Todorović, Branislav

Link to this page

Authority KeyName Variants
02f97dd1-01c7-4db5-b391-402efccc0a48
  • Todorović, Branislav (1)
Projects
No records found.

Author's Bibliography

Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Silvana; Todorović, Branislav; Zagorac, Jelena; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2023)

TY  - CONF
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Silvana
AU  - Todorović, Branislav
AU  - Zagorac, Jelena
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11346
AB  - The goal of this research was to obtain a chemically complex multicomponent
oxide with the A2B2O7 pyrochlore structure with nominal composition
(La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 that contains 10 different
cations in equiatomic amounts which was obtained by reacting metal nitrates (site
A) and metal chlorides (site B) with glycine during the combustion reaction. The
powder synthesized initially was found to be amorphous based on XRD analysis. To
convert the powder into a crystalline pyrochlore structure, the powder underwent
post-calcination at various temperatures ranging from 600–1500 °C. It was
discovered that the desired monophase pyrochlore structure (A2B2O7) was obtained
after calcination at 900 °C. To create a high-density ceramic pellet, the powder
calcined at 900 °C was subjected to pressureless sintering at 1650 °C for four hours
in the presence of air. The resulting pellet had a density of 97% of the theoretical
density and was free from any additives. This process likely caused the powder
particles to fuse together, creating a solid, dense pellet.
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
T1  - Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination
SP  - 84
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11346
ER  - 
@conference{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Silvana and Todorović, Branislav and Zagorac, Jelena and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "The goal of this research was to obtain a chemically complex multicomponent
oxide with the A2B2O7 pyrochlore structure with nominal composition
(La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 that contains 10 different
cations in equiatomic amounts which was obtained by reacting metal nitrates (site
A) and metal chlorides (site B) with glycine during the combustion reaction. The
powder synthesized initially was found to be amorphous based on XRD analysis. To
convert the powder into a crystalline pyrochlore structure, the powder underwent
post-calcination at various temperatures ranging from 600–1500 °C. It was
discovered that the desired monophase pyrochlore structure (A2B2O7) was obtained
after calcination at 900 °C. To create a high-density ceramic pellet, the powder
calcined at 900 °C was subjected to pressureless sintering at 1650 °C for four hours
in the presence of air. The resulting pellet had a density of 97% of the theoretical
density and was free from any additives. This process likely caused the powder
particles to fuse together, creating a solid, dense pellet.",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts",
title = "Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination",
pages = "84",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11346"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S., Todorović, B., Zagorac, J., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 84.
https://hdl.handle.net/21.15107/rcub_vinar_11346
Matović B, Maletaškić J, Maksimović V, Dimitrijević S, Todorović B, Zagorac J, Zeng Y, Cvijović-Alagić I. Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts. 2023;:84.
https://hdl.handle.net/21.15107/rcub_vinar_11346 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Silvana, Todorović, Branislav, Zagorac, Jelena, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination" in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts (2023):84,
https://hdl.handle.net/21.15107/rcub_vinar_11346 .