Mičušik, Matej

Link to this page

Authority KeyName Variants
orcid::0000-0003-2751-5381
  • Mičušik, Matej (18)
Projects
Thin films of single wall carbon nanotubes and graphene for electronic application VEGA [2/0093/16]
bilateral project Serbia-Slovakia [SK-SRB-2016-0038] SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists
People Programme (Marie Curie Actions) European Union's Seventh Framework Programme under REA [609427] Slovak Academy of Sciences
Czech Science Foundation [19-09721S] Modulation of intracellular energy balance-controlling signalling pathways in therapy of cancer and neuro-immuno-endocrine disorders
Ministry of Education, Youth and Sports of the Czech Republic Program NPU I [LO1504] Multilateral scientific and technological cooperation in the Danube region [DS021]
multilateral scientific and technological cooperation in the Danube region [DS-2016-021] SASPRO Programme [1237/02/02-b]
SASPRO Programme project [1237/02/02-b] Vedecka grantova agentura MSVVaS SR a SAV (VEGA) [2/0093/16]
[APVV-15-0641] bilateral project Serbia-Slovakia (SK-SRB-2016-0038)
Bilateral project Serbia-Slovakia (SK-SRB-2016-0038) Czech Science Foundation (17-05095S)
Czech Science Foundation [17-05095S] European Union under REA (609427)
Grant Agency of the Czech Republic [17-05095S] Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites
Molecular characterization of thyroid gland tumors:biological and clinical aspects Studying signal transduction pathways and epigenetic mechanisms that control human SOX genes expression: further insight into their roles in cell fate determination and differentiation
The role of autophagy in regulation of cancer cell death Application of functionalyzed carbon nanotubes and gold nanoparticles for preparation of dendritic cells for tumor therapy
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Multiscale structuring of polymer nanocomposites and functional materials based on different precursors
Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness Medical Faculty of the Military Medical Academy [MF-VMA 08/13-15, MF-VMA 9/16-18]

Author's Bibliography

Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment

Budimir, Milica; Marković, Zoran M.; Vajdak, Jan; Jovanović, Svetlana P.; Kubat, Pavel; Humpoliček, Petr; Mičušik, Matej; Danko, Martin; Barras, Alexandre; Milivojević, Dušan; Špitalsky, Zdenko; Boukherroub, Rabah; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Budimir, Milica
AU  - Marković, Zoran M.
AU  - Vajdak, Jan
AU  - Jovanović, Svetlana P.
AU  - Kubat, Pavel
AU  - Humpoliček, Petr
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Barras, Alexandre
AU  - Milivojević, Dušan
AU  - Špitalsky, Zdenko
AU  - Boukherroub, Rabah
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9746
AB  - Persistent microbial contamination of medical implant surfaces is becoming a serious threat to public health. This is principally due to antibiotic-resistant bacterial strains and the formation of bacterial biofilms. The development of novel antibacterial materials that will effectively fight both Gram-positive and Gram-negative bacteria and prevent biofilm formation represents a big challenge for researchers in the last few decades. In the present work, we report an antibacterial hydrophobic carbon quantum dots/polyurethane nanocomposite (hCQD-PU), with enhanced antibacterial properties induced by pre-treatment with gamma-irradiation. Hydrophobic quantum dots (hCQDs), which are capable of generating reactive oxygen species (ROS) upon irradiation with low-power blue light (470 nm), have been integrated into the polyurethane (PU) polymer matrix to form a photoactive nanocomposite. To modify its physical and chemical properties and improve its antibacterial efficacy, various doses of gamma irradiation (1, 10, and 200 kGy) in the air environment were applied to the formed nanocomposite. Gamma-irradiation pre-treatment significantly influenced the rise in ROS production, therefore, the prooxidative activity under the blue-light illumination of hCQD-PU was also significantly improved. The best antibacterial activity was demonstrated by the hCQD-PU nanocomposite irradiated with a dose of 200 kGy, with the complete eradication of Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 15 min of exposure to the blue lamp. © 2021 Elsevier Ltd
T2  - Radiation Physics and Chemistry
T1  - Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment
VL  - 185
SP  - 109499
DO  - 10.1016/j.radphyschem.2021.109499
ER  - 
@article{
author = "Budimir, Milica and Marković, Zoran M. and Vajdak, Jan and Jovanović, Svetlana P. and Kubat, Pavel and Humpoliček, Petr and Mičušik, Matej and Danko, Martin and Barras, Alexandre and Milivojević, Dušan and Špitalsky, Zdenko and Boukherroub, Rabah and Todorović-Marković, Biljana",
year = "2021",
abstract = "Persistent microbial contamination of medical implant surfaces is becoming a serious threat to public health. This is principally due to antibiotic-resistant bacterial strains and the formation of bacterial biofilms. The development of novel antibacterial materials that will effectively fight both Gram-positive and Gram-negative bacteria and prevent biofilm formation represents a big challenge for researchers in the last few decades. In the present work, we report an antibacterial hydrophobic carbon quantum dots/polyurethane nanocomposite (hCQD-PU), with enhanced antibacterial properties induced by pre-treatment with gamma-irradiation. Hydrophobic quantum dots (hCQDs), which are capable of generating reactive oxygen species (ROS) upon irradiation with low-power blue light (470 nm), have been integrated into the polyurethane (PU) polymer matrix to form a photoactive nanocomposite. To modify its physical and chemical properties and improve its antibacterial efficacy, various doses of gamma irradiation (1, 10, and 200 kGy) in the air environment were applied to the formed nanocomposite. Gamma-irradiation pre-treatment significantly influenced the rise in ROS production, therefore, the prooxidative activity under the blue-light illumination of hCQD-PU was also significantly improved. The best antibacterial activity was demonstrated by the hCQD-PU nanocomposite irradiated with a dose of 200 kGy, with the complete eradication of Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 15 min of exposure to the blue lamp. © 2021 Elsevier Ltd",
journal = "Radiation Physics and Chemistry",
title = "Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment",
volume = "185",
pages = "109499",
doi = "10.1016/j.radphyschem.2021.109499"
}
Budimir, M., Marković, Z. M., Vajdak, J., Jovanović, S. P., Kubat, P., Humpoliček, P., Mičušik, M., Danko, M., Barras, A., Milivojević, D., Špitalsky, Z., Boukherroub, R.,& Todorović-Marković, B.. (2021). Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. in Radiation Physics and Chemistry, 185, 109499.
https://doi.org/10.1016/j.radphyschem.2021.109499
Budimir M, Marković ZM, Vajdak J, Jovanović SP, Kubat P, Humpoliček P, Mičušik M, Danko M, Barras A, Milivojević D, Špitalsky Z, Boukherroub R, Todorović-Marković B. Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. in Radiation Physics and Chemistry. 2021;185:109499.
doi:10.1016/j.radphyschem.2021.109499 .
Budimir, Milica, Marković, Zoran M., Vajdak, Jan, Jovanović, Svetlana P., Kubat, Pavel, Humpoliček, Petr, Mičušik, Matej, Danko, Martin, Barras, Alexandre, Milivojević, Dušan, Špitalsky, Zdenko, Boukherroub, Rabah, Todorović-Marković, Biljana, "Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment" in Radiation Physics and Chemistry, 185 (2021):109499,
https://doi.org/10.1016/j.radphyschem.2021.109499 . .
16
1
14

Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2020)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9615
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]
VL  - 32
SP  - 101939
DO  - 10.1016/j.pdpdt.2020.101939
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2020",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]",
volume = "32",
pages = "101939",
doi = "10.1016/j.pdpdt.2020.101939"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2020). Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]. in Photodiagnosis and Photodynamic Therapy, 32, 101939.
https://doi.org/10.1016/j.pdpdt.2020.101939
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]. in Photodiagnosis and Photodynamic Therapy. 2020;32:101939.
doi:10.1016/j.pdpdt.2020.101939 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]" in Photodiagnosis and Photodynamic Therapy, 32 (2020):101939,
https://doi.org/10.1016/j.pdpdt.2020.101939 . .

Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications

Prekodravac, Jovana; Vasiljević, Bojana; Marković, Zoran M.; Jovanović, Dragana J.; Kleut, Duška; Špitalsky, Zdenko; Mičušik, Matej; Danko, Martin; Bajuk-Bogdanović, Danica V.; Todorović-Marković, Biljana

(2019)

TY  - JOUR
AU  - Prekodravac, Jovana
AU  - Vasiljević, Bojana
AU  - Marković, Zoran M.
AU  - Jovanović, Dragana J.
AU  - Kleut, Duška
AU  - Špitalsky, Zdenko
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Bajuk-Bogdanović, Danica V.
AU  - Todorović-Marković, Biljana
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0272884219313598
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8211
AB  - Industrialization today leads to a significant increase in the environmental pollution, with number of phenols, pesticides, paints, solvents and other organic pollutants with potentially carcinogenic effect in natural resources. Investigation of some new semiconductor materials and their photocatalytic properties for removal of pollutants is a challenging work. However, limited usage of photoactive materials still requires the testing of new materials with photoactive properties. The current work introduces the swift and easy approach for synthesis of (metal–free) N–doped carbon quantum dots in water using microwave reactor. Synthesis was performed from glucose water solution by heating in microwave reactor for only 1 min, at low temperature and applied microwave power. The synthesized N–doped carbon quantum dots show remarkable photocatalytic activity for removal of toxic organic dye (Rose Bengal) under visible light irradiation. Almost 93% of the dye degradation is achieved after only 30 min of radiation. The uninspected result, that the pH of the medium has a significant effect on the performance of the synthesized material in the presence of organic dye, indicates that dots show dual behavior. In the neutral and basic conditions, they have the ability to degrade organic dye, whereas, by shifting the medium pH into acidic medium, they form a stable conjugate with Rose Bengal. © 2019 Elsevier Ltd and Techna Group S.r.l.
T2  - Ceramics International
T1  - Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications
VL  - 45
IS  - 14
SP  - 17006
EP  - 17013
DO  - 10.1016/j.ceramint.2019.05.250
ER  - 
@article{
author = "Prekodravac, Jovana and Vasiljević, Bojana and Marković, Zoran M. and Jovanović, Dragana J. and Kleut, Duška and Špitalsky, Zdenko and Mičušik, Matej and Danko, Martin and Bajuk-Bogdanović, Danica V. and Todorović-Marković, Biljana",
year = "2019",
abstract = "Industrialization today leads to a significant increase in the environmental pollution, with number of phenols, pesticides, paints, solvents and other organic pollutants with potentially carcinogenic effect in natural resources. Investigation of some new semiconductor materials and their photocatalytic properties for removal of pollutants is a challenging work. However, limited usage of photoactive materials still requires the testing of new materials with photoactive properties. The current work introduces the swift and easy approach for synthesis of (metal–free) N–doped carbon quantum dots in water using microwave reactor. Synthesis was performed from glucose water solution by heating in microwave reactor for only 1 min, at low temperature and applied microwave power. The synthesized N–doped carbon quantum dots show remarkable photocatalytic activity for removal of toxic organic dye (Rose Bengal) under visible light irradiation. Almost 93% of the dye degradation is achieved after only 30 min of radiation. The uninspected result, that the pH of the medium has a significant effect on the performance of the synthesized material in the presence of organic dye, indicates that dots show dual behavior. In the neutral and basic conditions, they have the ability to degrade organic dye, whereas, by shifting the medium pH into acidic medium, they form a stable conjugate with Rose Bengal. © 2019 Elsevier Ltd and Techna Group S.r.l.",
journal = "Ceramics International",
title = "Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications",
volume = "45",
number = "14",
pages = "17006-17013",
doi = "10.1016/j.ceramint.2019.05.250"
}
Prekodravac, J., Vasiljević, B., Marković, Z. M., Jovanović, D. J., Kleut, D., Špitalsky, Z., Mičušik, M., Danko, M., Bajuk-Bogdanović, D. V.,& Todorović-Marković, B.. (2019). Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications. in Ceramics International, 45(14), 17006-17013.
https://doi.org/10.1016/j.ceramint.2019.05.250
Prekodravac J, Vasiljević B, Marković ZM, Jovanović DJ, Kleut D, Špitalsky Z, Mičušik M, Danko M, Bajuk-Bogdanović DV, Todorović-Marković B. Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications. in Ceramics International. 2019;45(14):17006-17013.
doi:10.1016/j.ceramint.2019.05.250 .
Prekodravac, Jovana, Vasiljević, Bojana, Marković, Zoran M., Jovanović, Dragana J., Kleut, Duška, Špitalsky, Zdenko, Mičušik, Matej, Danko, Martin, Bajuk-Bogdanović, Danica V., Todorović-Marković, Biljana, "Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications" in Ceramics International, 45, no. 14 (2019):17006-17013,
https://doi.org/10.1016/j.ceramint.2019.05.250 . .
45
19
46

Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study

Budimir, Milica; Marković, Zoran M.; Jovanović, Dragana J.; Vujisić, Miloš Lj.; Mičušik, Matej; Danko, Martin; Kleinova, Angela; Švajdlenkova, Helena; Špitalsky, Zdenko; Todorović-Marković, Biljana

(2019)

TY  - JOUR
AU  - Budimir, Milica
AU  - Marković, Zoran M.
AU  - Jovanović, Dragana J.
AU  - Vujisić, Miloš Lj.
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Kleinova, Angela
AU  - Švajdlenkova, Helena
AU  - Špitalsky, Zdenko
AU  - Todorović-Marković, Biljana
PY  - 2019
UR  - http://xlink.rsc.org/?DOI=C9RA00500E
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8086
AB  - In recent years, water pollution and contamination had become a major threat to the ecosystem. However, the use of nanostructured materials has been proven as a very promising approach in the treatment of polluted water. The present study reports the results of the gamma ray-assisted modification of hydrophobic carbon quantum dot (hCQD)/polyurethane nanocomposites for photocatalytic degradation of organic dyes. Different characterization methods were applied to investigate the influence of the different doses of gamma irradiation (1, 10 and 200 kGy) on the physical and chemical properties of nanocomposites (morphology, chemical content, mechanical properties, wettability, and potential for singlet oxygen generation). Surface morphology and mechanical properties analyses showed that gamma rays induced insignificant changes in the structure of nanocomposites, but the potential for singlet oxygen generation increased significantly. Here we also explore, in detail, the photocatalytic properties of gamma-ray modified hCQDs/polyurethane nanocomposites. UV-vis analysis showed that the removal efficiency of the rose bengal dye reached up to 97% for the nanocomposite irradiated with the dose of 200 kGy.
T2  - RSC Advances
T1  - Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study
VL  - 9
IS  - 11
SP  - 6278
EP  - 6286
DO  - 10.1039/C9RA00500E
ER  - 
@article{
author = "Budimir, Milica and Marković, Zoran M. and Jovanović, Dragana J. and Vujisić, Miloš Lj. and Mičušik, Matej and Danko, Martin and Kleinova, Angela and Švajdlenkova, Helena and Špitalsky, Zdenko and Todorović-Marković, Biljana",
year = "2019",
abstract = "In recent years, water pollution and contamination had become a major threat to the ecosystem. However, the use of nanostructured materials has been proven as a very promising approach in the treatment of polluted water. The present study reports the results of the gamma ray-assisted modification of hydrophobic carbon quantum dot (hCQD)/polyurethane nanocomposites for photocatalytic degradation of organic dyes. Different characterization methods were applied to investigate the influence of the different doses of gamma irradiation (1, 10 and 200 kGy) on the physical and chemical properties of nanocomposites (morphology, chemical content, mechanical properties, wettability, and potential for singlet oxygen generation). Surface morphology and mechanical properties analyses showed that gamma rays induced insignificant changes in the structure of nanocomposites, but the potential for singlet oxygen generation increased significantly. Here we also explore, in detail, the photocatalytic properties of gamma-ray modified hCQDs/polyurethane nanocomposites. UV-vis analysis showed that the removal efficiency of the rose bengal dye reached up to 97% for the nanocomposite irradiated with the dose of 200 kGy.",
journal = "RSC Advances",
title = "Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study",
volume = "9",
number = "11",
pages = "6278-6286",
doi = "10.1039/C9RA00500E"
}
Budimir, M., Marković, Z. M., Jovanović, D. J., Vujisić, M. Lj., Mičušik, M., Danko, M., Kleinova, A., Švajdlenkova, H., Špitalsky, Z.,& Todorović-Marković, B.. (2019). Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. in RSC Advances, 9(11), 6278-6286.
https://doi.org/10.1039/C9RA00500E
Budimir M, Marković ZM, Jovanović DJ, Vujisić ML, Mičušik M, Danko M, Kleinova A, Švajdlenkova H, Špitalsky Z, Todorović-Marković B. Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. in RSC Advances. 2019;9(11):6278-6286.
doi:10.1039/C9RA00500E .
Budimir, Milica, Marković, Zoran M., Jovanović, Dragana J., Vujisić, Miloš Lj., Mičušik, Matej, Danko, Martin, Kleinova, Angela, Švajdlenkova, Helena, Špitalsky, Zdenko, Todorović-Marković, Biljana, "Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study" in RSC Advances, 9, no. 11 (2019):6278-6286,
https://doi.org/10.1039/C9RA00500E . .
1
10
8
12

Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8174
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae
VL  - 26
SP  - 342
EP  - 349
DO  - 10.1016/j.pdpdt.2019.04.019
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2019",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae",
volume = "26",
pages = "342-349",
doi = "10.1016/j.pdpdt.2019.04.019"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy, 26, 342-349.
https://doi.org/10.1016/j.pdpdt.2019.04.019
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy. 2019;26:342-349.
doi:10.1016/j.pdpdt.2019.04.019 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae" in Photodiagnosis and Photodynamic Therapy, 26 (2019):342-349,
https://doi.org/10.1016/j.pdpdt.2019.04.019 . .
57
30
55

Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8187
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae
VL  - 26
SP  - 342
EP  - 349
DO  - 10.1016/j.pdpdt.2019.04.019
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2019",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae",
volume = "26",
pages = "342-349",
doi = "10.1016/j.pdpdt.2019.04.019"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy, 26, 342-349.
https://doi.org/10.1016/j.pdpdt.2019.04.019
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy. 2019;26:342-349.
doi:10.1016/j.pdpdt.2019.04.019 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae" in Photodiagnosis and Photodynamic Therapy, 26 (2019):342-349,
https://doi.org/10.1016/j.pdpdt.2019.04.019 . .
57
30
55

Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats

Tošić, Jelena; Stanojević, Željka; Vidičević, Sašenka; Isaković, Aleksandra J.; Ćirić, Darko; Martinović, Tamara; Kravić-Stevović, Tamara K.; Bumbaširević, Vladimir Ž.; Paunović, Verica G.; Jovanović, Svetlana P.; Todorović-Marković, Biljana; Marković, Zoran M.; Danko, Martin; Mičušik, Matej; Spitalsky, Zdenko; Trajković, Vladimir S.

