Maletaškić, Jelena

Link to this page

Authority KeyName Variants
orcid::0000-0002-3889-8499
  • Maletaškić, Jelena (34)
  • Pantić, Jelena R. (28)
  • Pantić, Jelena (6)
Projects
Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Synthesis and characterization of novel functional polymers and polymeric nanocomposites Ministry of Education, Science and Technological Development of the Republic of Serbia
Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: significance for the formation of metallic and non-metallic mineral deposits
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology
Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan [2-12-1-N1-29] Tokyo Institute of Technology, Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, O-okayama, Meguro-ku, Tokyo
A. von Humboldt Foundation CAPES
Chinese Academy of Sciences [2021VEA0003] CNPq
Fundacão de Amparo à Pesquisa do Estado de Saõ Paulo - FAPESP [2010/20574-3] Physics of amorphous and nanostructural materials
Thin films of single wall carbon nanotubes and graphene for electronic application Effects of laser radiation and plasma on novel materials in their synthesis, modification, and analysis
Micromechanical criteria of damage and fracture Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy)
Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing Magnetic and radionuclide labeled nanostructured materials for medical applications
Synthesis, processing and applications of nanostructured multifunctional materials with defined properties Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology (2-12-1- N1-29)
Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo [212-1-N1-29, 152-8550]
Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Ministry of Education, Science and Technological Development of Serbia
Ministry of Education, Science and Technological Development of the Republic of Serbia [Theme Number: 1702021] Slovak Research and Development Agency [Contract No. APVV- 21-0402]

Author's Bibliography

The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets

Kostoglou, Nikolaos; Stock, Sebastian; Solomi, Angelos; Holzapfel, Damian M.; Hinder, Steven; Baker, Mark; Constantinides, Georgios; Ryzhkov, Vladislav; Maletaškić, Jelena; Matović, Branko; Schneider, Jochen M.; Rebholz, Claus; Mitterer, Christian

(2024)

TY  - JOUR
AU  - Kostoglou, Nikolaos
AU  - Stock, Sebastian
AU  - Solomi, Angelos
AU  - Holzapfel, Damian M.
AU  - Hinder, Steven
AU  - Baker, Mark
AU  - Constantinides, Georgios
AU  - Ryzhkov, Vladislav
AU  - Maletaškić, Jelena
AU  - Matović, Branko
AU  - Schneider, Jochen M.
AU  - Rebholz, Claus
AU  - Mitterer, Christian
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13135
AB  - This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in hightemperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fouriertransform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 ◦C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermooxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.
T2  - Nanomaterials
T1  - The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets
VL  - 14
IS  - 7
SP  - 601
DO  - 10.3390/nano14070601
ER  - 
@article{
author = "Kostoglou, Nikolaos and Stock, Sebastian and Solomi, Angelos and Holzapfel, Damian M. and Hinder, Steven and Baker, Mark and Constantinides, Georgios and Ryzhkov, Vladislav and Maletaškić, Jelena and Matović, Branko and Schneider, Jochen M. and Rebholz, Claus and Mitterer, Christian",
year = "2024",
abstract = "This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in hightemperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fouriertransform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 ◦C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermooxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.",
journal = "Nanomaterials",
title = "The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets",
volume = "14",
number = "7",
pages = "601",
doi = "10.3390/nano14070601"
}
Kostoglou, N., Stock, S., Solomi, A., Holzapfel, D. M., Hinder, S., Baker, M., Constantinides, G., Ryzhkov, V., Maletaškić, J., Matović, B., Schneider, J. M., Rebholz, C.,& Mitterer, C.. (2024). The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. in Nanomaterials, 14(7), 601.
https://doi.org/10.3390/nano14070601
Kostoglou N, Stock S, Solomi A, Holzapfel DM, Hinder S, Baker M, Constantinides G, Ryzhkov V, Maletaškić J, Matović B, Schneider JM, Rebholz C, Mitterer C. The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. in Nanomaterials. 2024;14(7):601.
doi:10.3390/nano14070601 .
Kostoglou, Nikolaos, Stock, Sebastian, Solomi, Angelos, Holzapfel, Damian M., Hinder, Steven, Baker, Mark, Constantinides, Georgios, Ryzhkov, Vladislav, Maletaškić, Jelena, Matović, Branko, Schneider, Jochen M., Rebholz, Claus, Mitterer, Christian, "The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets" in Nanomaterials, 14, no. 7 (2024):601,
https://doi.org/10.3390/nano14070601 . .

