Saleh, Mohamed Nasr

Link to this page

Authority KeyName Variants
f702feca-b9da-4756-8c91-4a6ae69cbed1
  • Saleh, Mohamed Nasr (2)
Projects

Author's Bibliography

Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH

Tomić, Nataša Z.; Saleh, Mohamed Nasr; Vuksanović, Marija M.; Egelja, Adela; Obradović, Vera; Marinković, Aleksandar; Jančić-Heinemann, Radmila

(2021)

TY  - JOUR
AU  - Tomić, Nataša Z.
AU  - Saleh, Mohamed Nasr
AU  - Vuksanović, Marija M.
AU  - Egelja, Adela
AU  - Obradović, Vera
AU  - Marinković, Aleksandar
AU  - Jančić-Heinemann, Radmila
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9823
AB  - The goal of this study was to investigate the effect of the structure of Mn-Al layered double hydroxide (LDH) on the adhesion behavior of composite adhesives on two Al alloys (L3005 and L8079). The composite adhesives were made out of the UV-curing Bisphenol A glycidylmethacrylate/triethylene glycol dimethacrylate (BT) as polymer matrix and the addition of 1, 3, and 5 wt. % of Mn-Al LDH as adhesion enhancers. Adhesion was evaluated by using the micro Vickers hardness testing procedure. The wetting angle of composite adhesives to the Al substrates was measured and compared to the adhesion parameter b obtained from the microhardness tests. The highest increase in adhesion was observed for BT with 5 wt. % of Mn-Al LDH on L3005 substrate, which was more than 15 times higher than the adhesion for the neat BT. The morphological segregation of composite adhesives after the contact with Al substrates was examined by optical microscopy and a higher compatibility of Mn-Al LDH particles with L3005 substrate was found. The methods used for the adhesion properties assessment suggested that the Mn-Al LDH was the best adhesion enhancer of the BT matrix for L3005 substrate containing a higher content of Mn and surface hydroxyl groups.
T2  - Polymers
T1  - Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH
VL  - 13
IS  - 9
SP  - 1525
DO  - 10.3390/polym13091525
ER  - 
@article{
author = "Tomić, Nataša Z. and Saleh, Mohamed Nasr and Vuksanović, Marija M. and Egelja, Adela and Obradović, Vera and Marinković, Aleksandar and Jančić-Heinemann, Radmila",
year = "2021",
abstract = "The goal of this study was to investigate the effect of the structure of Mn-Al layered double hydroxide (LDH) on the adhesion behavior of composite adhesives on two Al alloys (L3005 and L8079). The composite adhesives were made out of the UV-curing Bisphenol A glycidylmethacrylate/triethylene glycol dimethacrylate (BT) as polymer matrix and the addition of 1, 3, and 5 wt. % of Mn-Al LDH as adhesion enhancers. Adhesion was evaluated by using the micro Vickers hardness testing procedure. The wetting angle of composite adhesives to the Al substrates was measured and compared to the adhesion parameter b obtained from the microhardness tests. The highest increase in adhesion was observed for BT with 5 wt. % of Mn-Al LDH on L3005 substrate, which was more than 15 times higher than the adhesion for the neat BT. The morphological segregation of composite adhesives after the contact with Al substrates was examined by optical microscopy and a higher compatibility of Mn-Al LDH particles with L3005 substrate was found. The methods used for the adhesion properties assessment suggested that the Mn-Al LDH was the best adhesion enhancer of the BT matrix for L3005 substrate containing a higher content of Mn and surface hydroxyl groups.",
journal = "Polymers",
title = "Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH",
volume = "13",
number = "9",
pages = "1525",
doi = "10.3390/polym13091525"
}
Tomić, N. Z., Saleh, M. N., Vuksanović, M. M., Egelja, A., Obradović, V., Marinković, A.,& Jančić-Heinemann, R.. (2021). Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH. in Polymers, 13(9), 1525.
https://doi.org/10.3390/polym13091525
Tomić NZ, Saleh MN, Vuksanović MM, Egelja A, Obradović V, Marinković A, Jančić-Heinemann R. Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH. in Polymers. 2021;13(9):1525.
doi:10.3390/polym13091525 .
Tomić, Nataša Z., Saleh, Mohamed Nasr, Vuksanović, Marija M., Egelja, Adela, Obradović, Vera, Marinković, Aleksandar, Jančić-Heinemann, Radmila, "Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH" in Polymers, 13, no. 9 (2021):1525,
https://doi.org/10.3390/polym13091525 . .
2
1
2

Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherends

Tomić, Nataša Z.; Saleh, Mohamed Nasr; Teixeira de Freitas, Sofia; Živković, Andreja; Vuksanović, Marija M.; Poulis, Johannes A.; Marinković, Aleksandar

(2020)

TY  - JOUR
AU  - Tomić, Nataša Z.
AU  - Saleh, Mohamed Nasr
AU  - Teixeira de Freitas, Sofia
AU  - Živković, Andreja
AU  - Vuksanović, Marija M.
AU  - Poulis, Johannes A.
AU  - Marinković, Aleksandar
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9099
AB  - This paper presents a new process for obtaining eco-epoxide adhesives synthesized from bio-renewable raw material (tannic acid—TA) and used for bonding lightweight materials (aluminum (Al) and carbon fiber reinforced polymer (CFRP)). Two synthesized bio-epoxy components based on TA, (A) glycidyl ether and (B) glycidyl phosphate ester of TA, were used as a replacement for the toxic epoxy component based on Bisphenol A. The effect of eco-epoxy components on the interface adhesion was measured by the determination of adhesion parameter b, which was compared to the reference epoxy (REF). The increase of adhesion parameter b was 77.5% for A and 151.5% for B. The adhesion of both eco-adhesives was tested using the bell peel test (BPT) with the Al and CFRP adherends. When compared to REF, the average peel load for B was 17.6% (39.3%) and 58.3% (176.9%) higher for the Al and CFRP adherends, respectively. Complete adhesion failure of REF reflected the weak adhesion to both Al and CFRP, which was improved by the addition of eco-epoxy components A and B showing the presence of cohesive failure. The microhardness testing method of interface adhesion was proven to be a fast and reliable testing method, providing a qualitative indication in adhesive selection.
T2  - Polymers
T1  - Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherends
VL  - 12
IS  - 7
SP  - 1541
DO  - 10.3390/polym12071541
ER  - 
@article{
author = "Tomić, Nataša Z. and Saleh, Mohamed Nasr and Teixeira de Freitas, Sofia and Živković, Andreja and Vuksanović, Marija M. and Poulis, Johannes A. and Marinković, Aleksandar",
year = "2020",
abstract = "This paper presents a new process for obtaining eco-epoxide adhesives synthesized from bio-renewable raw material (tannic acid—TA) and used for bonding lightweight materials (aluminum (Al) and carbon fiber reinforced polymer (CFRP)). Two synthesized bio-epoxy components based on TA, (A) glycidyl ether and (B) glycidyl phosphate ester of TA, were used as a replacement for the toxic epoxy component based on Bisphenol A. The effect of eco-epoxy components on the interface adhesion was measured by the determination of adhesion parameter b, which was compared to the reference epoxy (REF). The increase of adhesion parameter b was 77.5% for A and 151.5% for B. The adhesion of both eco-adhesives was tested using the bell peel test (BPT) with the Al and CFRP adherends. When compared to REF, the average peel load for B was 17.6% (39.3%) and 58.3% (176.9%) higher for the Al and CFRP adherends, respectively. Complete adhesion failure of REF reflected the weak adhesion to both Al and CFRP, which was improved by the addition of eco-epoxy components A and B showing the presence of cohesive failure. The microhardness testing method of interface adhesion was proven to be a fast and reliable testing method, providing a qualitative indication in adhesive selection.",
journal = "Polymers",
title = "Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherends",
volume = "12",
number = "7",
pages = "1541",
doi = "10.3390/polym12071541"
}
Tomić, N. Z., Saleh, M. N., Teixeira de Freitas, S., Živković, A., Vuksanović, M. M., Poulis, J. A.,& Marinković, A.. (2020). Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherends. in Polymers, 12(7), 1541.
https://doi.org/10.3390/polym12071541
Tomić NZ, Saleh MN, Teixeira de Freitas S, Živković A, Vuksanović MM, Poulis JA, Marinković A. Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherends. in Polymers. 2020;12(7):1541.
doi:10.3390/polym12071541 .
Tomić, Nataša Z., Saleh, Mohamed Nasr, Teixeira de Freitas, Sofia, Živković, Andreja, Vuksanović, Marija M., Poulis, Johannes A., Marinković, Aleksandar, "Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherends" in Polymers, 12, no. 7 (2020):1541,
https://doi.org/10.3390/polym12071541 . .
11
3
9