabolism. 2017;42(12):1254-1263.
doi:10.1139/apnm-2016-0725 .
Bundalo, Maja M., Đorđević, Ana D., Bursać, Biljana, Živković, Maja, Korićanac, Goran, Stanković, Aleksandra, "Fructose-rich diet differently affects angiotensin II receptor content in the nucleus and a plasma membrane fraction of visceral adipose tissue" in Applied Physiology Nutrition and Metabolism, 42, no. 12 (2017):1254-1263,
https://doi.org/10.1139/apnm-2016-0725 . .
1
6
4
4