Krajinović, Marko

Link to this page

Authority KeyName Variants
orcid::0000-0003-0430-8048
  • Krajinović, Marko (8)
Projects

Author's Bibliography

LiF:Mg,Ti TLD angular dependence evaluation at low energy incident radiation

Kržanović, Nikola; Stanković Petrović, Jelena; Živanović, Miloš; Krajinović, Marko; Topalović, Dušan; Kojić, Andrea; Božović, Predrag

(Niš : Sievert Association, 2023)

TY  - CONF
AU  - Kržanović, Nikola
AU  - Stanković Petrović, Jelena
AU  - Živanović, Miloš
AU  - Krajinović, Marko
AU  - Topalović, Dušan
AU  - Kojić, Andrea
AU  - Božović, Predrag
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11908
AB  - Accuracy of measurement in individual dosimetry monitoring service is achieved by performing calibration of dosemeters, ensuring that the measured values are traceable to the primary standard for the quantity of interest. Even though a dosemeter can exhibit remarkable performance in the reference calibration radiation field (e.g. 137Cs), its performance can greatly differ under certain conditions. Effects of different influence quantities need to be examined to ensure that the dosemeters are reliable for use in a specific ionizing radiation practice. The most significant radiation characteristic influence quantities are the radiation energy, angle of incidence and dose (rate). International standards issued by IEC and ISO define radiation conditions and procedures for dosemeter type testing under effects of different radiation, environmental and mechanical influence quantities. Dosemeter performance is expressed in terms of relative response and is evaluated by comparing with defined limits of variation, taking into account the measurement uncertainty, according to [IEC 62387:2020, IEC, 2020]. A passive dosimetry system based on LiF:Mg,Ti thermoluminescent dosemeters (TLD) was tested for the effects of photon energy and angle of incidence in two dosemeter orientations, horizontal (up/down) and vertical (left/right), for the measurement of personal dose equivalent (Hp(10) and Hp(0.07)). The dosemeters were read out on the Harshaw TLD™ Model 6600 Plus Automated Reader (Thermo Fisher Scientific, USA), calibrated in 137Cs reference field. Low-energy X-ray reference field N-40, established according to ISO 4037-1:2019 [ISO 4037, ISO, 2019] and ±45°, ±60° angles of incidence were used to examine the passive dosimetry system performance. Limits of variation from -29 % to +67 %, defined in [IEC 62387:2020, IEC, 2020] for energy and angular relative response, were used for performance evaluation. The overresponses for Hp(10) for 45° and 60° were (51 – 62) % and (76 – 88) %, respectively. The results for Hp(0.07) for 45° and 60° were (66 – 69) % and (79 – 95) %, respectively. Thus, for both quantities it was observed that the criteria are met for the angle of ±45°, while for ±60° neither comply with the standard, for both dosemeter orientations, when uncertainties are taken into account. This shows that tested TLD system has high overresponse in low energy photon fields when larger angle of incidence values is encountered. The response could be improved if dosemeters are calibrated using appropriate reference calibration field or if different dosemeter holder is employed.
PB  - Niš : Sievert Association
C3  - RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts
T1  - LiF:Mg,Ti TLD angular dependence evaluation at low energy incident radiation
SP  - 60
EP  - 60
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11908
ER  - 
@conference{
author = "Kržanović, Nikola and Stanković Petrović, Jelena and Živanović, Miloš and Krajinović, Marko and Topalović, Dušan and Kojić, Andrea and Božović, Predrag",
year = "2023",
abstract = "Accuracy of measurement in individual dosimetry monitoring service is achieved by performing calibration of dosemeters, ensuring that the measured values are traceable to the primary standard for the quantity of interest. Even though a dosemeter can exhibit remarkable performance in the reference calibration radiation field (e.g. 137Cs), its performance can greatly differ under certain conditions. Effects of different influence quantities need to be examined to ensure that the dosemeters are reliable for use in a specific ionizing radiation practice. The most significant radiation characteristic influence quantities are the radiation energy, angle of incidence and dose (rate). International standards issued by IEC and ISO define radiation conditions and procedures for dosemeter type testing under effects of different radiation, environmental and mechanical influence quantities. Dosemeter performance is expressed in terms of relative response and is evaluated by comparing with defined limits of variation, taking into account the measurement uncertainty, according to [IEC 62387:2020, IEC, 2020]. A passive dosimetry system based on LiF:Mg,Ti thermoluminescent dosemeters (TLD) was tested for the effects of photon energy and angle of incidence in two dosemeter orientations, horizontal (up/down) and vertical (left/right), for the measurement of personal dose equivalent (Hp(10) and Hp(0.07)). The dosemeters were read out on the Harshaw TLD™ Model 6600 Plus Automated Reader (Thermo Fisher Scientific, USA), calibrated in 137Cs reference field. Low-energy X-ray reference field N-40, established according to ISO 4037-1:2019 [ISO 4037, ISO, 2019] and ±45°, ±60° angles of incidence were used to examine the passive dosimetry system performance. Limits of variation from -29 % to +67 %, defined in [IEC 62387:2020, IEC, 2020] for energy and angular relative response, were used for performance evaluation. The overresponses for Hp(10) for 45° and 60° were (51 – 62) % and (76 – 88) %, respectively. The results for Hp(0.07) for 45° and 60° were (66 – 69) % and (79 – 95) %, respectively. Thus, for both quantities it was observed that the criteria are met for the angle of ±45°, while for ±60° neither comply with the standard, for both dosemeter orientations, when uncertainties are taken into account. This shows that tested TLD system has high overresponse in low energy photon fields when larger angle of incidence values is encountered. The response could be improved if dosemeters are calibrated using appropriate reference calibration field or if different dosemeter holder is employed.",
publisher = "Niš : Sievert Association",
journal = "RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts",
title = "LiF:Mg,Ti TLD angular dependence evaluation at low energy incident radiation",
pages = "60-60",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11908"
}
Kržanović, N., Stanković Petrović, J., Živanović, M., Krajinović, M., Topalović, D., Kojić, A.,& Božović, P.. (2023). LiF:Mg,Ti TLD angular dependence evaluation at low energy incident radiation. in RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts
Niš : Sievert Association., 60-60.
https://hdl.handle.net/21.15107/rcub_vinar_11908
Kržanović N, Stanković Petrović J, Živanović M, Krajinović M, Topalović D, Kojić A, Božović P. LiF:Mg,Ti TLD angular dependence evaluation at low energy incident radiation. in RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts. 2023;:60-60.
https://hdl.handle.net/21.15107/rcub_vinar_11908 .
Kržanović, Nikola, Stanković Petrović, Jelena, Živanović, Miloš, Krajinović, Marko, Topalović, Dušan, Kojić, Andrea, Božović, Predrag, "LiF:Mg,Ti TLD angular dependence evaluation at low energy incident radiation" in RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts (2023):60-60,
https://hdl.handle.net/21.15107/rcub_vinar_11908 .