Basalt-based glass-ceramic composites

Luković, Aleksa; Pavkov, Vladimir; Matović, Branko; Nidžović, Emilija; Prekajski-Đorđević, Marija; Maletaškić, Jelena

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Luković, Aleksa
AU  - Pavkov, Vladimir
AU  - Matović, Branko
AU  - Nidžović, Emilija
AU  - Prekajski-Đorđević, Marija
AU  - Maletaškić, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11626
AB  - Two series of glass-ceramic composites (basalt/mine tailings, basalt/basalt fibers) as well as one pure glass-ceramic were prepared from basalt rocks located in the SE part of Serbia (Lukovska Banja). Both composites contained 85, 90 and 95 wt.% basalt glass respectively. The basalt glass was obtained from initial melting of basalt at 1300 °C. In the present study, the crystallization process of basalt glass contained in the glass-ceramic composite, achieved by thermal treatment, was observed, and analyzed. The thermal treatment was done at 900 °C, 950 °C, 1000 °C and 1050 °C respectively, with the retention times of 1, 3, 6, 8 and 16 hours. It was found that the addition of mine tailings and basalt fibers caused a change in the density and microstructure. The study also showed that the best mechanical and structural characteristics of the examined glassceramics were attained at the temperature of 1050 °C, with the retention time of 1 hour. Additionally, structural and optical characteristics of the glass-ceramics were assessed.
PB  - Belgrade : Materials Research Society of Serbia
C3  - YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
T1  - Basalt-based glass-ceramic composites
SP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11626
ER  - 
@conference{
author = "Luković, Aleksa and Pavkov, Vladimir and Matović, Branko and Nidžović, Emilija and Prekajski-Đorđević, Marija and Maletaškić, Jelena",
year = "2023",
abstract = "Two series of glass-ceramic composites (basalt/mine tailings, basalt/basalt fibers) as well as one pure glass-ceramic were prepared from basalt rocks located in the SE part of Serbia (Lukovska Banja). Both composites contained 85, 90 and 95 wt.% basalt glass respectively. The basalt glass was obtained from initial melting of basalt at 1300 °C. In the present study, the crystallization process of basalt glass contained in the glass-ceramic composite, achieved by thermal treatment, was observed, and analyzed. The thermal treatment was done at 900 °C, 950 °C, 1000 °C and 1050 °C respectively, with the retention times of 1, 3, 6, 8 and 16 hours. It was found that the addition of mine tailings and basalt fibers caused a change in the density and microstructure. The study also showed that the best mechanical and structural characteristics of the examined glassceramics were attained at the temperature of 1050 °C, with the retention time of 1 hour. Additionally, structural and optical characteristics of the glass-ceramics were assessed.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro",
title = "Basalt-based glass-ceramic composites",
pages = "77",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11626"
}
Luković, A., Pavkov, V., Matović, B., Nidžović, E., Prekajski-Đorđević, M.,& Maletaškić, J.. (2023). Basalt-based glass-ceramic composites. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
Belgrade : Materials Research Society of Serbia., 77.
https://hdl.handle.net/21.15107/rcub_vinar_11626
Luković A, Pavkov V, Matović B, Nidžović E, Prekajski-Đorđević M, Maletaškić J. Basalt-based glass-ceramic composites. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro. 2023;:77.
https://hdl.handle.net/21.15107/rcub_vinar_11626 .
Luković, Aleksa, Pavkov, Vladimir, Matović, Branko, Nidžović, Emilija, Prekajski-Đorđević, Marija, Maletaškić, Jelena, "Basalt-based glass-ceramic composites" in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro (2023):77,
https://hdl.handle.net/21.15107/rcub_vinar_11626 .

High-entropy spinel oxides: fundamentals, synthesis and characterization

Nidžović, Emilija; Luković, Aleksa; Maletaškić, Jelena; Matović, Branko; Dapčević, Aleksandra; Prekajski-Đorđević, Marija D.

(Novi Sad : Faculty of Technology, University of Novi Sad, 2023)