(2019)

TY  - JOUR
AU  - Tošić, Jelena
AU  - Stanojević, Željka
AU  - Vidičević, Sašenka
AU  - Isaković, Aleksandra J.
AU  - Ćirić, Darko
AU  - Martinović, Tamara
AU  - Kravić-Stevović, Tamara K.
AU  - Bumbaširević, Vladimir Ž.
AU  - Paunović, Verica G.
AU  - Jovanović, Svetlana P.
AU  - Todorović-Marković, Biljana
AU  - Marković, Zoran M.
AU  - Danko, Martin
AU  - Mičušik, Matej
AU  - Spitalsky, Zdenko
AU  - Trajković, Vladimir S.
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0028390818308621
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8015
AB  - We investigated the therapeutic capacity of nano-sized graphene sheets, called graphene quantum dots (GQD), in experimental autoimmune encephalomyelitis (EAE), an animal model of immune-mediated central nervous system (CNS) damage. Intraperitoneally administered GQD (10 mg/kg/day) accumulated in the lymph node and CNS cells of Dark Agouti rats in which EAE was induced by immunization with spinal cord homogenate in complete Freund's adjuvant. GQD significantly reduced clinical signs of EAE when applied throughout the course of the disease (day 0–32), while the protection was less pronounced if the treatment was limited to the induction (day 0–7 post-immunization) or effector (from day 8 onwards) phase of the disease. GQD treatment diminished immune infiltration, demyelination, axonal damage, and apoptotic death in the CNS of EAE animals. GQD also reduced the numbers of interferon-γ-expressing T helper (Th)1 cells, as well as the expression of Th1 transcription factor T-bet and proinflammatory cytokines tumor necrosis factor, interleukin-1, and granulocyte-macrophage colony-stimulating factor in the lymph nodes and CNS immune infitrates. The protective effect of GQD in EAE was associated with the activation of p38 and p42/44 mitogen-activated protein kinases (MAPK) and Akt in the lymph nodes and/or CNS. Finally, GQD protected oligodendrocytes and neurons from T cell-mediated damage in the in vitro conditions. Collectively, these data demonstrate the ability of GQD to gain access to both immune and CNS cells during neuroinflammation, and to alleviate immune-mediated CNS damage by modulating MAPK/Akt signaling and encephalitogenic Th1 immune response. © 2018 Elsevier Ltd
T2  - Neuropharmacology
T1  - Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats
VL  - 146
SP  - 95
EP  - 108
DO  - 10.1016/j.neuropharm.2018.11.030
ER  - 
@article{
author = "Tošić, Jelena and Stanojević, Željka and Vidičević, Sašenka and Isaković, Aleksandra J. and Ćirić, Darko and Martinović, Tamara and Kravić-Stevović, Tamara K. and Bumbaširević, Vladimir Ž. and Paunović, Verica G. and Jovanović, Svetlana P. and Todorović-Marković, Biljana and Marković, Zoran M. and Danko, Martin and Mičušik, Matej and Spitalsky, Zdenko and Trajković, Vladimir S.",
year = "2019",
abstract = "We investigated the therapeutic capacity of nano-sized graphene sheets, called graphene quantum dots (GQD), in experimental autoimmune encephalomyelitis (EAE), an animal model of immune-mediated central nervous system (CNS) damage. Intraperitoneally administered GQD (10 mg/kg/day) accumulated in the lymph node and CNS cells of Dark Agouti rats in which EAE was induced by immunization with spinal cord homogenate in complete Freund's adjuvant. GQD significantly reduced clinical signs of EAE when applied throughout the course of the disease (day 0–32), while the protection was less pronounced if the treatment was limited to the induction (day 0–7 post-immunization) or effector (from day 8 onwards) phase of the disease. GQD treatment diminished immune infiltration, demyelination, axonal damage, and apoptotic death in the CNS of EAE animals. GQD also reduced the numbers of interferon-γ-expressing T helper (Th)1 cells, as well as the expression of Th1 transcription factor T-bet and proinflammatory cytokines tumor necrosis factor, interleukin-1, and granulocyte-macrophage colony-stimulating factor in the lymph nodes and CNS immune infitrates. The protective effect of GQD in EAE was associated with the activation of p38 and p42/44 mitogen-activated protein kinases (MAPK) and Akt in the lymph nodes and/or CNS. Finally, GQD protected oligodendrocytes and neurons from T cell-mediated damage in the in vitro conditions. Collectively, these data demonstrate the ability of GQD to gain access to both immune and CNS cells during neuroinflammation, and to alleviate immune-mediated CNS damage by modulating MAPK/Akt signaling and encephalitogenic Th1 immune response. © 2018 Elsevier Ltd",
journal = "Neuropharmacology",
title = "Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats",
volume = "146",
pages = "95-108",
doi = "10.1016/j.neuropharm.2018.11.030"
}
Tošić, J., Stanojević, Ž., Vidičević, S., Isaković, A. J., Ćirić, D., Martinović, T., Kravić-Stevović, T. K., Bumbaširević, V. Ž., Paunović, V. G., Jovanović, S. P., Todorović-Marković, B., Marković, Z. M., Danko, M., Mičušik, M., Spitalsky, Z.,& Trajković, V. S.. (2019). Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. in Neuropharmacology, 146, 95-108.
https://doi.org/10.1016/j.neuropharm.2018.11.030
Tošić J, Stanojević Ž, Vidičević S, Isaković AJ, Ćirić D, Martinović T, Kravić-Stevović TK, Bumbaširević VŽ, Paunović VG, Jovanović SP, Todorović-Marković B, Marković ZM, Danko M, Mičušik M, Spitalsky Z, Trajković VS. Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. in Neuropharmacology. 2019;146:95-108.
doi:10.1016/j.neuropharm.2018.11.030 .
Tošić, Jelena, Stanojević, Željka, Vidičević, Sašenka, Isaković, Aleksandra J., Ćirić, Darko, Martinović, Tamara, Kravić-Stevović, Tamara K., Bumbaširević, Vladimir Ž., Paunović, Verica G., Jovanović, Svetlana P., Todorović-Marković, Biljana, Marković, Zoran M., Danko, Martin, Mičušik, Matej, Spitalsky, Zdenko, Trajković, Vladimir S., "Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats" in Neuropharmacology, 146 (2019):95-108,
https://doi.org/10.1016/j.neuropharm.2018.11.030 . .
39
17
39

Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines

Marković, Zoran M.; Jovanović, Svetlana P.; Mašković, Pavle Z.; Mojsin, Marija; Stevanović, Milena J.; Danko, Martin; Mičušik, Matej; Jovanović, Dragana J.; Kleinova, Angela; Špitalsky, Zdeno; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Mašković, Pavle Z.
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Danko, Martin
AU  - Mičušik, Matej
AU  - Jovanović, Dragana J.
AU  - Kleinova, Angela
AU  - Špitalsky, Zdeno
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8591
AB  - Photoactive materials called photosensitizers can be used for treatment of different types of cancer in combination with light source. In this paper, we have investigated pro-oxidant and antioxidant potentials of four graphene based nanomaterials (graphene oxide-GO, graphene quantum dots-GQDs, carbon quantum dots-CQDs and N-doped carbon quantum dots-N-CQDs) depending on the presence/absence of visible light source. Structural and optical properties of these materials and their potentials for reactive oxygen species generation/quenching are investigated by applying different microscopy and spectroscopy techniques (transmission electron microscopy, FTIR, UV–Vis, photoluminescence, electron paramagnetic resonance). Results show that all types of quantum dots has pro-oxidant and antioxidant potentials whereas GO demonstrated only moderate antioxidant effect. The best free radical scavenger is CQDs sample in the absence of light. CQDs are the best singlet oxygen generator under blue light irradiation as well. To check photo-cytotoxicity of these materials, photo-cytotoxic concentrations of the GO, GQDs, CQDs and N-CQDs were determined for three cellular lines: human rhabdomyosarcoma (RD), cell line derived from human cervix carcinoma Hep2c (HeLa) and fibroblast cell line from murine (L2OB). Cytotoxicity test has indicated that all samples are much less photocytotoxic than cis-diamminedichloroplatinum (cis-DPP). The production method and doping of quantum dots affect the photodynamic activity of tested samples very much.
T2  - Journal of Photochemistry and Photobiology B: Biology
T1  - Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines
VL  - 200
SP  - 111647
DO  - 10.1016/j.jphotobiol.2019.111647
ER  - 
@article{
author = "Marković, Zoran M. and Jovanović, Svetlana P. and Mašković, Pavle Z. and Mojsin, Marija and Stevanović, Milena J. and Danko, Martin and Mičušik, Matej and Jovanović, Dragana J. and Kleinova, Angela and Špitalsky, Zdeno and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2019",
abstract = "Photoactive materials called photosensitizers can be used for treatment of different types of cancer in combination with light source. In this paper, we have investigated pro-oxidant and antioxidant potentials of four graphene based nanomaterials (graphene oxide-GO, graphene quantum dots-GQDs, carbon quantum dots-CQDs and N-doped carbon quantum dots-N-CQDs) depending on the presence/absence of visible light source. Structural and optical properties of these materials and their potentials for reactive oxygen species generation/quenching are investigated by applying different microscopy and spectroscopy techniques (transmission electron microscopy, FTIR, UV–Vis, photoluminescence, electron paramagnetic resonance). Results show that all types of quantum dots has pro-oxidant and antioxidant potentials whereas GO demonstrated only moderate antioxidant effect. The best free radical scavenger is CQDs sample in the absence of light. CQDs are the best singlet oxygen generator under blue light irradiation as well. To check photo-cytotoxicity of these materials, photo-cytotoxic concentrations of the GO, GQDs, CQDs and N-CQDs were determined for three cellular lines: human rhabdomyosarcoma (RD), cell line derived from human cervix carcinoma Hep2c (HeLa) and fibroblast cell line from murine (L2OB). Cytotoxicity test has indicated that all samples are much less photocytotoxic than cis-diamminedichloroplatinum (cis-DPP). The production method and doping of quantum dots affect the photodynamic activity of tested samples very much.",
journal = "Journal of Photochemistry and Photobiology B: Biology",
title = "Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines",
volume = "200",
pages = "111647",
doi = "10.1016/j.jphotobiol.2019.111647"
}
Marković, Z. M., Jovanović, S. P., Mašković, P. Z., Mojsin, M., Stevanović, M. J., Danko, M., Mičušik, M., Jovanović, D. J., Kleinova, A., Špitalsky, Z., Pavlović, V. B.,& Todorović-Marković, B.. (2019). Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines. in Journal of Photochemistry and Photobiology B: Biology, 200, 111647.
https://doi.org/10.1016/j.jphotobiol.2019.111647
Marković ZM, Jovanović SP, Mašković PZ, Mojsin M, Stevanović MJ, Danko M, Mičušik M, Jovanović DJ, Kleinova A, Špitalsky Z, Pavlović VB, Todorović-Marković B. Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines. in Journal of Photochemistry and Photobiology B: Biology. 2019;200:111647.
doi:10.1016/j.jphotobiol.2019.111647 .
Marković, Zoran M., Jovanović, Svetlana P., Mašković, Pavle Z., Mojsin, Marija, Stevanović, Milena J., Danko, Martin, Mičušik, Matej, Jovanović, Dragana J., Kleinova, Angela, Špitalsky, Zdeno, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines" in Journal of Photochemistry and Photobiology B: Biology, 200 (2019):111647,
https://doi.org/10.1016/j.jphotobiol.2019.111647 . .
38
10
38

Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites

Marković, Zoran M.; Kováčová, Mária; Mičušik, Matej; Danko, Martin; Švajdlenkova, Helena; Kleinova, Angela; Humpoliček, Petr; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdeno

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kováčová, Mária
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Švajdlenkova, Helena
AU  - Kleinova, Angela
AU  - Humpoliček, Petr
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdeno
PY  - 2019
UR  - http://doi.wiley.com/10.1002/app.47283
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8445
AB  - Various types of bacteria inhabit many surfaces thus causing problems which can have very strong impact on human health. Here we present a study of photophysical, mechanical, and antibacterial properties of curcumin/polyurethane nanocomposites prepared by swell-encapsulation-shrink method. The prepared nanocomposites have been characterized for degree of swelling, surface morphology, mechanical properties, chemical contents, photoluminescence, hydrophobicity, potentials for singlet oxygen generation, and antibacterial activity. Dynamic mechanical analysis has shown slight changes of glass temperature of curcumin/polyurethane nanocomposites due to blue light irradiation. It was found that nanocomposites have very strong photoluminescence, become photoactive upon blue light irradiation at 470 nm and generate singlet oxygen. Conducted antibacterial tests have shown very strong activity of these nanocomposites especially toward Escherichia coli. These bacteria strains have been eliminated completely only after 1 h irradiation by blue light. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 47283. © 2018 Wiley Periodicals, Inc.
T2  - Journal of Applied Polymer Science
T1  - Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites
VL  - 136
IS  - 13
SP  - 47283
DO  - 10.1002/app.47283
ER  - 
@article{
author = "Marković, Zoran M. and Kováčová, Mária and Mičušik, Matej and Danko, Martin and Švajdlenkova, Helena and Kleinova, Angela and Humpoliček, Petr and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdeno",
year = "2019",
abstract = "Various types of bacteria inhabit many surfaces thus causing problems which can have very strong impact on human health. Here we present a study of photophysical, mechanical, and antibacterial properties of curcumin/polyurethane nanocomposites prepared by swell-encapsulation-shrink method. The prepared nanocomposites have been characterized for degree of swelling, surface morphology, mechanical properties, chemical contents, photoluminescence, hydrophobicity, potentials for singlet oxygen generation, and antibacterial activity. Dynamic mechanical analysis has shown slight changes of glass temperature of curcumin/polyurethane nanocomposites due to blue light irradiation. It was found that nanocomposites have very strong photoluminescence, become photoactive upon blue light irradiation at 470 nm and generate singlet oxygen. Conducted antibacterial tests have shown very strong activity of these nanocomposites especially toward Escherichia coli. These bacteria strains have been eliminated completely only after 1 h irradiation by blue light. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 47283. © 2018 Wiley Periodicals, Inc.",
journal = "Journal of Applied Polymer Science",
title = "Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites",
volume = "136",
number = "13",
pages = "47283",
doi = "10.1002/app.47283"
}
Marković, Z. M., Kováčová, M., Mičušik, M., Danko, M., Švajdlenkova, H., Kleinova, A., Humpoliček, P., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. in Journal of Applied Polymer Science, 136(13), 47283.
https://doi.org/10.1002/app.47283
Marković ZM, Kováčová M, Mičušik M, Danko M, Švajdlenkova H, Kleinova A, Humpoliček P, Lehocky M, Todorović-Marković B, Špitalsky Z. Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. in Journal of Applied Polymer Science. 2019;136(13):47283.
doi:10.1002/app.47283 .
Marković, Zoran M., Kováčová, Mária, Mičušik, Matej, Danko, Martin, Švajdlenkova, Helena, Kleinova, Angela, Humpoliček, Petr, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdeno, "Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites" in Journal of Applied Polymer Science, 136, no. 13 (2019):47283,
https://doi.org/10.1002/app.47283 . .
20
10
22

Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity

Kepić, Dejan P.; Ristić, Ivan S.; Marinović-Cincović, Milena; Peruško, Davor; Špitalsky, Zdenko; Pavlović, Vladimir B.; Budimir, Milica; Šiffalovič, Peter; Dramićanin, Miroslav; Mičušik, Matej; Kleinova, Angela; Janigova, Ivica; Marković, Zoran M.; Todorović-Marković, Biljana

(2018)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Ristić, Ivan S.
AU  - Marinović-Cincović, Milena
AU  - Peruško, Davor
AU  - Špitalsky, Zdenko
AU  - Pavlović, Vladimir B.
AU  - Budimir, Milica
AU  - Šiffalovič, Peter
AU  - Dramićanin, Miroslav
AU  - Mičušik, Matej
AU  - Kleinova, Angela
AU  - Janigova, Ivica
AU  - Marković, Zoran M.
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - http://doi.wiley.com/10.1002/pi.5620
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7796
AB  - This paper reports a simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene.
T2  - Polymer International
T1  - Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity
VL  - 67
IS  - 8
SP  - 1118
EP  - 1127
DO  - 10.1002/pi.5620
ER  - 
@article{
author = "Kepić, Dejan P. and Ristić, Ivan S. and Marinović-Cincović, Milena and Peruško, Davor and Špitalsky, Zdenko and Pavlović, Vladimir B. and Budimir, Milica and Šiffalovič, Peter and Dramićanin, Miroslav and Mičušik, Matej and Kleinova, Angela and Janigova, Ivica and Marković, Zoran M. and Todorović-Marković, Biljana",
year = "2018",
abstract = "This paper reports a simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene.",
journal = "Polymer International",
title = "Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity",
volume = "67",
number = "8",
pages = "1118-1127",
doi = "10.1002/pi.5620"
}
Kepić, D. P., Ristić, I. S., Marinović-Cincović, M., Peruško, D., Špitalsky, Z., Pavlović, V. B., Budimir, M., Šiffalovič, P., Dramićanin, M., Mičušik, M., Kleinova, A., Janigova, I., Marković, Z. M.,& Todorović-Marković, B.. (2018). Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. in Polymer International, 67(8), 1118-1127.
https://doi.org/10.1002/pi.5620
Kepić DP, Ristić IS, Marinović-Cincović M, Peruško D, Špitalsky Z, Pavlović VB, Budimir M, Šiffalovič P, Dramićanin M, Mičušik M, Kleinova A, Janigova I, Marković ZM, Todorović-Marković B. Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. in Polymer International. 2018;67(8):1118-1127.
doi:10.1002/pi.5620 .
Kepić, Dejan P., Ristić, Ivan S., Marinović-Cincović, Milena, Peruško, Davor, Špitalsky, Zdenko, Pavlović, Vladimir B., Budimir, Milica, Šiffalovič, Peter, Dramićanin, Miroslav, Mičušik, Matej, Kleinova, Angela, Janigova, Ivica, Marković, Zoran M., Todorović-Marković, Biljana, "Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity" in Polymer International, 67, no. 8 (2018):1118-1127,
https://doi.org/10.1002/pi.5620 . .
5
3
5

Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films

Stanković, Nenad K.; Bodik, Michal; Šiffalovič, Peter; Kotlar, Mario; Mičušik, Matej; Špitalsky, Zdenko; Danko, Martin; Milivojević, Dušan; Kleinova, Angela; Kubat, Pavel; Capakova, Zdenka; Humpoliček, Petr; Lehocky, Marian; Todorović-Marković, Biljana; Marković, Zoran M.