A Time Series Forest Method for automatic classification of anomalous glow curves of LiF:Mg,Ti based thermoluminescent dosemeters

Topalović, Dušan; Krajinović, Marko; Vlahović, Jelena; Kržanović, Nikola; Božović, Predrag; Stanković Petrović, Jelena

(Niš : Sievert Association, 2023)

TY  - CONF
AU  - Topalović, Dušan
AU  - Krajinović, Marko
AU  - Vlahović, Jelena
AU  - Kržanović, Nikola
AU  - Božović, Predrag
AU  - Stanković Petrović, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11913
AB  - Thermoluminescent dosimetry is a widely used passive dosimetry method for estimating protection quantities i.e. the effective or equivalent dose. When the thermoluminescent dosemeters (TLD) are irradiated, they store the dose information through the processes of ionisation and subsequent trapping of charge carriers. The charge carriers in TLD crystalline material move from the ground state to the higher energy states (trapping centres) that are partially stable at room temperature. By heating the material, charge carriers leave the metastable energy states and recombine at recombination centres, emitting light (glow). The heating procedure gives rise to a glow curve (GC) – the light intensity as a function of temperature and time. By calibrating the TLD reader, the area under the GC is converted to a dose value (e.g., personal dose equivalent, Hp(10)). The shape of the GC depends on the time-temperature profile (TTP) defined for each TLD material separately and may be regular or possess some anomalies. Inspecting the GC shape, as one of quality control measures, is usually conducted qualitatively and performed by trained TLD service staff. Hence, this paper presents the implementation of the machine learning Time Series Forest (TSF) method for the classification of anomalous GCs of LiF:Mg,Ti based TLD. TSF is a tree – ensemble method that combines entropy gain and distance measure for evaluating splits. This method shows significant computational efficiency compared to the well – known one – nearest – neighbour classifier. The dataset used for the TSF method consists of 201 normalized GCs exported by the software supplied with Harshaw 6600 Plus Automated Reader – WinREMS. The dataset is labelled into five different classes: (1) regular shape, (2) spikes at random positions, (3) TLD signal in the low – temperature region, (4) TLD signal in the high – temperature region, and (5) shift of the entire GC to higher temperatures. A random split of the dataset into training and testing in a 70/30 training/test ratio was performed, while the 10 – fold cross – validation was used for the hyperparameter tuning. The results showed that the TSF method can classify four different anomalies for GC with an accuracy of 96% and a macro average F1 score of 96%. According to the obtained results, it is possible to conclude that the TSF is a promising candidate method that could be implemented as a new software package for automated GC quality control within the TLD service
PB  - Niš : Sievert Association
C3  - RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts
T1  - A Time Series Forest Method for automatic classification of anomalous glow curves of LiF:Mg,Ti based thermoluminescent dosemeters
SP  - 31
EP  - 31
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11913
ER  - 
@conference{
author = "Topalović, Dušan and Krajinović, Marko and Vlahović, Jelena and Kržanović, Nikola and Božović, Predrag and Stanković Petrović, Jelena",
year = "2023",
abstract = "Thermoluminescent dosimetry is a widely used passive dosimetry method for estimating protection quantities i.e. the effective or equivalent dose. When the thermoluminescent dosemeters (TLD) are irradiated, they store the dose information through the processes of ionisation and subsequent trapping of charge carriers. The charge carriers in TLD crystalline material move from the ground state to the higher energy states (trapping centres) that are partially stable at room temperature. By heating the material, charge carriers leave the metastable energy states and recombine at recombination centres, emitting light (glow). The heating procedure gives rise to a glow curve (GC) – the light intensity as a function of temperature and time. By calibrating the TLD reader, the area under the GC is converted to a dose value (e.g., personal dose equivalent, Hp(10)). The shape of the GC depends on the time-temperature profile (TTP) defined for each TLD material separately and may be regular or possess some anomalies. Inspecting the GC shape, as one of quality control measures, is usually conducted qualitatively and performed by trained TLD service staff. Hence, this paper presents the implementation of the machine learning Time Series Forest (TSF) method for the classification of anomalous GCs of LiF:Mg,Ti based TLD. TSF is a tree – ensemble method that combines entropy gain and distance measure for evaluating splits. This method shows significant computational efficiency compared to the well – known one – nearest – neighbour classifier. The dataset used for the TSF method consists of 201 normalized GCs exported by the software supplied with Harshaw 6600 Plus Automated Reader – WinREMS. The dataset is labelled into five different classes: (1) regular shape, (2) spikes at random positions, (3) TLD signal in the low – temperature region, (4) TLD signal in the high – temperature region, and (5) shift of the entire GC to higher temperatures. A random split of the dataset into training and testing in a 70/30 training/test ratio was performed, while the 10 – fold cross – validation was used for the hyperparameter tuning. The results showed that the TSF method can classify four different anomalies for GC with an accuracy of 96% and a macro average F1 score of 96%. According to the obtained results, it is possible to conclude that the TSF is a promising candidate method that could be implemented as a new software package for automated GC quality control within the TLD service",
publisher = "Niš : Sievert Association",
journal = "RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts",
title = "A Time Series Forest Method for automatic classification of anomalous glow curves of LiF:Mg,Ti based thermoluminescent dosemeters",
pages = "31-31",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11913"
}
Topalović, D., Krajinović, M., Vlahović, J., Kržanović, N., Božović, P.,& Stanković Petrović, J.. (2023). A Time Series Forest Method for automatic classification of anomalous glow curves of LiF:Mg,Ti based thermoluminescent dosemeters. in RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts
Niš : Sievert Association., 31-31.
https://hdl.handle.net/21.15107/rcub_vinar_11913
Topalović D, Krajinović M, Vlahović J, Kržanović N, Božović P, Stanković Petrović J. A Time Series Forest Method for automatic classification of anomalous glow curves of LiF:Mg,Ti based thermoluminescent dosemeters. in RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts. 2023;:31-31.
https://hdl.handle.net/21.15107/rcub_vinar_11913 .
Topalović, Dušan, Krajinović, Marko, Vlahović, Jelena, Kržanović, Nikola, Božović, Predrag, Stanković Petrović, Jelena, "A Time Series Forest Method for automatic classification of anomalous glow curves of LiF:Mg,Ti based thermoluminescent dosemeters" in RAP 2023 : International conference on radiation applications in Physics, Chemistry, Biology, Medical Sciences, Engineering and Environmental Sciences; Book of abstracts (2023):31-31,
https://hdl.handle.net/21.15107/rcub_vinar_11913 .