TY  - CONF
AU  - Nidžović, Emilija
AU  - Luković, Aleksa
AU  - Maletaškić, Jelena
AU  - Matović, Branko
AU  - Dapčević, Aleksandra
AU  - Prekajski-Đorđević, Marija D.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11741
AB  - High-entropy spinel oxides (HESOs) are oxides with 5 or more cations with the general formula AB2O4 and the spinel ( Fd 3m ) structure. Due to their unique structure and properties, HESOs have shown great potential in various technological applications, i.e. they can be used as catalysts, adsorbents and photocatalysts. Since the first successful synthesis in 2018, researchers have been experimenting with different precursors and synthesis methods. However, further research is still needed in order to fully understand their capabilities and exploit their properties. The aim of this research is to synthesize novel HESOs using the self-propagating room temperature (SPRT) method, which is time and cost-effective and has not been utilized so far. Our results indicate that chlorides are not good precursors, since the formation of spinel structure has not been achieved. On the other hand, the use of nitrates has successfully led to a primary spinel ( Fd 3m ) phase. Still, certain issues persist, as secondary phases are commonly formed, especially in the presence of Mg or Cu. A potential solution that could ensure the formation of a single phase is the use of quenching from high temperatures (1000 °C), instead of gradual cooling.
PB  - Novi Sad : Faculty of Technology, University of Novi Sad
C3  - CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad
T1  - High-entropy spinel oxides: fundamentals, synthesis and characterization
SP  - 39
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11741
ER  - 
@conference{
author = "Nidžović, Emilija and Luković, Aleksa and Maletaškić, Jelena and Matović, Branko and Dapčević, Aleksandra and Prekajski-Đorđević, Marija D.",
year = "2023",
abstract = "High-entropy spinel oxides (HESOs) are oxides with 5 or more cations with the general formula AB2O4 and the spinel ( Fd 3m ) structure. Due to their unique structure and properties, HESOs have shown great potential in various technological applications, i.e. they can be used as catalysts, adsorbents and photocatalysts. Since the first successful synthesis in 2018, researchers have been experimenting with different precursors and synthesis methods. However, further research is still needed in order to fully understand their capabilities and exploit their properties. The aim of this research is to synthesize novel HESOs using the self-propagating room temperature (SPRT) method, which is time and cost-effective and has not been utilized so far. Our results indicate that chlorides are not good precursors, since the formation of spinel structure has not been achieved. On the other hand, the use of nitrates has successfully led to a primary spinel ( Fd 3m ) phase. Still, certain issues persist, as secondary phases are commonly formed, especially in the presence of Mg or Cu. A potential solution that could ensure the formation of a single phase is the use of quenching from high temperatures (1000 °C), instead of gradual cooling.",
publisher = "Novi Sad : Faculty of Technology, University of Novi Sad",
journal = "CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad",
title = "High-entropy spinel oxides: fundamentals, synthesis and characterization",
pages = "39-39",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11741"
}
Nidžović, E., Luković, A., Maletaškić, J., Matović, B., Dapčević, A.,& Prekajski-Đorđević, M. D.. (2023). High-entropy spinel oxides: fundamentals, synthesis and characterization. in CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad
Novi Sad : Faculty of Technology, University of Novi Sad., 39-39.
https://hdl.handle.net/21.15107/rcub_vinar_11741
Nidžović E, Luković A, Maletaškić J, Matović B, Dapčević A, Prekajski-Đorđević MD. High-entropy spinel oxides: fundamentals, synthesis and characterization. in CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad. 2023;:39-39.
https://hdl.handle.net/21.15107/rcub_vinar_11741 .
Nidžović, Emilija, Luković, Aleksa, Maletaškić, Jelena, Matović, Branko, Dapčević, Aleksandra, Prekajski-Đorđević, Marija D., "High-entropy spinel oxides: fundamentals, synthesis and characterization" in CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad (2023):39-39,
https://hdl.handle.net/21.15107/rcub_vinar_11741 .

