Barać, Milena

Link to this page

Authority KeyName Variants
9ccdea60-15dc-4561-b2f7-9d42ded342f8
  • Barać, Milena (1)
Projects

Author's Bibliography

Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings

Barać, Milena; Petrović, Milan; Petrović, Nina; Nikolić-Jakoba, Nataša; Aleksić, Zoran; Todorović, Lidija; Petrović-Stanojević, Nataša; Anđelić-Jelić, Marina; Davidović, Aleksandar; Milašin, Jelena; Roganović, Jelena

(2023)

TY  - JOUR
AU  - Barać, Milena
AU  - Petrović, Milan
AU  - Petrović, Nina
AU  - Nikolić-Jakoba, Nataša
AU  - Aleksić, Zoran
AU  - Todorović, Lidija
AU  - Petrović-Stanojević, Nataša
AU  - Anđelić-Jelić, Marina
AU  - Davidović, Aleksandar
AU  - Milašin, Jelena
AU  - Roganović, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11499
AB  - Type 2 diabetes mellitus (T2DM) is associated with functional deterioration of the salivary gland and dental pulp, related to oxidative stress. The aim was to integrate experimental and bioinformatic findings to analyze the cellular mechanism of melatonin (MEL) action in the human parotid gland and dental pulp in diabetes. Human parotid gland tissue was obtained from 16 non-diabetic and 16 diabetic participants, as well as human dental pulp from 15 non-diabetic and 15 diabetic participants. In human non-diabetic and diabetic parotid gland cells (hPGCs) as well as in dental pulp cells (hDPCs), cultured in hyper- and normoglycemic conditions, glial cell linederived neurotrophic factor (GDNF), MEL, inducible nitric oxide synthase (iNOS) protein expression, and superoxide dismutase (SOD) activity were measured by enzyme-linked immunosorbent assay (ELISA) and spectrophotometrically. Bioinformatic analysis was performed using ShinyGO (v.0.75) application. Diabetic participants had increased GDNF and decreased MEL in parotid (p < 0.01) and dental pulp (p < 0.05) tissues, associated with increased iNOS and SOD activity. Normoglycemic hDPCs and non-diabetic hPGCs treated with 0.1 mM MEL had increased GDNF (p < 0.05), while hyperglycemic hDPCs treated with 1 mM MEL showed a decrease in up-regulated GDNF (p < 0.05). Enrichment analyses showed interference with stress and ATF/CREB signaling. MEL induced the stress-protective mechanism in hyperglycemic hDPCs and diabetic hPGCs, suggesting MEL could be beneficial for diabetes-associated disturbances in oral tissues.
T2  - International Journal of Environmental Research and Public Health
T1  - Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings
VL  - 20
IS  - 18
SP  - 6727
DO  - 10.3390/ijerph20186727
ER  - 
@article{
author = "Barać, Milena and Petrović, Milan and Petrović, Nina and Nikolić-Jakoba, Nataša and Aleksić, Zoran and Todorović, Lidija and Petrović-Stanojević, Nataša and Anđelić-Jelić, Marina and Davidović, Aleksandar and Milašin, Jelena and Roganović, Jelena",
year = "2023",
abstract = "Type 2 diabetes mellitus (T2DM) is associated with functional deterioration of the salivary gland and dental pulp, related to oxidative stress. The aim was to integrate experimental and bioinformatic findings to analyze the cellular mechanism of melatonin (MEL) action in the human parotid gland and dental pulp in diabetes. Human parotid gland tissue was obtained from 16 non-diabetic and 16 diabetic participants, as well as human dental pulp from 15 non-diabetic and 15 diabetic participants. In human non-diabetic and diabetic parotid gland cells (hPGCs) as well as in dental pulp cells (hDPCs), cultured in hyper- and normoglycemic conditions, glial cell linederived neurotrophic factor (GDNF), MEL, inducible nitric oxide synthase (iNOS) protein expression, and superoxide dismutase (SOD) activity were measured by enzyme-linked immunosorbent assay (ELISA) and spectrophotometrically. Bioinformatic analysis was performed using ShinyGO (v.0.75) application. Diabetic participants had increased GDNF and decreased MEL in parotid (p < 0.01) and dental pulp (p < 0.05) tissues, associated with increased iNOS and SOD activity. Normoglycemic hDPCs and non-diabetic hPGCs treated with 0.1 mM MEL had increased GDNF (p < 0.05), while hyperglycemic hDPCs treated with 1 mM MEL showed a decrease in up-regulated GDNF (p < 0.05). Enrichment analyses showed interference with stress and ATF/CREB signaling. MEL induced the stress-protective mechanism in hyperglycemic hDPCs and diabetic hPGCs, suggesting MEL could be beneficial for diabetes-associated disturbances in oral tissues.",
journal = "International Journal of Environmental Research and Public Health",
title = "Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings",
volume = "20",
number = "18",
pages = "6727",
doi = "10.3390/ijerph20186727"
}
Barać, M., Petrović, M., Petrović, N., Nikolić-Jakoba, N., Aleksić, Z., Todorović, L., Petrović-Stanojević, N., Anđelić-Jelić, M., Davidović, A., Milašin, J.,& Roganović, J.. (2023). Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings. in International Journal of Environmental Research and Public Health, 20(18), 6727.
https://doi.org/10.3390/ijerph20186727
Barać M, Petrović M, Petrović N, Nikolić-Jakoba N, Aleksić Z, Todorović L, Petrović-Stanojević N, Anđelić-Jelić M, Davidović A, Milašin J, Roganović J. Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings. in International Journal of Environmental Research and Public Health. 2023;20(18):6727.
doi:10.3390/ijerph20186727 .
Barać, Milena, Petrović, Milan, Petrović, Nina, Nikolić-Jakoba, Nataša, Aleksić, Zoran, Todorović, Lidija, Petrović-Stanojević, Nataša, Anđelić-Jelić, Marina, Davidović, Aleksandar, Milašin, Jelena, Roganović, Jelena, "Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings" in International Journal of Environmental Research and Public Health, 20, no. 18 (2023):6727,
https://doi.org/10.3390/ijerph20186727 . .