Characterization of Thermoluminescent Dosimetry Systems According to the IEC 62387:2020 Standard

Kržanović, Nikola; Stanković-Petrović, Jelena S.; Živanović, Miloš; Krajinović, Marko; Božović, Predrag; Kojić, Andrea; Topalović, Dušan

(2023)

TY  - JOUR
AU  - Kržanović, Nikola
AU  - Stanković-Petrović, Jelena S.
AU  - Živanović, Miloš
AU  - Krajinović, Marko
AU  - Božović, Predrag
AU  - Kojić, Andrea
AU  - Topalović, Dušan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11433
AB  - A need for detailed testing of individual monitoring systems used in accredited service at the Vinca Institute of Nuclear Sciences was recognized following changes in individual, workplace, and environmental monitoring passive dosimetry systems acceptability criteria stated in IEC 62387:2020 and changes related to reference fields used in radiation protection defined in ISO 4037:2019. Reliability and accuracy of dosimetry data acquired by passive dosimetry systems used for individual monitoring is assured by carrying out type tests. In this manner, the effects of different radiation influence quantities are examined. Passive dosimetry systems comprised of an LiF:Mg,Ti (TLD-100) detector card placed in two different holder models (8814 and 8850) and the Harshaw TLD Model 6600 Plus Automated Reader were tested. Type tests were done in an extended range of photon energies from 40 keV up to 1.25 MeV, angle of incidence values of ±45° and ± 60° for both vertical and horizontal dosimeter orientation, and in the dose range from 0.05 mSv to 1 Sv. Both dosimetry system configurations perform in line with IEC 62387:2020 within mandatory range for tested influence quantities. Dosimeters that use the 8850 holder type showed less pronounced energy and angular dependence of the response in the low-energy range.
T2  - Health Physics
T1  - Characterization of Thermoluminescent Dosimetry Systems According to the IEC 62387:2020 Standard
VL  - 125
IS  - 3
SP  - 186
EP  - 197
DO  - 10.1097/HP.0000000000001711
ER  - 
@article{
author = "Kržanović, Nikola and Stanković-Petrović, Jelena S. and Živanović, Miloš and Krajinović, Marko and Božović, Predrag and Kojić, Andrea and Topalović, Dušan",
year = "2023",
abstract = "A need for detailed testing of individual monitoring systems used in accredited service at the Vinca Institute of Nuclear Sciences was recognized following changes in individual, workplace, and environmental monitoring passive dosimetry systems acceptability criteria stated in IEC 62387:2020 and changes related to reference fields used in radiation protection defined in ISO 4037:2019. Reliability and accuracy of dosimetry data acquired by passive dosimetry systems used for individual monitoring is assured by carrying out type tests. In this manner, the effects of different radiation influence quantities are examined. Passive dosimetry systems comprised of an LiF:Mg,Ti (TLD-100) detector card placed in two different holder models (8814 and 8850) and the Harshaw TLD Model 6600 Plus Automated Reader were tested. Type tests were done in an extended range of photon energies from 40 keV up to 1.25 MeV, angle of incidence values of ±45° and ± 60° for both vertical and horizontal dosimeter orientation, and in the dose range from 0.05 mSv to 1 Sv. Both dosimetry system configurations perform in line with IEC 62387:2020 within mandatory range for tested influence quantities. Dosimeters that use the 8850 holder type showed less pronounced energy and angular dependence of the response in the low-energy range.",
journal = "Health Physics",
title = "Characterization of Thermoluminescent Dosimetry Systems According to the IEC 62387:2020 Standard",
volume = "125",
number = "3",
pages = "186-197",
doi = "10.1097/HP.0000000000001711"
}
Kržanović, N., Stanković-Petrović, J. S., Živanović, M., Krajinović, M., Božović, P., Kojić, A.,& Topalović, D.. (2023). Characterization of Thermoluminescent Dosimetry Systems According to the IEC 62387:2020 Standard. in Health Physics, 125(3), 186-197.
https://doi.org/10.1097/HP.0000000000001711
Kržanović N, Stanković-Petrović JS, Živanović M, Krajinović M, Božović P, Kojić A, Topalović D. Characterization of Thermoluminescent Dosimetry Systems According to the IEC 62387:2020 Standard. in Health Physics. 2023;125(3):186-197.
doi:10.1097/HP.0000000000001711 .
Kržanović, Nikola, Stanković-Petrović, Jelena S., Živanović, Miloš, Krajinović, Marko, Božović, Predrag, Kojić, Andrea, Topalović, Dušan, "Characterization of Thermoluminescent Dosimetry Systems According to the IEC 62387:2020 Standard" in Health Physics, 125, no. 3 (2023):186-197,
https://doi.org/10.1097/HP.0000000000001711 . .
1
1