(2018)

TY  - JOUR
AU  - Stanković, Nenad K.
AU  - Bodik, Michal
AU  - Šiffalovič, Peter
AU  - Kotlar, Mario
AU  - Mičušik, Matej
AU  - Špitalsky, Zdenko
AU  - Danko, Martin
AU  - Milivojević, Dušan
AU  - Kleinova, Angela
AU  - Kubat, Pavel
AU  - Capakova, Zdenka
AU  - Humpoliček, Petr
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Marković, Zoran M.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7653
AB  - Inimitable properties of carbon quantum dots as well as a cheap production contribute to their possible application in biomedicine especially as antibacterial and antibiofouling coatings. Fluorescent hydrophobic carbon quantum dots are synthesized by bottom-up condensation method and used for deposition of uniform and homogeneous Langmuir-Blodgett thin films on different substrates. It is found that this kind of quantum dots generates singlet oxygen under blue light irradiation. Antibacterial and antibiofouling testing on four different bacteria strains (Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa) reveals enhanced antibacterial and antibiofouling activity of hydrophobic carbon dots thin films under blue light irradiation. Moreover, hydrophobic quantum dots show noncytotoxic effect on mouse fibroblast cell line. These properties enable potential usage of hydrophobic carbon quantum dots thin films as excellent antibacterial and antibiofouling coatings for different biomedical applications.
T2  - ACS Sustainable Chemistry and Engineering
T1  - Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films
VL  - 6
IS  - 3
SP  - 4154
EP  - 4163
DO  - 10.1021/acssuschemeng.7b04566
ER  - 
@article{
author = "Stanković, Nenad K. and Bodik, Michal and Šiffalovič, Peter and Kotlar, Mario and Mičušik, Matej and Špitalsky, Zdenko and Danko, Martin and Milivojević, Dušan and Kleinova, Angela and Kubat, Pavel and Capakova, Zdenka and Humpoliček, Petr and Lehocky, Marian and Todorović-Marković, Biljana and Marković, Zoran M.",
year = "2018",
abstract = "Inimitable properties of carbon quantum dots as well as a cheap production contribute to their possible application in biomedicine especially as antibacterial and antibiofouling coatings. Fluorescent hydrophobic carbon quantum dots are synthesized by bottom-up condensation method and used for deposition of uniform and homogeneous Langmuir-Blodgett thin films on different substrates. It is found that this kind of quantum dots generates singlet oxygen under blue light irradiation. Antibacterial and antibiofouling testing on four different bacteria strains (Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa) reveals enhanced antibacterial and antibiofouling activity of hydrophobic carbon dots thin films under blue light irradiation. Moreover, hydrophobic quantum dots show noncytotoxic effect on mouse fibroblast cell line. These properties enable potential usage of hydrophobic carbon quantum dots thin films as excellent antibacterial and antibiofouling coatings for different biomedical applications.",
journal = "ACS Sustainable Chemistry and Engineering",
title = "Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films",
volume = "6",
number = "3",
pages = "4154-4163",
doi = "10.1021/acssuschemeng.7b04566"
}
Stanković, N. K., Bodik, M., Šiffalovič, P., Kotlar, M., Mičušik, M., Špitalsky, Z., Danko, M., Milivojević, D., Kleinova, A., Kubat, P., Capakova, Z., Humpoliček, P., Lehocky, M., Todorović-Marković, B.,& Marković, Z. M.. (2018). Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films. in ACS Sustainable Chemistry and Engineering, 6(3), 4154-4163.
https://doi.org/10.1021/acssuschemeng.7b04566
Stanković NK, Bodik M, Šiffalovič P, Kotlar M, Mičušik M, Špitalsky Z, Danko M, Milivojević D, Kleinova A, Kubat P, Capakova Z, Humpoliček P, Lehocky M, Todorović-Marković B, Marković ZM. Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films. in ACS Sustainable Chemistry and Engineering. 2018;6(3):4154-4163.
doi:10.1021/acssuschemeng.7b04566 .
Stanković, Nenad K., Bodik, Michal, Šiffalovič, Peter, Kotlar, Mario, Mičušik, Matej, Špitalsky, Zdenko, Danko, Martin, Milivojević, Dušan, Kleinova, Angela, Kubat, Pavel, Capakova, Zdenka, Humpoliček, Petr, Lehocky, Marian, Todorović-Marković, Biljana, Marković, Zoran M., "Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films" in ACS Sustainable Chemistry and Engineering, 6, no. 3 (2018):4154-4163,
https://doi.org/10.1021/acssuschemeng.7b04566 . .
105
57
96

Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria

Marković, Zoran M.; Jovanović, Svetlana P.; Mašković, Pavle Z.; Danko, Martin; Mičušik, Matej; Pavlović, Vladimir B.; Milivojević, Dušan; Kleinova, Angela; Špitalsky, Zdenko; Todorović-Marković, Biljana

(2018)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Mašković, Pavle Z.
AU  - Danko, Martin
AU  - Mičušik, Matej
AU  - Pavlović, Vladimir B.
AU  - Milivojević, Dušan
AU  - Kleinova, Angela
AU  - Špitalsky, Zdenko
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7880
AB  - Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.
T2  - RSC Advances
T1  - Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria
VL  - 8
IS  - 55
SP  - 31337
EP  - 31347
DO  - 10.1039/C8RA04664F
ER  - 
@article{
author = "Marković, Zoran M. and Jovanović, Svetlana P. and Mašković, Pavle Z. and Danko, Martin and Mičušik, Matej and Pavlović, Vladimir B. and Milivojević, Dušan and Kleinova, Angela and Špitalsky, Zdenko and Todorović-Marković, Biljana",
year = "2018",
abstract = "Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.",
journal = "RSC Advances",
title = "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria",
volume = "8",
number = "55",
pages = "31337-31347",
doi = "10.1039/C8RA04664F"
}
Marković, Z. M., Jovanović, S. P., Mašković, P. Z., Danko, M., Mičušik, M., Pavlović, V. B., Milivojević, D., Kleinova, A., Špitalsky, Z.,& Todorović-Marković, B.. (2018). Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances, 8(55), 31337-31347.
https://doi.org/10.1039/C8RA04664F
Marković ZM, Jovanović SP, Mašković PZ, Danko M, Mičušik M, Pavlović VB, Milivojević D, Kleinova A, Špitalsky Z, Todorović-Marković B. Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances. 2018;8(55):31337-31347.
doi:10.1039/C8RA04664F .
Marković, Zoran M., Jovanović, Svetlana P., Mašković, Pavle Z., Danko, Martin, Mičušik, Matej, Pavlović, Vladimir B., Milivojević, Dušan, Kleinova, Angela, Špitalsky, Zdenko, Todorović-Marković, Biljana, "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria" in RSC Advances, 8, no. 55 (2018):31337-31347,
https://doi.org/10.1039/C8RA04664F . .
1
68
25
66

Graphene quantum dots induce tolerogenic properties in dendritic cells via induction of autophagy

Colic, M; Tomić, S.; Janjetović, Kristina D.; Mihajlovic, D; Milenković, M; Kravić-Stevović, Tamara K.; Marković, Zoran M.; Todorović-Marković, Biljana; Špitalsky, Zdenko; Mičušik, Matej; Vucevic, D; Trajković, Vladimir S.