Densification of additive-free B4C-SiC composites by spark plasma sintering

Matović, Branko; Tatarko, Peter; Maksimović, Vesna; Maletaškić, Jelena; Stoiljković, Milovan; Hanzel, Ondrej; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Tatarko, Peter
AU  - Maksimović, Vesna
AU  - Maletaškić, Jelena
AU  - Stoiljković, Milovan
AU  - Hanzel, Ondrej
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12284
AB  - The B4C-SiC composites were obtained through densification of B4C and β-SiC powders with different ratios using Spark Plasma Sintering (SPS). Thermal treatment was conducted in the 1850–2000 °C temperature range under pressure of 70 MPa. Starting powder ratio effect on sintering behavior, relative density, microstructural development, and mechanical properties of obtained composites was investigated. Results showed that only starting compounds were observed in sintered ceramics with uniformly distributed and densely compacted B4C and SiC grains. Maximal relative density (100 %) was achieved for 25 % B4C-75 % SiC sample densified at 2000 °C. Obtained composites' microhardness ranged from 33 to 43 GPa, depending on constituents' content and densification temperature. Maximal microhardness was achieved for composite with the maximal amount (75 %) of B4C densified at 2000 °C. Composites' behavior in extreme conditions was evaluated through their interactions with laser beam and obtained results showed that SPS is effective densification method for obtainment of additive-free B4C-SiC composites applicable in extreme radiation environments.
T2  - Journal of the European Ceramic Society
T1  - Densification of additive-free B4C-SiC composites by spark plasma sintering
IS  - InPress
DO  - 10.1016/j.jeurceramsoc.2023.12.024
ER  - 
@article{
author = "Matović, Branko and Tatarko, Peter and Maksimović, Vesna and Maletaškić, Jelena and Stoiljković, Milovan and Hanzel, Ondrej and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "The B4C-SiC composites were obtained through densification of B4C and β-SiC powders with different ratios using Spark Plasma Sintering (SPS). Thermal treatment was conducted in the 1850–2000 °C temperature range under pressure of 70 MPa. Starting powder ratio effect on sintering behavior, relative density, microstructural development, and mechanical properties of obtained composites was investigated. Results showed that only starting compounds were observed in sintered ceramics with uniformly distributed and densely compacted B4C and SiC grains. Maximal relative density (100 %) was achieved for 25 % B4C-75 % SiC sample densified at 2000 °C. Obtained composites' microhardness ranged from 33 to 43 GPa, depending on constituents' content and densification temperature. Maximal microhardness was achieved for composite with the maximal amount (75 %) of B4C densified at 2000 °C. Composites' behavior in extreme conditions was evaluated through their interactions with laser beam and obtained results showed that SPS is effective densification method for obtainment of additive-free B4C-SiC composites applicable in extreme radiation environments.",
journal = "Journal of the European Ceramic Society",
title = "Densification of additive-free B4C-SiC composites by spark plasma sintering",
number = "InPress",
doi = "10.1016/j.jeurceramsoc.2023.12.024"
}
Matović, B., Tatarko, P., Maksimović, V., Maletaškić, J., Stoiljković, M., Hanzel, O.,& Cvijović-Alagić, I.. (2023). Densification of additive-free B4C-SiC composites by spark plasma sintering. in Journal of the European Ceramic Society(InPress).
https://doi.org/10.1016/j.jeurceramsoc.2023.12.024
Matović B, Tatarko P, Maksimović V, Maletaškić J, Stoiljković M, Hanzel O, Cvijović-Alagić I. Densification of additive-free B4C-SiC composites by spark plasma sintering. in Journal of the European Ceramic Society. 2023;(InPress).
doi:10.1016/j.jeurceramsoc.2023.12.024 .
Matović, Branko, Tatarko, Peter, Maksimović, Vesna, Maletaškić, Jelena, Stoiljković, Milovan, Hanzel, Ondrej, Cvijović-Alagić, Ivana, "Densification of additive-free B4C-SiC composites by spark plasma sintering" in Journal of the European Ceramic Society, no. InPress (2023),
https://doi.org/10.1016/j.jeurceramsoc.2023.12.024 . .
1

Entropy-stabilized oxides owning fluorite structure: preparation and sintering

Prekajski-Đorđević, Marija; Erčić, Jelena; Nidžović, Emilija; Luković, Aleksa; Kumar, Ravi; Matović, Branko; Maletaškić, Jelena

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2023)