Uncertainty associated with the use of software solutions utilizing dicom rdsr for skin dose assessment in interventional radiology and cardiology

Krajinović, Marko; Vujisić, Miloš; Ciraj-Bjelac, Olivera

(2021)

TY  - JOUR
AU  - Krajinović, Marko
AU  - Vujisić, Miloš
AU  - Ciraj-Bjelac, Olivera
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10110
AB  - The purpose of this work is to provide a comprehensive analysis of uncertainties associated with the use of software solutions utilizing DICOM RDSRs for skin dose assessment in the interventional fluoroscopic environment.Three different scenarios have been defined for determining the overall uncertainty, each with a specific assumption on the maximum deviations of factors affecting the calculated dose. Relative expanded uncertainty has been calculated using two approaches: the law of propagation of uncertainty and the propagation of distributions based on the Monte Carlo method. According to the propagation of uncertainty, it is estimated that the lowest possible relative expanded uncertainty of ~13% (at the 95% level of confidence, i.e. with the coverage factor of k = 2 assuming normal distribution) could only be achieved if all sources of uncertainties are carefully controlled, whereas maximum relative expanded uncertainty could reach up to 61% if none of the influencing parameters are controlled properly. When the influencing parameters are reasonably well-controlled, realistic relative expanded uncertainty amounts to 28%. Values for the relative expanded uncertainty obtained from the Monte Carlo propagation of distributions concur with the results obtained from the propagation of uncertainty to within 3% in all three considered scenarios, validating the assumption of normality.The overall skin dose relative uncertainty has been found to range from 13 to 61%, emphasizing the importance of adequate analysis and control of all relevant uncertainty sources.
T2  - Radiation Protection Dosimetry
T1  - Uncertainty associated with the use of software solutions utilizing dicom rdsr for skin dose assessment in interventional radiology and cardiology
VL  - 196
IS  - 3-4
SP  - 129
EP  - 135
DO  - 10.1093/rpd/ncab146
ER  - 
@article{
author = "Krajinović, Marko and Vujisić, Miloš and Ciraj-Bjelac, Olivera",
year = "2021",
abstract = "The purpose of this work is to provide a comprehensive analysis of uncertainties associated with the use of software solutions utilizing DICOM RDSRs for skin dose assessment in the interventional fluoroscopic environment.Three different scenarios have been defined for determining the overall uncertainty, each with a specific assumption on the maximum deviations of factors affecting the calculated dose. Relative expanded uncertainty has been calculated using two approaches: the law of propagation of uncertainty and the propagation of distributions based on the Monte Carlo method. According to the propagation of uncertainty, it is estimated that the lowest possible relative expanded uncertainty of ~13% (at the 95% level of confidence, i.e. with the coverage factor of k = 2 assuming normal distribution) could only be achieved if all sources of uncertainties are carefully controlled, whereas maximum relative expanded uncertainty could reach up to 61% if none of the influencing parameters are controlled properly. When the influencing parameters are reasonably well-controlled, realistic relative expanded uncertainty amounts to 28%. Values for the relative expanded uncertainty obtained from the Monte Carlo propagation of distributions concur with the results obtained from the propagation of uncertainty to within 3% in all three considered scenarios, validating the assumption of normality.The overall skin dose relative uncertainty has been found to range from 13 to 61%, emphasizing the importance of adequate analysis and control of all relevant uncertainty sources.",
journal = "Radiation Protection Dosimetry",
title = "Uncertainty associated with the use of software solutions utilizing dicom rdsr for skin dose assessment in interventional radiology and cardiology",
volume = "196",
number = "3-4",
pages = "129-135",
doi = "10.1093/rpd/ncab146"
}
Krajinović, M., Vujisić, M.,& Ciraj-Bjelac, O.. (2021). Uncertainty associated with the use of software solutions utilizing dicom rdsr for skin dose assessment in interventional radiology and cardiology. in Radiation Protection Dosimetry, 196(3-4), 129-135.
https://doi.org/10.1093/rpd/ncab146
Krajinović M, Vujisić M, Ciraj-Bjelac O. Uncertainty associated with the use of software solutions utilizing dicom rdsr for skin dose assessment in interventional radiology and cardiology. in Radiation Protection Dosimetry. 2021;196(3-4):129-135.
doi:10.1093/rpd/ncab146 .
Krajinović, Marko, Vujisić, Miloš, Ciraj-Bjelac, Olivera, "Uncertainty associated with the use of software solutions utilizing dicom rdsr for skin dose assessment in interventional radiology and cardiology" in Radiation Protection Dosimetry, 196, no. 3-4 (2021):129-135,
https://doi.org/10.1093/rpd/ncab146 . .
1