(2018)

TY  - CONF
AU  - Colic, M
AU  - Tomić, S.
AU  - Janjetović, Kristina D.
AU  - Mihajlovic, D
AU  - Milenković, M
AU  - Kravić-Stevović, Tamara K.
AU  - Marković, Zoran M.
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
AU  - Mičušik, Matej
AU  - Vucevic, D
AU  - Trajković, Vladimir S.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7750
AB  - Graphene quantum dots (GQD) are atom-thick nanodimensional carbon, very attractive for the application in theranostics due to their excellent physico-chemical and biological properties. However, their immunoregulatory properties are insufficiently investigated, especially for human immune cells. We found that non-toxic doses of GQD inhibit the production of proinflammatory and T helper (Th)1 cytokines, and augment the production of anti-inflammatory and Th2 cytokines by human peripheral blood  mononuclear cells. While unable to affect purified T cells directly, GQD impaired the differentiation and functions of monocyte-derived dendritic cells (DC), lowering  their capacity to stimulate T cell proliferation, development of Th1 and Th17 cells, and T-cell mediated cytotoxicity. Additionally, GQD-treated DC potentiated Th2  polarization, and induced suppressive CD4+CD25hiFoxp3hi regulatory T cells. After internalization in a dynamin-independent, cholesterol-dependent manner, GQD lowered the ROS generation and nuclear translocation of NF-B in DC. The activity of mammalian target of rapamycin (mTOR) was reduced by GQD, which correlated with the increase in transcription of autophagy genes and autophagic flux in DC. Genetic suppression of autophagy impaired the pro-tolerogenic effects of GQD on DC. Our results suggest that GQD-triggered autophagy promotes tolerogenic functions in monocyte-derived DC, which could be beneficial in inflammatory T-cell mediated pathologies, but also harmful in GQD-based anti-cancer therapy.
C3  - European Journal of Immunology
T1  - Graphene quantum dots induce tolerogenic properties in dendritic cells via induction of autophagy
VL  - 48
IS  - Supplement 1
SP  - 180
EP  - 181
DO  - 10.1002/eji.201871000
ER  - 
@conference{
author = "Colic, M and Tomić, S. and Janjetović, Kristina D. and Mihajlovic, D and Milenković, M and Kravić-Stevović, Tamara K. and Marković, Zoran M. and Todorović-Marković, Biljana and Špitalsky, Zdenko and Mičušik, Matej and Vucevic, D and Trajković, Vladimir S.",
year = "2018",
abstract = "Graphene quantum dots (GQD) are atom-thick nanodimensional carbon, very attractive for the application in theranostics due to their excellent physico-chemical and biological properties. However, their immunoregulatory properties are insufficiently investigated, especially for human immune cells. We found that non-toxic doses of GQD inhibit the production of proinflammatory and T helper (Th)1 cytokines, and augment the production of anti-inflammatory and Th2 cytokines by human peripheral blood  mononuclear cells. While unable to affect purified T cells directly, GQD impaired the differentiation and functions of monocyte-derived dendritic cells (DC), lowering  their capacity to stimulate T cell proliferation, development of Th1 and Th17 cells, and T-cell mediated cytotoxicity. Additionally, GQD-treated DC potentiated Th2  polarization, and induced suppressive CD4+CD25hiFoxp3hi regulatory T cells. After internalization in a dynamin-independent, cholesterol-dependent manner, GQD lowered the ROS generation and nuclear translocation of NF-B in DC. The activity of mammalian target of rapamycin (mTOR) was reduced by GQD, which correlated with the increase in transcription of autophagy genes and autophagic flux in DC. Genetic suppression of autophagy impaired the pro-tolerogenic effects of GQD on DC. Our results suggest that GQD-triggered autophagy promotes tolerogenic functions in monocyte-derived DC, which could be beneficial in inflammatory T-cell mediated pathologies, but also harmful in GQD-based anti-cancer therapy.",
journal = "European Journal of Immunology",
title = "Graphene quantum dots induce tolerogenic properties in dendritic cells via induction of autophagy",
volume = "48",
number = "Supplement 1",
pages = "180-181",
doi = "10.1002/eji.201871000"
}
Colic, M., Tomić, S., Janjetović, K. D., Mihajlovic, D., Milenković, M., Kravić-Stevović, T. K., Marković, Z. M., Todorović-Marković, B., Špitalsky, Z., Mičušik, M., Vucevic, D.,& Trajković, V. S.. (2018). Graphene quantum dots induce tolerogenic properties in dendritic cells via induction of autophagy. in European Journal of Immunology, 48(Supplement 1), 180-181.
https://doi.org/10.1002/eji.201871000
Colic M, Tomić S, Janjetović KD, Mihajlovic D, Milenković M, Kravić-Stevović TK, Marković ZM, Todorović-Marković B, Špitalsky Z, Mičušik M, Vucevic D, Trajković VS. Graphene quantum dots induce tolerogenic properties in dendritic cells via induction of autophagy. in European Journal of Immunology. 2018;48(Supplement 1):180-181.
doi:10.1002/eji.201871000 .
Colic, M, Tomić, S., Janjetović, Kristina D., Mihajlovic, D, Milenković, M, Kravić-Stevović, Tamara K., Marković, Zoran M., Todorović-Marković, Biljana, Špitalsky, Zdenko, Mičušik, Matej, Vucevic, D, Trajković, Vladimir S., "Graphene quantum dots induce tolerogenic properties in dendritic cells via induction of autophagy" in European Journal of Immunology, 48, no. Supplement 1 (2018):180-181,
https://doi.org/10.1002/eji.201871000 . .
4
2

Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents

Kovačova, Maria; Marković, Zoran M.; Humpoliček, Petr; Mičušik, Matej; Švajdlenkova, Helena; Kleinova, Angela; Danko, Martin; Kubat, Pavel; Vajdak, Jan; Capakova, Zdenka; Lehocky, Marian; Munster, Lukaš; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2018)

TY  - JOUR
AU  - Kovačova, Maria
AU  - Marković, Zoran M.
AU  - Humpoliček, Petr
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Kleinova, Angela
AU  - Danko, Martin
AU  - Kubat, Pavel
AU  - Vajdak, Jan
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Munster, Lukaš
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2018
UR  - http://pubs.acs.org/doi/10.1021/acsbiomaterials.8b00582
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8064
AB  - Development of new types of antibacterial coatings or nanocomposites is of great importance due to widespread multidrug-resistant infections including bacterial infections. Herein, we investigated biocompatibility as well as structural, photocatalytic, and antibacterial properties of photoactive hydrophobic carbon quantum dots/polyurethane nanocomposite. The swell-encapsulation-shrink method was applied for production of these nanocomposites. Hydrophobic carbon quantum dots/polyurethane nanocomposites were found to be highly effective generator of singlet oxygen upon irradiation by low-power blue light. Analysis of conducted antibacterial tests on Staphyloccocus aureus and Escherichia coli showed 5-log bactericidal effect of these nanocomposites within 60 min of irradiation. Very powerful degradation of dye (rose bengal) was observed within 180 min of blue light irradiation of the nanocomposites. Biocompatibility studies revealed that nanocomposites were not cytotoxic against mouse embryonic fibroblast cell line, whereas they showed moderate cytotoxicity toward adenocarcinomic human epithelial cell line. Minor hemolytic effect of these nanocomposites toward red blood cells was revealed.
T2  - ACS Biomaterials Science and Engineering
T1  - Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents
VL  - 4
IS  - 12
SP  - 3983
EP  - 3993
DO  - 10.1021/acsbiomaterials.8b00582
ER  - 
@article{
author = "Kovačova, Maria and Marković, Zoran M. and Humpoliček, Petr and Mičušik, Matej and Švajdlenkova, Helena and Kleinova, Angela and Danko, Martin and Kubat, Pavel and Vajdak, Jan and Capakova, Zdenka and Lehocky, Marian and Munster, Lukaš and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2018",
abstract = "Development of new types of antibacterial coatings or nanocomposites is of great importance due to widespread multidrug-resistant infections including bacterial infections. Herein, we investigated biocompatibility as well as structural, photocatalytic, and antibacterial properties of photoactive hydrophobic carbon quantum dots/polyurethane nanocomposite. The swell-encapsulation-shrink method was applied for production of these nanocomposites. Hydrophobic carbon quantum dots/polyurethane nanocomposites were found to be highly effective generator of singlet oxygen upon irradiation by low-power blue light. Analysis of conducted antibacterial tests on Staphyloccocus aureus and Escherichia coli showed 5-log bactericidal effect of these nanocomposites within 60 min of irradiation. Very powerful degradation of dye (rose bengal) was observed within 180 min of blue light irradiation of the nanocomposites. Biocompatibility studies revealed that nanocomposites were not cytotoxic against mouse embryonic fibroblast cell line, whereas they showed moderate cytotoxicity toward adenocarcinomic human epithelial cell line. Minor hemolytic effect of these nanocomposites toward red blood cells was revealed.",
journal = "ACS Biomaterials Science and Engineering",
title = "Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents",
volume = "4",
number = "12",
pages = "3983-3993",
doi = "10.1021/acsbiomaterials.8b00582"
}
Kovačova, M., Marković, Z. M., Humpoliček, P., Mičušik, M., Švajdlenkova, H., Kleinova, A., Danko, M., Kubat, P., Vajdak, J., Capakova, Z., Lehocky, M., Munster, L., Todorović-Marković, B.,& Špitalsky, Z.. (2018). Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents. in ACS Biomaterials Science and Engineering, 4(12), 3983-3993.
https://doi.org/10.1021/acsbiomaterials.8b00582
Kovačova M, Marković ZM, Humpoliček P, Mičušik M, Švajdlenkova H, Kleinova A, Danko M, Kubat P, Vajdak J, Capakova Z, Lehocky M, Munster L, Todorović-Marković B, Špitalsky Z. Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents. in ACS Biomaterials Science and Engineering. 2018;4(12):3983-3993.
doi:10.1021/acsbiomaterials.8b00582 .
Kovačova, Maria, Marković, Zoran M., Humpoliček, Petr, Mičušik, Matej, Švajdlenkova, Helena, Kleinova, Angela, Danko, Martin, Kubat, Pavel, Vajdak, Jan, Capakova, Zdenka, Lehocky, Marian, Munster, Lukaš, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents" in ACS Biomaterials Science and Engineering, 4, no. 12 (2018):3983-3993,
https://doi.org/10.1021/acsbiomaterials.8b00582 . .
3
108
56
102

Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells

Tomić, Sergej; Janjetović, Kristina D.; Mihajlovic, Dusan; Milenković, Marina; Kravić-Stevović, Tamara K.; Marković, Zoran M.; Todorović-Marković, Biljana; Špitalsky, Zdenko; Mičušik, Matej; Vucevic, Dragana; Colic, Miodrag; Trajković, Vladimir S.

