Radetić, Tamara

Link to this page

Authority KeyName Variants
fb62f6ce-c308-4579-ae8b-d0020c8f3fa0
  • Radetić, Tamara (4)
Projects

Author's Bibliography

Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment

Radetić, Tamara; Popović, Miljana M.; Novaković, Mirjana M.; Rajić, Vladimir; Romhanji, Endre L.

(2023)

TY  - JOUR
AU  - Radetić, Tamara
AU  - Popović, Miljana M.
AU  - Novaković, Mirjana M.
AU  - Rajić, Vladimir
AU  - Romhanji, Endre L.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12726
AB  - The Fe-bearing intermetallic phases present in the as-cast AA6026 alloy and their evolution during homogenization treatments at 480-550°C were investigated using optical microscopy, SEM, and TEM techniques in combination with EDS analysis. In addition to the α-Al(Fe,Mn)Si phase with dendritic morphology, two types of plate-like Fe-bearing microconstituents were revealed in the microstructure of the as-cast alloy. The EDS microanalysis and electron diffraction showed that one set of platelets represented thin sections of α-Al(Fe,Mn)Si microconstituent. The other set of plate-like microconstituents was identified as a tetragonal, silicon-rich δ-Al4(Fe,Mn)Si2 phase. The formation of the δ-Al4(Fe,Mn)Si2 phase was attributed to the chemical composition of the alloy. During homogenization, the metastable δ-Al4(Fe,Mn)Si2 transformed into the α-Al(Fe,Mn)Si phase and fragmented. The dendritic α-Al(Fe,Mn)Si microconstituents underwent fragmentation. However, while the α-Al(Fe,Mn)Si microconstituents preserved a b.c.c. crystal lattice throughout the process, the product of the transformation of the δ-Al4(Fe,Mn)Si2 phase exhibited primitive cubic lattice.
AB  - Ispitivanje prisustva faza koje sadrže Fe u mikrostrukturi livene legure AA6026, kao i njihova evolucija tokom postupaka homogenizacije na temperaturama od 480-550 °C, sprovedena su korišćenjem optičke mikroskopije, skenirajuće elektronske mikroskopije (SEM) i transmisione elektronske mikroskopije (TEM) u kombinaciji sa analizom EDS-a. Osim faze α-Al(Fe,Mn)Si sa dendritskom morfologijom, identifikovane su dve vrste pločastih mikrokonstituenata koji sadrže Fe u mikrostrukturi livene legure. EDS mikroanaliza i elektronska difrakcija pokazali su da jedan skup ploča predstavlja samo tanke sekcije mikrokonstituente α-Al(Fe,Mn)Si. Drugi skup pločastih mikrokonstituenata identifikovan je kao četvrtasta, silicijumom bogata faza δ-Al4 (Fe,Mn)Si2 . Formiranje faze δ-Al4 (Fe,Mn)Si2 povezano je sa hemijskim sastavom legure. Tokom homogenizacije, metastabilna faza δ-Al4 (Fe,Mn)Si2 transformisala se u fazu α-Al(Fe,Mn)Si i fragmentirala. Dendritski mikrokonstituenti α-Al(Fe,Mn)Si takođe su fragmentirali. Međutim, dok su mikrokonstituenti α-Al(Fe,Mn)Si sačuvali kubnu kristalnu rešetku tipa b.c.c. tokom procesa, proizvod transformacije faze δ-Al4 (Fe,Mn)Si2 pokazao je prostu kubnu rešetku.
T2  - Journal of Mining and Metallurgy, Section B: Metallurgy
T1  - Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment
T1  - Prepoznavanje faza koje sadrže Fe u mikrostrukturi livene legure AA6026 i njihova evolucija tokom postupka homogenizacije
VL  - 59
IS  - 2
SP  - 327
EP  - 338
DO  - 10.2298/JMMB230611028R
ER  - 
@article{
author = "Radetić, Tamara and Popović, Miljana M. and Novaković, Mirjana M. and Rajić, Vladimir and Romhanji, Endre L.",
year = "2023",