TLD-100 post-irradiation fading characteristics according to IEC 62387:2020 standard

Stanković-Petrović, Jelena S.; Krajinović, Marko; Kržanović, Nikola; Živanović, Miloš; Kojić, Andrea; Božović, Predrag

(RAD Centre, Niš, Serbia, 2021)

TY  - CONF
AU  - Stanković-Petrović, Jelena S.
AU  - Krajinović, Marko
AU  - Kržanović, Nikola
AU  - Živanović, Miloš
AU  - Kojić, Andrea
AU  - Božović, Predrag
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11129
AB  - The results of the post-irradiation fading of whole body dosemeters based on two TLD-100TM (Thermo Scientific™ Harshaw™, USA) detectors are presented. The dosemeters are regularly used by accredited individual monitoring service (IMS) at Vinca Institute of Nuclear Science (VINS), Belgrade, Serbia. The testing of post-irradiation fading was carried out according to International Electrotechnical Commission (IEC) 62387:2020 standard. The irradiations are done in S-Cs137 field at secondary standard dosimetry laboratory (SSDL) at VINS, according to International Organization for Standardization document ISO 4037-3:2019. The chosen reference personal dose equivalent value was 3 mSv. The research was carried out in the period from October 2020 to February 2021, and it lasted 128 days. The frequency of irradiations was approximately 7 days, while 3 periods between irradiations were longer than 10 days, due to COVID-19 pandemic. The irradiations were performed at different dates; thus, all dose readouts were done on the same day to prevent influence of reader’s instabilities. The irradiated dosemeters were stored at the same room where the average temperature was nearly 20°C. There were 14 groups with 6 dosemeters for irradiation and 2 dosemeters for natural background radiation level correction. The reader was Harshaw TLD™ Model 6600 Plus Automated Reader (Thermo Fisher Scientific, USA). The whole glow curve was used for dose estimation (all of 200 channels). The time as influence quantity was considered to be of type F, thus the range of relative response was limiting factor in the analysis. The results showed that the maximum measurement time tmax is 72 days for deep dose (Hp(10)) detector, and 85 days for shallow dose (Hp(0.07)) detector. Thus, the standard’s requirement is satisfied, as it is required minimum of 30 days. The relative response range for all of the 14 groups was from 0.82 to 1.14 and from 0.83 to 1.17, for deep and shallow dose, respectively. The research has limitation as the irradiations were organized aligned to COVID-19 working schedule. One of the consequences of this timetable is lack of 7 days’ time point, thus the values from 16 days’ time point was used as referential.
PB  - RAD Centre, Niš, Serbia
C3  - RAD 2021 : 9th International Conference on Radiation in Various Fields of Research : book of abstracts; June 14-18; Herceg Novi, Montenegro
T1  - TLD-100 post-irradiation fading characteristics according to IEC 62387:2020 standard
SP  - 219
DO  - 10.21175/rad.abstr.book.2021.31.12
ER  - 
@conference{
author = "Stanković-Petrović, Jelena S. and Krajinović, Marko and Kržanović, Nikola and Živanović, Miloš and Kojić, Andrea and Božović, Predrag",
year = "2021",
abstract = "The results of the post-irradiation fading of whole body dosemeters based on two TLD-100TM (Thermo Scientific™ Harshaw™, USA) detectors are presented. The dosemeters are regularly used by accredited individual monitoring service (IMS) at Vinca Institute of Nuclear Science (VINS), Belgrade, Serbia. The testing of post-irradiation fading was carried out according to International Electrotechnical Commission (IEC) 62387:2020 standard. The irradiations are done in S-Cs137 field at secondary standard dosimetry laboratory (SSDL) at VINS, according to International Organization for Standardization document ISO 4037-3:2019. The chosen reference personal dose equivalent value was 3 mSv. The research was carried out in the period from October 2020 to February 2021, and it lasted 128 days. The frequency of irradiations was approximately 7 days, while 3 periods between irradiations were longer than 10 days, due to COVID-19 pandemic. The irradiations were performed at different dates; thus, all dose readouts were done on the same day to prevent influence of reader’s instabilities. The irradiated dosemeters were stored at the same room where the average temperature was nearly 20°C. There were 14 groups with 6 dosemeters for irradiation and 2 dosemeters for natural background radiation level correction. The reader was Harshaw TLD™ Model 6600 Plus Automated Reader (Thermo Fisher Scientific, USA). The whole glow curve was used for dose estimation (all of 200 channels). The time as influence quantity was considered to be of type F, thus the range of relative response was limiting factor in the analysis. The results showed that the maximum measurement time tmax is 72 days for deep dose (Hp(10)) detector, and 85 days for shallow dose (Hp(0.07)) detector. Thus, the standard’s requirement is satisfied, as it is required minimum of 30 days. The relative response range for all of the 14 groups was from 0.82 to 1.14 and from 0.83 to 1.17, for deep and shallow dose, respectively. The research has limitation as the irradiations were organized aligned to COVID-19 working schedule. One of the consequences of this timetable is lack of 7 days’ time point, thus the values from 16 days’ time point was used as referential.",
publisher = "RAD Centre, Niš, Serbia",
journal = "RAD 2021 : 9th International Conference on Radiation in Various Fields of Research : book of abstracts; June 14-18; Herceg Novi, Montenegro",
title = "TLD-100 post-irradiation fading characteristics according to IEC 62387:2020 standard",
pages = "219",
doi = "10.21175/rad.abstr.book.2021.31.12"
}
Stanković-Petrović, J. S., Krajinović, M., Kržanović, N., Živanović, M., Kojić, A.,& Božović, P.. (2021). TLD-100 post-irradiation fading characteristics according to IEC 62387:2020 standard. in RAD 2021 : 9th International Conference on Radiation in Various Fields of Research : book of abstracts; June 14-18; Herceg Novi, Montenegro
RAD Centre, Niš, Serbia., 219.
https://doi.org/10.21175/rad.abstr.book.2021.31.12
Stanković-Petrović JS, Krajinović M, Kržanović N, Živanović M, Kojić A, Božović P. TLD-100 post-irradiation fading characteristics according to IEC 62387:2020 standard. in RAD 2021 : 9th International Conference on Radiation in Various Fields of Research : book of abstracts; June 14-18; Herceg Novi, Montenegro. 2021;:219.
doi:10.21175/rad.abstr.book.2021.31.12 .
Stanković-Petrović, Jelena S., Krajinović, Marko, Kržanović, Nikola, Živanović, Miloš, Kojić, Andrea, Božović, Predrag, "TLD-100 post-irradiation fading characteristics according to IEC 62387:2020 standard" in RAD 2021 : 9th International Conference on Radiation in Various Fields of Research : book of abstracts; June 14-18; Herceg Novi, Montenegro (2021):219,
https://doi.org/10.21175/rad.abstr.book.2021.31.12 . .