(2017)

TY  - JOUR
AU  - Tomić, Sergej
AU  - Janjetović, Kristina D.
AU  - Mihajlovic, Dusan
AU  - Milenković, Marina
AU  - Kravić-Stevović, Tamara K.
AU  - Marković, Zoran M.
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
AU  - Mičušik, Matej
AU  - Vucevic, Dragana
AU  - Colic, Miodrag
AU  - Trajković, Vladimir S.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1782
AB  - Graphene quantum dots (GQD) are atom-thick nanodimensional carbon sheets with excellent physicochemical and biological properties; making them attractive for application in theranostics: However, their immunoregulatory properties are insufficiently investigated, especially in human primary immune cells. We found that non-toxic doses of GQD inhibit the production of proinflammatory and T helper (Th) 1 cytokines, and augment the production of anti-inflammatory and Th2 cytokines by human peripheral blood mononuclear cells. While unable to affect T cells directly, GQD impaired the differentiation and functions of monocyte-derived dendritic cells (DC), lowering their capacity to stimulate T cell proliferation, development of Thl and Th17 cells, and T-cell mediated cytotoxicity. Additionally, GQD-treated DC potentiated Th2 polarization, and induced suppressive CD4(+)CD25(high)Foxp3(+) regulatory T cells. After internalization in a dynamin-independent, cholesterol-dependent manner, GQD lowered the production of reactive oxygen species and nuclear translocation of NF-kappa B in DC. The activity of mammalian target of rapamycin (mTOR) was reduced by GQD, which correlated with the increase in transcription of autophagy genes and autophagic flux in DC. Genetic suppression of autophagy impaired the pro-tolerogenic effects of GQD on DC. Our results suggest that GQD-triggered autophagy promotes tolerogenic functions in monocyte-derived DC, which could be beneficial in inflammatory T-cell mediated pathologies, but also harmful in GQD-based anti-cancer therapy. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Biomaterials
T1  - Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells
VL  - 146
SP  - 13
EP  - 28
DO  - 10.1016/j.biomaterials.2017.08.040
ER  - 
@article{
author = "Tomić, Sergej and Janjetović, Kristina D. and Mihajlovic, Dusan and Milenković, Marina and Kravić-Stevović, Tamara K. and Marković, Zoran M. and Todorović-Marković, Biljana and Špitalsky, Zdenko and Mičušik, Matej and Vucevic, Dragana and Colic, Miodrag and Trajković, Vladimir S.",
year = "2017",
abstract = "Graphene quantum dots (GQD) are atom-thick nanodimensional carbon sheets with excellent physicochemical and biological properties; making them attractive for application in theranostics: However, their immunoregulatory properties are insufficiently investigated, especially in human primary immune cells. We found that non-toxic doses of GQD inhibit the production of proinflammatory and T helper (Th) 1 cytokines, and augment the production of anti-inflammatory and Th2 cytokines by human peripheral blood mononuclear cells. While unable to affect T cells directly, GQD impaired the differentiation and functions of monocyte-derived dendritic cells (DC), lowering their capacity to stimulate T cell proliferation, development of Thl and Th17 cells, and T-cell mediated cytotoxicity. Additionally, GQD-treated DC potentiated Th2 polarization, and induced suppressive CD4(+)CD25(high)Foxp3(+) regulatory T cells. After internalization in a dynamin-independent, cholesterol-dependent manner, GQD lowered the production of reactive oxygen species and nuclear translocation of NF-kappa B in DC. The activity of mammalian target of rapamycin (mTOR) was reduced by GQD, which correlated with the increase in transcription of autophagy genes and autophagic flux in DC. Genetic suppression of autophagy impaired the pro-tolerogenic effects of GQD on DC. Our results suggest that GQD-triggered autophagy promotes tolerogenic functions in monocyte-derived DC, which could be beneficial in inflammatory T-cell mediated pathologies, but also harmful in GQD-based anti-cancer therapy. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Biomaterials",
title = "Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells",
volume = "146",
pages = "13-28",
doi = "10.1016/j.biomaterials.2017.08.040"
}
Tomić, S., Janjetović, K. D., Mihajlovic, D., Milenković, M., Kravić-Stevović, T. K., Marković, Z. M., Todorović-Marković, B., Špitalsky, Z., Mičušik, M., Vucevic, D., Colic, M.,& Trajković, V. S.. (2017). Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. in Biomaterials, 146, 13-28.
https://doi.org/10.1016/j.biomaterials.2017.08.040
Tomić S, Janjetović KD, Mihajlovic D, Milenković M, Kravić-Stevović TK, Marković ZM, Todorović-Marković B, Špitalsky Z, Mičušik M, Vucevic D, Colic M, Trajković VS. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. in Biomaterials. 2017;146:13-28.
doi:10.1016/j.biomaterials.2017.08.040 .
Tomić, Sergej, Janjetović, Kristina D., Mihajlovic, Dusan, Milenković, Marina, Kravić-Stevović, Tamara K., Marković, Zoran M., Todorović-Marković, Biljana, Špitalsky, Zdenko, Mičušik, Matej, Vucevic, Dragana, Colic, Miodrag, Trajković, Vladimir S., "Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells" in Biomaterials, 146 (2017):13-28,
https://doi.org/10.1016/j.biomaterials.2017.08.040 . .
2
81
53
75

Antibacterial potential of electrochemically exfoliated graphene sheets

Marković, Zoran M.; Matijašević, Danka; Pavlović, Vladimir B.; Jovanović, Svetlana P.; Holclajtner-Antunović, Ivanka D.; Špitalsky, Zdenko; Mičušik, Matej; Dramićanin, Miroslav; Milivojević, Dušan; Nikšić, Miomir P.; Todorović-Marković, Biljana

(2017)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Matijašević, Danka
AU  - Pavlović, Vladimir B.
AU  - Jovanović, Svetlana P.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Špitalsky, Zdenko
AU  - Mičušik, Matej
AU  - Dramićanin, Miroslav
AU  - Milivojević, Dušan
AU  - Nikšić, Miomir P.
AU  - Todorović-Marković, Biljana
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1576
AB  - Electrochemically exfoliated graphene is functionalized graphene with potential application in biomedicine. Two most relevant biological features of this material are its electrical conductivity and excellent water dispersibility. In this study we have tried to establish the correlation between graphene structure and its antibacterial properties. The exfoliation process was performed in a two electrode-highly oriented pyrolytic graphite electrochemical cell. Solution of ammonium persulfate was used as an electrolyte. Exfoliated graphene sheets were dispersed in aqueous media and characterized by atomic force microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X photoelectron spectroscopy, X-ray diffraction, electron paramagnetic resonance, zeta potential, contact angle measurements and surface energy. Antibacterial assays have shown lack of the significant antibacterial activity. Major effect on bacteria was slight change of bacteria morphology. Membrane remained intact despite significant change of chemical content of membrane components. (C) 2017 Elsevier Inc. All rights reserved.
T2  - Journal of Colloid and Interface Science
T1  - Antibacterial potential of electrochemically exfoliated graphene sheets
VL  - 500
SP  - 30
EP  - 43
DO  - 10.1016/j.jcis.2017.03.110
ER  - 
@article{
author = "Marković, Zoran M. and Matijašević, Danka and Pavlović, Vladimir B. and Jovanović, Svetlana P. and Holclajtner-Antunović, Ivanka D. and Špitalsky, Zdenko and Mičušik, Matej and Dramićanin, Miroslav and Milivojević, Dušan and Nikšić, Miomir P. and Todorović-Marković, Biljana",
year = "2017",
abstract = "Electrochemically exfoliated graphene is functionalized graphene with potential application in biomedicine. Two most relevant biological features of this material are its electrical conductivity and excellent water dispersibility. In this study we have tried to establish the correlation between graphene structure and its antibacterial properties. The exfoliation process was performed in a two electrode-highly oriented pyrolytic graphite electrochemical cell. Solution of ammonium persulfate was used as an electrolyte. Exfoliated graphene sheets were dispersed in aqueous media and characterized by atomic force microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X photoelectron spectroscopy, X-ray diffraction, electron paramagnetic resonance, zeta potential, contact angle measurements and surface energy. Antibacterial assays have shown lack of the significant antibacterial activity. Major effect on bacteria was slight change of bacteria morphology. Membrane remained intact despite significant change of chemical content of membrane components. (C) 2017 Elsevier Inc. All rights reserved.",
journal = "Journal of Colloid and Interface Science",
title = "Antibacterial potential of electrochemically exfoliated graphene sheets",
volume = "500",
pages = "30-43",
doi = "10.1016/j.jcis.2017.03.110"
}
Marković, Z. M., Matijašević, D., Pavlović, V. B., Jovanović, S. P., Holclajtner-Antunović, I. D., Špitalsky, Z., Mičušik, M., Dramićanin, M., Milivojević, D., Nikšić, M. P.,& Todorović-Marković, B.. (2017). Antibacterial potential of electrochemically exfoliated graphene sheets. in Journal of Colloid and Interface Science, 500, 30-43.
https://doi.org/10.1016/j.jcis.2017.03.110
Marković ZM, Matijašević D, Pavlović VB, Jovanović SP, Holclajtner-Antunović ID, Špitalsky Z, Mičušik M, Dramićanin M, Milivojević D, Nikšić MP, Todorović-Marković B. Antibacterial potential of electrochemically exfoliated graphene sheets. in Journal of Colloid and Interface Science. 2017;500:30-43.
doi:10.1016/j.jcis.2017.03.110 .
Marković, Zoran M., Matijašević, Danka, Pavlović, Vladimir B., Jovanović, Svetlana P., Holclajtner-Antunović, Ivanka D., Špitalsky, Zdenko, Mičušik, Matej, Dramićanin, Miroslav, Milivojević, Dušan, Nikšić, Miomir P., Todorović-Marković, Biljana, "Antibacterial potential of electrochemically exfoliated graphene sheets" in Journal of Colloid and Interface Science, 500 (2017):30-43,
https://doi.org/10.1016/j.jcis.2017.03.110 . .
9
31
22
33