abstract = "The Fe-bearing intermetallic phases present in the as-cast AA6026 alloy and their evolution during homogenization treatments at 480-550°C were investigated using optical microscopy, SEM, and TEM techniques in combination with EDS analysis. In addition to the α-Al(Fe,Mn)Si phase with dendritic morphology, two types of plate-like Fe-bearing microconstituents were revealed in the microstructure of the as-cast alloy. The EDS microanalysis and electron diffraction showed that one set of platelets represented thin sections of α-Al(Fe,Mn)Si microconstituent. The other set of plate-like microconstituents was identified as a tetragonal, silicon-rich δ-Al4(Fe,Mn)Si2 phase. The formation of the δ-Al4(Fe,Mn)Si2 phase was attributed to the chemical composition of the alloy. During homogenization, the metastable δ-Al4(Fe,Mn)Si2 transformed into the α-Al(Fe,Mn)Si phase and fragmented. The dendritic α-Al(Fe,Mn)Si microconstituents underwent fragmentation. However, while the α-Al(Fe,Mn)Si microconstituents preserved a b.c.c. crystal lattice throughout the process, the product of the transformation of the δ-Al4(Fe,Mn)Si2 phase exhibited primitive cubic lattice., Ispitivanje prisustva faza koje sadrže Fe u mikrostrukturi livene legure AA6026, kao i njihova evolucija tokom postupaka homogenizacije na temperaturama od 480-550 °C, sprovedena su korišćenjem optičke mikroskopije, skenirajuće elektronske mikroskopije (SEM) i transmisione elektronske mikroskopije (TEM) u kombinaciji sa analizom EDS-a. Osim faze α-Al(Fe,Mn)Si sa dendritskom morfologijom, identifikovane su dve vrste pločastih mikrokonstituenata koji sadrže Fe u mikrostrukturi livene legure. EDS mikroanaliza i elektronska difrakcija pokazali su da jedan skup ploča predstavlja samo tanke sekcije mikrokonstituente α-Al(Fe,Mn)Si. Drugi skup pločastih mikrokonstituenata identifikovan je kao četvrtasta, silicijumom bogata faza δ-Al4 (Fe,Mn)Si2 . Formiranje faze δ-Al4 (Fe,Mn)Si2 povezano je sa hemijskim sastavom legure. Tokom homogenizacije, metastabilna faza δ-Al4 (Fe,Mn)Si2 transformisala se u fazu α-Al(Fe,Mn)Si i fragmentirala. Dendritski mikrokonstituenti α-Al(Fe,Mn)Si takođe su fragmentirali. Međutim, dok su mikrokonstituenti α-Al(Fe,Mn)Si sačuvali kubnu kristalnu rešetku tipa b.c.c. tokom procesa, proizvod transformacije faze δ-Al4 (Fe,Mn)Si2 pokazao je prostu kubnu rešetku.",
journal = "Journal of Mining and Metallurgy, Section B: Metallurgy",
title = "Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment, Prepoznavanje faza koje sadrže Fe u mikrostrukturi livene legure AA6026 i njihova evolucija tokom postupka homogenizacije",
volume = "59",
number = "2",
pages = "327-338",
doi = "10.2298/JMMB230611028R"
}
Radetić, T., Popović, M. M., Novaković, M. M., Rajić, V.,& Romhanji, E. L.. (2023). Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment. in Journal of Mining and Metallurgy, Section B: Metallurgy, 59(2), 327-338.
https://doi.org/10.2298/JMMB230611028R
Radetić T, Popović MM, Novaković MM, Rajić V, Romhanji EL. Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment. in Journal of Mining and Metallurgy, Section B: Metallurgy. 2023;59(2):327-338.
doi:10.2298/JMMB230611028R .
Radetić, Tamara, Popović, Miljana M., Novaković, Mirjana M., Rajić, Vladimir, Romhanji, Endre L., "Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment" in Journal of Mining and Metallurgy, Section B: Metallurgy, 59, no. 2 (2023):327-338,
https://doi.org/10.2298/JMMB230611028R . .

Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels

Nešović, Katarina; Janković, Ana; Perić-Grujić, Aleksandra A.; Vukašinović-Sekulić, Maja; Radetić, Tamara; Živković, Ljiljana; Park, Soo Jin; Rhee, Kyong Yop; Mišković-Stanković, Vesna

(2019)

TY  - JOUR
AU  - Nešović, Katarina
AU  - Janković, Ana
AU  - Perić-Grujić, Aleksandra A.
AU  - Vukašinović-Sekulić, Maja
AU  - Radetić, Tamara
AU  - Živković, Ljiljana
AU  - Park, Soo Jin
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8170
AB  - Silver nanoparticles (AgNPs) were synthesized by in situ electrochemical reduction of Ag+ ions in poly(vinyl alcohol)/chitosan/graphene (PVA/CHI/Gr) hydrogel matrices with different concentrations of chitosan. The physicochemical properties of nanocomposite hydrogels were investigated by UV–vis spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM) and Fourier-transform infrared spectroscopy (FT-IR), thermal characteristics were determined by differential scanning calorimetry (DSC) and mechanical properties were measured by tensile test. The swelling studies were carried out in phosphate buffer to simulate natural physiological environment and data were fitted by several kinetic models to determine the diffusion mechanism and diffusion coefficients of the swelling medium through the hydrogel matrices. It was shown that the presence of silver nanoparticles increased the uptake capability and equilibrium swelling degree of the composite hydrogels. The antibacterial activity was confirmed against Escherichia coli and Staphylococcus aureus, while the hydrogels without AgNPs exhibited antibacterial properties due to the presence of chitosan. With the addition of AgNPs, the samples showed stronger activity and fast reduction in the number of colonies, confirming the synergistic effect of chitosan and AgNPs on the antibacterial activity. © 2019
T2  - Journal of Industrial and Engineering Chemistry
T1  - Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels
VL  - 77
SP  - 83
EP  - 96
DO  - 10.1016/j.jiec.2019.04.022
ER  - 
@article{
author = "Nešović, Katarina and Janković, Ana and Perić-Grujić, Aleksandra A. and Vukašinović-Sekulić, Maja and Radetić, Tamara and Živković, Ljiljana and Park, Soo Jin and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2019",
abstract = "Silver nanoparticles (AgNPs) were synthesized by in situ electrochemical reduction of Ag+ ions in poly(vinyl alcohol)/chitosan/graphene (PVA/CHI/Gr) hydrogel matrices with different concentrations of chitosan. The physicochemical properties of nanocomposite hydrogels were investigated by UV–vis spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM) and Fourier-transform infrared spectroscopy (FT-IR), thermal characteristics were determined by differential scanning calorimetry (DSC) and mechanical properties were measured by tensile test. The swelling studies were carried out in phosphate buffer to simulate natural physiological environment and data were fitted by several kinetic models to determine the diffusion mechanism and diffusion coefficients of the swelling medium through the hydrogel matrices. It was shown that the presence of silver nanoparticles increased the uptake capability and equilibrium swelling degree of the composite hydrogels. The antibacterial activity was confirmed against Escherichia coli and Staphylococcus aureus, while the hydrogels without AgNPs exhibited antibacterial properties due to the presence of chitosan. With the addition of AgNPs, the samples showed stronger activity and fast reduction in the number of colonies, confirming the synergistic effect of chitosan and AgNPs on the antibacterial activity. © 2019",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels",
volume = "77",
pages = "83-96",
doi = "10.1016/j.jiec.2019.04.022"
}
Nešović, K., Janković, A., Perić-Grujić, A. A., Vukašinović-Sekulić, M., Radetić, T., Živković, L., Park, S. J., Rhee, K. Y.,& Mišković-Stanković, V.. (2019). Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels. in Journal of Industrial and Engineering Chemistry, 77, 83-96.
https://doi.org/10.1016/j.jiec.2019.04.022
Nešović K, Janković A, Perić-Grujić AA, Vukašinović-Sekulić M, Radetić T, Živković L, Park SJ, Rhee KY, Mišković-Stanković V. Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels. in Journal of Industrial and Engineering Chemistry. 2019;77:83-96.
doi:10.1016/j.jiec.2019.04.022 .
Nešović, Katarina, Janković, Ana, Perić-Grujić, Aleksandra A., Vukašinović-Sekulić, Maja, Radetić, Tamara, Živković, Ljiljana, Park, Soo Jin, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels" in Journal of Industrial and Engineering Chemistry, 77 (2019):83-96,
https://doi.org/10.1016/j.jiec.2019.04.022 . .
25
18
27

Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels

Nešović, Katarina; Janković, Ana; Perić-Grujić, Aleksandra A.; Vukašinović-Sekulić, Maja; Radetić, Tamara; Živković, Ljiljana; Park, Soo Jin; Rhee, Kyong Yop; Mišković-Stanković, Vesna

(2019)