Vendor‐independent skin dose mapping application for interventional radiology and cardiology

Krajinović, Marko; Kržanović, Nikola; Ciraj-Bjelac, Olivera

(2021)

TY  - JOUR
AU  - Krajinović, Marko
AU  - Kržanović, Nikola
AU  - Ciraj-Bjelac, Olivera
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9519
AB  - Purpose: The purpose of this paper is to present and validate an originally developed application SkinCare used for skin dose mapping in interventional procedures, which are associated with relatively high radiation doses to the patient’s skin and possible skin reactions. Methods: SkinCare is an application tool for generating skin dose maps following interventional radiology and cardiology procedures using the realistic 3D patient models. Skin dose is calculated using data from Digital Imaging and Communications in Medicine (DICOM) Radiation Dose Structured Reports (RDSRs). SkinCare validation was performed by using the data from the Siemens Artis Zee Biplane fluoroscopy system and conducting “Acceptance and quality control protocols for skin dose calculating software solutions in interventional cardiology” developed and tested in the frame of the VERIDIC project. XR-RV3 Gafchromic films were used as dosimeters to compare peak skin doses (PSDs) and dose maps obtained through measurements and calculations. DICOM RDSRs from four fluoroscopy systems of different vendors (Canon, GE, Philips, and Siemens) were used for the development of the SkinCare and for the comparison of skin dose maps generated using SkinCare to skin dose maps generated by different commercial software tools (Dose Tracking System (DTS) from Canon, RadimetricsTM from Bayer and RDM from MEDSQUARE). The same RDSRs generated during a cardiology clinical procedure (percutaneous coronary intervention—PCI) were used for comparison. Results: Validation performed using VERIDIC's protocols for skin dose calculation software showed that PSD calculated by SkinCare is within 17% and 16% accuracy compared to measurements using XR-RV3 Gafchromic films for fundamental irradiation setups and simplified clinical procedures, respectively. Good visual agreement between dose maps generated by SkinCare and DTS, RadimetricsTM and RDM was obtained. Conclusions: SkinCare is proved to be very convenient solution that can be used for monitoring delivered dose following interventional procedures. © 2021 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
T2  - Journal of Applied Clinical Medical Physics
T1  - Vendor‐independent skin dose mapping application for interventional radiology and cardiology
VL  - 22
IS  - 2
SP  - 145
EP  - 157
DO  - 10.1002/acm2.13167
ER  - 
@article{
author = "Krajinović, Marko and Kržanović, Nikola and Ciraj-Bjelac, Olivera",
year = "2021",
abstract = "Purpose: The purpose of this paper is to present and validate an originally developed application SkinCare used for skin dose mapping in interventional procedures, which are associated with relatively high radiation doses to the patient’s skin and possible skin reactions. Methods: SkinCare is an application tool for generating skin dose maps following interventional radiology and cardiology procedures using the realistic 3D patient models. Skin dose is calculated using data from Digital Imaging and Communications in Medicine (DICOM) Radiation Dose Structured Reports (RDSRs). SkinCare validation was performed by using the data from the Siemens Artis Zee Biplane fluoroscopy system and conducting “Acceptance and quality control protocols for skin dose calculating software solutions in interventional cardiology” developed and tested in the frame of the VERIDIC project. XR-RV3 Gafchromic films were used as dosimeters to compare peak skin doses (PSDs) and dose maps obtained through measurements and calculations. DICOM RDSRs from four fluoroscopy systems of different vendors (Canon, GE, Philips, and Siemens) were used for the development of the SkinCare and for the comparison of skin dose maps generated using SkinCare to skin dose maps generated by different commercial software tools (Dose Tracking System (DTS) from Canon, RadimetricsTM from Bayer and RDM from MEDSQUARE). The same RDSRs generated during a cardiology clinical procedure (percutaneous coronary intervention—PCI) were used for comparison. Results: Validation performed using VERIDIC's protocols for skin dose calculation software showed that PSD calculated by SkinCare is within 17% and 16% accuracy compared to measurements using XR-RV3 Gafchromic films for fundamental irradiation setups and simplified clinical procedures, respectively. Good visual agreement between dose maps generated by SkinCare and DTS, RadimetricsTM and RDM was obtained. Conclusions: SkinCare is proved to be very convenient solution that can be used for monitoring delivered dose following interventional procedures. © 2021 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.",
journal = "Journal of Applied Clinical Medical Physics",
title = "Vendor‐independent skin dose mapping application for interventional radiology and cardiology",
volume = "22",
number = "2",
pages = "145-157",
doi = "10.1002/acm2.13167"
}
Krajinović, M., Kržanović, N.,& Ciraj-Bjelac, O.. (2021). Vendor‐independent skin dose mapping application for interventional radiology and cardiology. in Journal of Applied Clinical Medical Physics, 22(2), 145-157.
https://doi.org/10.1002/acm2.13167
Krajinović M, Kržanović N, Ciraj-Bjelac O. Vendor‐independent skin dose mapping application for interventional radiology and cardiology. in Journal of Applied Clinical Medical Physics. 2021;22(2):145-157.
doi:10.1002/acm2.13167 .
Krajinović, Marko, Kržanović, Nikola, Ciraj-Bjelac, Olivera, "Vendor‐independent skin dose mapping application for interventional radiology and cardiology" in Journal of Applied Clinical Medical Physics, 22, no. 2 (2021):145-157,
https://doi.org/10.1002/acm2.13167 . .
1
6
3
6