Semi-transparent, conductive thin films of electrochemical exfoliated graphene

Marković, Zoran M.; Budimir, Milica; Kepić, Dejan P.; Holclajtner-Antunović, Ivanka D.; Marinović-Cincović, Milena; Dramićanin, Miroslav; Spasojević, Vojislav; Peruško, Davor; Špitalsky, Zdenko; Mičušik, Matej; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2016)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Budimir, Milica
AU  - Kepić, Dejan P.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Marinović-Cincović, Milena
AU  - Dramićanin, Miroslav
AU  - Spasojević, Vojislav
AU  - Peruško, Davor
AU  - Špitalsky, Zdenko
AU  - Mičušik, Matej
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1043
AB  - The electrochemical exfoliation of graphite to give one-atom-thick graphene with desirable properties is a green, cost-effective method for high-yield graphene production. This paper presents the results of electrochemical exfoliation of two different graphite precursors under an applied direct current voltage of +12 V. The used characterization techniques (elemental analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-photoelectron spectroscopy, Raman spectroscopy, field emission scanning electron microscopy and atomic force microscopy) showed that the exfoliated powder is highly functionalized with a low carbon/oxygen content that is similar to graphene oxide. The exfoliated graphene sheets dispersed in N,N-dimethylformamide were deposited on ano-discs by vacuum filtration and transferred to glass ceramic substrates. The thermal annealing of the as-deposited films at 600 degrees C for 30 minutes resulted in an increase in the carbon/oxygen ratio by more than 3 fold and a decrease in the sheet resistance by 25%. The lowest values for the sheet resistance of the annealed graphene thin films were in the range of 0.32 +/- 0.04 to 0.84 +/- 0.1 kohm sq(-1) depending on the graphite source that was used.
T2  - RSC Advances
T1  - Semi-transparent, conductive thin films of electrochemical exfoliated graphene
VL  - 6
IS  - 45
SP  - 39275
EP  - 39283
DO  - 10.1039/c6ra04250c
ER  - 
@article{
author = "Marković, Zoran M. and Budimir, Milica and Kepić, Dejan P. and Holclajtner-Antunović, Ivanka D. and Marinović-Cincović, Milena and Dramićanin, Miroslav and Spasojević, Vojislav and Peruško, Davor and Špitalsky, Zdenko and Mičušik, Matej and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2016",
abstract = "The electrochemical exfoliation of graphite to give one-atom-thick graphene with desirable properties is a green, cost-effective method for high-yield graphene production. This paper presents the results of electrochemical exfoliation of two different graphite precursors under an applied direct current voltage of +12 V. The used characterization techniques (elemental analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-photoelectron spectroscopy, Raman spectroscopy, field emission scanning electron microscopy and atomic force microscopy) showed that the exfoliated powder is highly functionalized with a low carbon/oxygen content that is similar to graphene oxide. The exfoliated graphene sheets dispersed in N,N-dimethylformamide were deposited on ano-discs by vacuum filtration and transferred to glass ceramic substrates. The thermal annealing of the as-deposited films at 600 degrees C for 30 minutes resulted in an increase in the carbon/oxygen ratio by more than 3 fold and a decrease in the sheet resistance by 25%. The lowest values for the sheet resistance of the annealed graphene thin films were in the range of 0.32 +/- 0.04 to 0.84 +/- 0.1 kohm sq(-1) depending on the graphite source that was used.",
journal = "RSC Advances",
title = "Semi-transparent, conductive thin films of electrochemical exfoliated graphene",
volume = "6",
number = "45",
pages = "39275-39283",
doi = "10.1039/c6ra04250c"
}
Marković, Z. M., Budimir, M., Kepić, D. P., Holclajtner-Antunović, I. D., Marinović-Cincović, M., Dramićanin, M., Spasojević, V., Peruško, D., Špitalsky, Z., Mičušik, M., Pavlović, V. B.,& Todorović-Marković, B.. (2016). Semi-transparent, conductive thin films of electrochemical exfoliated graphene. in RSC Advances, 6(45), 39275-39283.
https://doi.org/10.1039/c6ra04250c
Marković ZM, Budimir M, Kepić DP, Holclajtner-Antunović ID, Marinović-Cincović M, Dramićanin M, Spasojević V, Peruško D, Špitalsky Z, Mičušik M, Pavlović VB, Todorović-Marković B. Semi-transparent, conductive thin films of electrochemical exfoliated graphene. in RSC Advances. 2016;6(45):39275-39283.
doi:10.1039/c6ra04250c .
Marković, Zoran M., Budimir, Milica, Kepić, Dejan P., Holclajtner-Antunović, Ivanka D., Marinović-Cincović, Milena, Dramićanin, Miroslav, Spasojević, Vojislav, Peruško, Davor, Špitalsky, Zdenko, Mičušik, Matej, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Semi-transparent, conductive thin films of electrochemical exfoliated graphene" in RSC Advances, 6, no. 45 (2016):39275-39283,
https://doi.org/10.1039/c6ra04250c . .
9
30
15
27

c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles

Paunović, Verica G.; Ristić, Biljana; Marković, Zoran M.; Todorović-Marković, Biljana; Kosić, Milica; Prekodravac, Jovana; Kravić-Stevović, Tamara K.; Martinović, Tamara; Mičušik, Matej; Špitalsky, Zdenko; Trajković, Vladimir S.; Harhaji-Trajković, Ljubica M.

(Springer, 2016)

TY  - JOUR
AU  - Paunović, Verica G.
AU  - Ristić, Biljana
AU  - Marković, Zoran M.
AU  - Todorović-Marković, Biljana
AU  - Kosić, Milica
AU  - Prekodravac, Jovana
AU  - Kravić-Stevović, Tamara K.
AU  - Martinović, Tamara
AU  - Mičušik, Matej
AU  - Špitalsky, Zdenko
AU  - Trajković, Vladimir S.
AU  - Harhaji-Trajković, Ljubica M.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1084
AB  - Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 mu g/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of cJun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK-and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.
PB  - Springer
T2  - Biomedical Microdevices
T1  - c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles
VL  - 18
IS  - 2
DO  - 10.1007/s10544-016-0062-2
ER  - 
@article{
author = "Paunović, Verica G. and Ristić, Biljana and Marković, Zoran M. and Todorović-Marković, Biljana and Kosić, Milica and Prekodravac, Jovana and Kravić-Stevović, Tamara K. and Martinović, Tamara and Mičušik, Matej and Špitalsky, Zdenko and Trajković, Vladimir S. and Harhaji-Trajković, Ljubica M.",
year = "2016",
abstract = "Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 mu g/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of cJun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK-and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.",
publisher = "Springer",
journal = "Biomedical Microdevices",
title = "c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles",
volume = "18",
number = "2",
doi = "10.1007/s10544-016-0062-2"
}
Paunović, V. G., Ristić, B., Marković, Z. M., Todorović-Marković, B., Kosić, M., Prekodravac, J., Kravić-Stevović, T. K., Martinović, T., Mičušik, M., Špitalsky, Z., Trajković, V. S.,& Harhaji-Trajković, L. M.. (2016). c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles. in Biomedical Microdevices
Springer., 18(2).
https://doi.org/10.1007/s10544-016-0062-2
Paunović VG, Ristić B, Marković ZM, Todorović-Marković B, Kosić M, Prekodravac J, Kravić-Stevović TK, Martinović T, Mičušik M, Špitalsky Z, Trajković VS, Harhaji-Trajković LM. c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles. in Biomedical Microdevices. 2016;18(2).
doi:10.1007/s10544-016-0062-2 .
Paunović, Verica G., Ristić, Biljana, Marković, Zoran M., Todorović-Marković, Biljana, Kosić, Milica, Prekodravac, Jovana, Kravić-Stevović, Tamara K., Martinović, Tamara, Mičušik, Matej, Špitalsky, Zdenko, Trajković, Vladimir S., Harhaji-Trajković, Ljubica M., "c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles" in Biomedical Microdevices, 18, no. 2 (2016),
https://doi.org/10.1007/s10544-016-0062-2 . .
1
14
10
14