TY  - JOUR
AU  - Nešović, Katarina
AU  - Janković, Ana
AU  - Perić-Grujić, Aleksandra A.
AU  - Vukašinović-Sekulić, Maja
AU  - Radetić, Tamara
AU  - Živković, Ljiljana
AU  - Park, Soo Jin
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8189
AB  - Silver nanoparticles (AgNPs) were synthesized by in situ electrochemical reduction of Ag+ ions in poly(vinyl alcohol)/chitosan/graphene (PVA/CHI/Gr) hydrogel matrices with different concentrations of chitosan. The physicochemical properties of nanocomposite hydrogels were investigated by UV–vis spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM) and Fourier-transform infrared spectroscopy (FT-IR), thermal characteristics were determined by differential scanning calorimetry (DSC) and mechanical properties were measured by tensile test. The swelling studies were carried out in phosphate buffer to simulate natural physiological environment and data were fitted by several kinetic models to determine the diffusion mechanism and diffusion coefficients of the swelling medium through the hydrogel matrices. It was shown that the presence of silver nanoparticles increased the uptake capability and equilibrium swelling degree of the composite hydrogels. The antibacterial activity was confirmed against Escherichia coli and Staphylococcus aureus, while the hydrogels without AgNPs exhibited antibacterial properties due to the presence of chitosan. With the addition of AgNPs, the samples showed stronger activity and fast reduction in the number of colonies, confirming the synergistic effect of chitosan and AgNPs on the antibacterial activity. © 2019
T2  - Journal of Industrial and Engineering Chemistry
T1  - Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels
VL  - 77
SP  - 83
EP  - 96
DO  - 10.1016/j.jiec.2019.04.022
ER  - 
@article{
author = "Nešović, Katarina and Janković, Ana and Perić-Grujić, Aleksandra A. and Vukašinović-Sekulić, Maja and Radetić, Tamara and Živković, Ljiljana and Park, Soo Jin and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2019",
abstract = "Silver nanoparticles (AgNPs) were synthesized by in situ electrochemical reduction of Ag+ ions in poly(vinyl alcohol)/chitosan/graphene (PVA/CHI/Gr) hydrogel matrices with different concentrations of chitosan. The physicochemical properties of nanocomposite hydrogels were investigated by UV–vis spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM) and Fourier-transform infrared spectroscopy (FT-IR), thermal characteristics were determined by differential scanning calorimetry (DSC) and mechanical properties were measured by tensile test. The swelling studies were carried out in phosphate buffer to simulate natural physiological environment and data were fitted by several kinetic models to determine the diffusion mechanism and diffusion coefficients of the swelling medium through the hydrogel matrices. It was shown that the presence of silver nanoparticles increased the uptake capability and equilibrium swelling degree of the composite hydrogels. The antibacterial activity was confirmed against Escherichia coli and Staphylococcus aureus, while the hydrogels without AgNPs exhibited antibacterial properties due to the presence of chitosan. With the addition of AgNPs, the samples showed stronger activity and fast reduction in the number of colonies, confirming the synergistic effect of chitosan and AgNPs on the antibacterial activity. © 2019",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels",
volume = "77",
pages = "83-96",
doi = "10.1016/j.jiec.2019.04.022"
}
Nešović, K., Janković, A., Perić-Grujić, A. A., Vukašinović-Sekulić, M., Radetić, T., Živković, L., Park, S. J., Rhee, K. Y.,& Mišković-Stanković, V.. (2019). Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels. in Journal of Industrial and Engineering Chemistry, 77, 83-96.
https://doi.org/10.1016/j.jiec.2019.04.022
Nešović K, Janković A, Perić-Grujić AA, Vukašinović-Sekulić M, Radetić T, Živković L, Park SJ, Rhee KY, Mišković-Stanković V. Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels. in Journal of Industrial and Engineering Chemistry. 2019;77:83-96.
doi:10.1016/j.jiec.2019.04.022 .
Nešović, Katarina, Janković, Ana, Perić-Grujić, Aleksandra A., Vukašinović-Sekulić, Maja, Radetić, Tamara, Živković, Ljiljana, Park, Soo Jin, Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Kinetic models of swelling and thermal stability of silver/poly(vinyl alcohol)/chitosan/graphene hydrogels" in Journal of Industrial and Engineering Chemistry, 77 (2019):83-96,
https://doi.org/10.1016/j.jiec.2019.04.022 . .
25
18
26

Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study

Nešović, Katarina; Janković, Ana; Radetić, Tamara; Vukašinović-Sekulić, Maja; Kojić, Vesna V.; Živković, Ljiljana; Perić-Grujić, Aleksandra A.; Rhee, Kyong Yop; Mišković-Stanković, Vesna

(2019)

TY  - JOUR
AU  - Nešović, Katarina
AU  - Janković, Ana
AU  - Radetić, Tamara
AU  - Vukašinović-Sekulić, Maja
AU  - Kojić, Vesna V.
AU  - Živković, Ljiljana
AU  - Perić-Grujić, Aleksandra A.
AU  - Rhee, Kyong Yop
AU  - Mišković-Stanković, Vesna
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8531
AB  - In this work, we provide a facile path for the preparation of wound dressing materials with improved characteristics based on biocompatible chitosan and poly(vinyl alcohol) hydrogels with embedded silver nanoparticles (AgNPs) as a potent antimicrobial agent. The hydrogels were prepared via freezing-thawing method, whereas AgNPs were synthesized via an in situ electrochemical route. The excellent physicochemical properties of the obtained nanocomposite hydrogels were validated using different spectroscopic and microscopic techniques. The formation of sub-10 nm AgNPs was confirmed by UV–visible spectroscopy, dynamic light scattering and transmission electron microscopy. Swelling and silver release profiles were validated using several diffusion models. The hydrogels were proven to be non-cytotoxic using MTT test and possessed powerful antibacterial activity against Staphylococcus aureus and Escherichia coli, as determined by test in suspension, which affirmed their feasibility for wound dressing applications. © 2019 Elsevier Ltd
T2  - European Polymer Journal
T1  - Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study
VL  - 121
SP  - 109257
DO  - 10.1016/j.eurpolymj.2019.109257
ER  - 
@article{
author = "Nešović, Katarina and Janković, Ana and Radetić, Tamara and Vukašinović-Sekulić, Maja and Kojić, Vesna V. and Živković, Ljiljana and Perić-Grujić, Aleksandra A. and Rhee, Kyong Yop and Mišković-Stanković, Vesna",
year = "2019",
abstract = "In this work, we provide a facile path for the preparation of wound dressing materials with improved characteristics based on biocompatible chitosan and poly(vinyl alcohol) hydrogels with embedded silver nanoparticles (AgNPs) as a potent antimicrobial agent. The hydrogels were prepared via freezing-thawing method, whereas AgNPs were synthesized via an in situ electrochemical route. The excellent physicochemical properties of the obtained nanocomposite hydrogels were validated using different spectroscopic and microscopic techniques. The formation of sub-10 nm AgNPs was confirmed by UV–visible spectroscopy, dynamic light scattering and transmission electron microscopy. Swelling and silver release profiles were validated using several diffusion models. The hydrogels were proven to be non-cytotoxic using MTT test and possessed powerful antibacterial activity against Staphylococcus aureus and Escherichia coli, as determined by test in suspension, which affirmed their feasibility for wound dressing applications. © 2019 Elsevier Ltd",
journal = "European Polymer Journal",
title = "Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study",
volume = "121",
pages = "109257",
doi = "10.1016/j.eurpolymj.2019.109257"
}
Nešović, K., Janković, A., Radetić, T., Vukašinović-Sekulić, M., Kojić, V. V., Živković, L., Perić-Grujić, A. A., Rhee, K. Y.,& Mišković-Stanković, V.. (2019). Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study. in European Polymer Journal, 121, 109257.
https://doi.org/10.1016/j.eurpolymj.2019.109257
Nešović K, Janković A, Radetić T, Vukašinović-Sekulić M, Kojić VV, Živković L, Perić-Grujić AA, Rhee KY, Mišković-Stanković V. Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study. in European Polymer Journal. 2019;121:109257.
doi:10.1016/j.eurpolymj.2019.109257 .
Nešović, Katarina, Janković, Ana, Radetić, Tamara, Vukašinović-Sekulić, Maja, Kojić, Vesna V., Živković, Ljiljana, Perić-Grujić, Aleksandra A., Rhee, Kyong Yop, Mišković-Stanković, Vesna, "Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study" in European Polymer Journal, 121 (2019):109257,
https://doi.org/10.1016/j.eurpolymj.2019.109257 . .
58
34
58