Skin dose mapping in interventional cardiology: a practical solution

Krajinović, Marko; Dobrić, Milan R.; Ciraj-Bjelac, Olivera

(2020)

TY  - JOUR
AU  - Krajinović, Marko
AU  - Dobrić, Milan R.
AU  - Ciraj-Bjelac, Olivera
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9066
AB  - Numerous cases of radiation-induced tissue reactions following interventional cardiology (IC) procedures have been reported, resulting in the need for an optimized and personalized dosimetry. At present, there are many fluoroscopy units without Digital Imaging and Communications in Medicine (DICOM) Radiation Dose Structured Report globally installed. Many of these have not been updated yet, and may never be, therefore, the main objectives of this paper are to develop an offline skin dose mapping application, which uses DICOM headers for the peak skin dose (PSD) assessment and to compare the PSD assessment results to XR-RV3 Gafchromic film for common IC procedures. The mean deviation between the measured and the calculated PSD was 8.7 ± 26.3%. Simulated skin dose map showed good matching with XR-RV3 Gafchromic film. The skin dose mapping application presented in this paper is an elegant solution and a suitable alternative to XR-RV3 Gafchromic film.
T2  - Radiation Protection Dosimetry
T1  - Skin dose mapping in interventional cardiology: a practical solution
VL  - 188
IS  - 4
SP  - 508
EP  - 515
DO  - 10.1093/rpd/ncaa002
ER  - 
@article{
author = "Krajinović, Marko and Dobrić, Milan R. and Ciraj-Bjelac, Olivera",
year = "2020",
abstract = "Numerous cases of radiation-induced tissue reactions following interventional cardiology (IC) procedures have been reported, resulting in the need for an optimized and personalized dosimetry. At present, there are many fluoroscopy units without Digital Imaging and Communications in Medicine (DICOM) Radiation Dose Structured Report globally installed. Many of these have not been updated yet, and may never be, therefore, the main objectives of this paper are to develop an offline skin dose mapping application, which uses DICOM headers for the peak skin dose (PSD) assessment and to compare the PSD assessment results to XR-RV3 Gafchromic film for common IC procedures. The mean deviation between the measured and the calculated PSD was 8.7 ± 26.3%. Simulated skin dose map showed good matching with XR-RV3 Gafchromic film. The skin dose mapping application presented in this paper is an elegant solution and a suitable alternative to XR-RV3 Gafchromic film.",
journal = "Radiation Protection Dosimetry",
title = "Skin dose mapping in interventional cardiology: a practical solution",
volume = "188",
number = "4",
pages = "508-515",
doi = "10.1093/rpd/ncaa002"
}
Krajinović, M., Dobrić, M. R.,& Ciraj-Bjelac, O.. (2020). Skin dose mapping in interventional cardiology: a practical solution. in Radiation Protection Dosimetry, 188(4), 508-515.
https://doi.org/10.1093/rpd/ncaa002
Krajinović M, Dobrić MR, Ciraj-Bjelac O. Skin dose mapping in interventional cardiology: a practical solution. in Radiation Protection Dosimetry. 2020;188(4):508-515.
doi:10.1093/rpd/ncaa002 .
Krajinović, Marko, Dobrić, Milan R., Ciraj-Bjelac, Olivera, "Skin dose mapping in interventional cardiology: a practical solution" in Radiation Protection Dosimetry, 188, no. 4 (2020):508-515,
https://doi.org/10.1093/rpd/ncaa002 . .
10
6
9

Mapiranje doze na površini kože u interventnoj kardiologiji

Krajinović, Marko; Ciraj-Bjelac, Olivera

(Београд : Институт за нуклеарне науке "Винча" : Друштво за заштиту од зрачења Србије и Црне Горе, 2019)

TY  - CONF
AU  - Krajinović, Marko
AU  - Ciraj-Bjelac, Olivera
PY  - 2019
UR  - https://plus.sr.cobiss.net/opac7/bib/279687436
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8720
AB  - Interventne kardiološke procedure su često povezane sa relativno visokim dozama i sa dugim vremenom izlaganja zračenju, što često rezultuje visokom apsorbovanom dozom kože. Cilj ovog rada je da se razvije aplikacija za mapiranje maksimalne doze kože u interventnim kardiološkim procedurama. Maksimalna doza na površini kože je izračunata pomoću informacija iz DICOM fajlova generisanih nakon kardioloških procedura. Izračunate maksimalne doze su validirane pomoću XR-RV3 Gafchromic filmova koji su postavljeni ispod pacijenta tokom svake procedure. Srednja devijacija između izmerenih i izračunatih maksimalnih doza je 8,7% ± 26,3%. Simulirana dozna mapa pacijenta je pokazala dobro poklapanje sa XR-RV3 Gafchromic filovima. Aplikacija za mapiranje doze kože prikazana u ovom radu je elegantno rešenje i pogodna alternativa za XR-RV3 Gafchromic filmove.
AB  - Interventional Cardiology (IC)procedures are frequently associated with relatively high dose rates and prolonged irradiation times, which often results in very high absorbed skin doses. Objectiveof this work is to develop skin dose mapping application for Peak Skin Dose (PSD) estimation in Interventional Cardiology procedures. PSD was calculated using necessary information from Digital Imaging and Communications in Medicine (DICOM) headers generated after cardiac procedures. Calculated PSDs were validated using XR-RV3 Gafchromic films placed under the patient‘s back during each procedure. The mean deviation between measured and calculated PSD was 8.7% ± 26.3%. Simulated skin dose map showed good matching with XR-RV3 Gafchromic film. Skin dose mapping application presented in this paper is elegant solution and suitable alternative to XR-RV3 Gafchromic film.
PB  - Београд : Институт за нуклеарне науке "Винча" : Друштво за заштиту од зрачења Србије и Црне Горе
C3  - 30. симпозијум ДЗЗСЦГ : зборник радова
T1  - Mapiranje doze na površini kože u interventnoj kardiologiji
T1  - Skin dose mapping in interventional cardiology
SP  - 489
EP  - 495
UR  - https://hdl.handle.net/21.15107/rcub_vinar_8720
ER  - 
@conference{
author = "Krajinović, Marko and Ciraj-Bjelac, Olivera",
year = "2019",
abstract = "Interventne kardiološke procedure su često povezane sa relativno visokim dozama i sa dugim vremenom izlaganja zračenju, što često rezultuje visokom apsorbovanom dozom kože. Cilj ovog rada je da se razvije aplikacija za mapiranje maksimalne doze kože u interventnim kardiološkim procedurama. Maksimalna doza na površini kože je izračunata pomoću informacija iz DICOM fajlova generisanih nakon kardioloških procedura. Izračunate maksimalne doze su validirane pomoću XR-RV3 Gafchromic filmova koji su postavljeni ispod pacijenta tokom svake procedure. Srednja devijacija između izmerenih i izračunatih maksimalnih doza je 8,7% ± 26,3%. Simulirana dozna mapa pacijenta je pokazala dobro poklapanje sa XR-RV3 Gafchromic filovima. Aplikacija za mapiranje doze kože prikazana u ovom radu je elegantno rešenje i pogodna alternativa za XR-RV3 Gafchromic filmove., Interventional Cardiology (IC)procedures are frequently associated with relatively high dose rates and prolonged irradiation times, which often results in very high absorbed skin doses. Objectiveof this work is to develop skin dose mapping application for Peak Skin Dose (PSD) estimation in Interventional Cardiology procedures. PSD was calculated using necessary information from Digital Imaging and Communications in Medicine (DICOM) headers generated after cardiac procedures. Calculated PSDs were validated using XR-RV3 Gafchromic films placed under the patient‘s back during each procedure. The mean deviation between measured and calculated PSD was 8.7% ± 26.3%. Simulated skin dose map showed good matching with XR-RV3 Gafchromic film. Skin dose mapping application presented in this paper is elegant solution and suitable alternative to XR-RV3 Gafchromic film.",
publisher = "Београд : Институт за нуклеарне науке "Винча" : Друштво за заштиту од зрачења Србије и Црне Горе",
journal = "30. симпозијум ДЗЗСЦГ : зборник радова",
title = "Mapiranje doze na površini kože u interventnoj kardiologiji, Skin dose mapping in interventional cardiology",
pages = "489-495",
url = "https://hdl.handle.net/21.15107/rcub_vinar_8720"
}
Krajinović, M.,& Ciraj-Bjelac, O.. (2019). Mapiranje doze na površini kože u interventnoj kardiologiji. in 30. симпозијум ДЗЗСЦГ : зборник радова
Београд : Институт за нуклеарне науке "Винча" : Друштво за заштиту од зрачења Србије и Црне Горе., 489-495.
https://hdl.handle.net/21.15107/rcub_vinar_8720
Krajinović M, Ciraj-Bjelac O. Mapiranje doze na površini kože u interventnoj kardiologiji. in 30. симпозијум ДЗЗСЦГ : зборник радова. 2019;:489-495.
https://hdl.handle.net/21.15107/rcub_vinar_8720 .
Krajinović, Marko, Ciraj-Bjelac, Olivera, "Mapiranje doze na površini kože u interventnoj kardiologiji" in 30. симпозијум ДЗЗСЦГ : зборник радова (2019):489-495,
https://hdl.handle.net/21.15107/rcub_vinar_8720 .