TY  - CONF
AU  - Prekajski-Đorđević, Marija
AU  - Erčić, Jelena
AU  - Nidžović, Emilija
AU  - Luković, Aleksa
AU  - Kumar, Ravi
AU  - Matović, Branko
AU  - Maletaškić, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12298
AB  - Entropy-Stabilized Oxides are advanced ceramic materials that possess highly desirable functional properties. Through a five-component oxide formulation, these materials utilize configurational entropy to achieve phase stabilization. In this study we have successfully synthesized a novel type of high-entropy fluorite oxide, specifically Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ, through the Self Propagation Room Temperature reaction (SPRT) method. Through heat treatment experiments, it was observed that the phase composition of all samples remained a single phase after high-temperature heating. Furthermore, a thermal treatment at 1500°C resulted in a fully crystallised single-phase fluorite structure. The powders also demonstrated a lack of agglomeration, which allowed for the sintered specimen to exhibit sufficient densification with a small porosity that was uniformly distributed throughout the samples.
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
T1  - Entropy-stabilized oxides owning fluorite structure: preparation and sintering
SP  - 85
EP  - 85
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12298
ER  - 
@conference{
author = "Prekajski-Đorđević, Marija and Erčić, Jelena and Nidžović, Emilija and Luković, Aleksa and Kumar, Ravi and Matović, Branko and Maletaškić, Jelena",
year = "2023",
abstract = "Entropy-Stabilized Oxides are advanced ceramic materials that possess highly desirable functional properties. Through a five-component oxide formulation, these materials utilize configurational entropy to achieve phase stabilization. In this study we have successfully synthesized a novel type of high-entropy fluorite oxide, specifically Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ, through the Self Propagation Room Temperature reaction (SPRT) method. Through heat treatment experiments, it was observed that the phase composition of all samples remained a single phase after high-temperature heating. Furthermore, a thermal treatment at 1500°C resulted in a fully crystallised single-phase fluorite structure. The powders also demonstrated a lack of agglomeration, which allowed for the sintered specimen to exhibit sufficient densification with a small porosity that was uniformly distributed throughout the samples.",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts",
title = "Entropy-stabilized oxides owning fluorite structure: preparation and sintering",
pages = "85-85",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12298"
}
Prekajski-Đorđević, M., Erčić, J., Nidžović, E., Luković, A., Kumar, R., Matović, B.,& Maletaškić, J.. (2023). Entropy-stabilized oxides owning fluorite structure: preparation and sintering. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 85-85.
https://hdl.handle.net/21.15107/rcub_vinar_12298
Prekajski-Đorđević M, Erčić J, Nidžović E, Luković A, Kumar R, Matović B, Maletaškić J. Entropy-stabilized oxides owning fluorite structure: preparation and sintering. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts. 2023;:85-85.
https://hdl.handle.net/21.15107/rcub_vinar_12298 .
Prekajski-Đorđević, Marija, Erčić, Jelena, Nidžović, Emilija, Luković, Aleksa, Kumar, Ravi, Matović, Branko, Maletaškić, Jelena, "Entropy-stabilized oxides owning fluorite structure: preparation and sintering" in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts (2023):85-85,
https://hdl.handle.net/21.15107/rcub_vinar_12298 .

Synthesis and characterization of reinforced alumina composites

Maletaškić, Jelena; Luković, Aleksa; Erčić, Jelena; Nidžović, Emilija; Prekajski-Đorđević, Marija; Matović, Branko

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2023)

TY  - CONF
AU  - Maletaškić, Jelena
AU  - Luković, Aleksa
AU  - Erčić, Jelena
AU  - Nidžović, Emilija
AU  - Prekajski-Đorđević, Marija
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12360
AB  - Alumina composite was prepared via simple route. Alumina ceramics that resembels seashells are made of aligned micron-sized monocrystalline platelets joined together by silica secondary phase. SiO2 was added to improve mechanical properties of composite. The evolution of the phase composition during thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses. Effect of sintering temperature on mechanical properties, due to the increase of sintering temperature that can produce a higher strength and higher density, was also investigated. SEM observation of composite was also included. Ceramics composites such as this are good candidates for high temperature oxidation atmosphere applications, as they have excellent mechanical and other performance requirements.
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
T1  - Synthesis and characterization of reinforced alumina composites
SP  - 115
EP  - 115
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12360
ER  - 
@conference{
author = "Maletaškić, Jelena and Luković, Aleksa and Erčić, Jelena and Nidžović, Emilija and Prekajski-Đorđević, Marija and Matović, Branko",
year = "2023",
abstract = "Alumina composite was prepared via simple route. Alumina ceramics that resembels seashells are made of aligned micron-sized monocrystalline platelets joined together by silica secondary phase. SiO2 was added to improve mechanical properties of composite. The evolution of the phase composition during thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses. Effect of sintering temperature on mechanical properties, due to the increase of sintering temperature that can produce a higher strength and higher density, was also investigated. SEM observation of composite was also included. Ceramics composites such as this are good candidates for high temperature oxidation atmosphere applications, as they have excellent mechanical and other performance requirements.",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts",
title = "Synthesis and characterization of reinforced alumina composites",
pages = "115-115",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12360"
}
Maletaškić, J., Luković, A., Erčić, J., Nidžović, E., Prekajski-Đorđević, M.,& Matović, B.. (2023). Synthesis and characterization of reinforced alumina composites. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 115-115.
https://hdl.handle.net/21.15107/rcub_vinar_12360
Maletaškić J, Luković A, Erčić J, Nidžović E, Prekajski-Đorđević M, Matović B. Synthesis and characterization of reinforced alumina composites. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts. 2023;:115-115.
https://hdl.handle.net/21.15107/rcub_vinar_12360 .
Maletaškić, Jelena, Luković, Aleksa, Erčić, Jelena, Nidžović, Emilija, Prekajski-Đorđević, Marija, Matović, Branko, "Synthesis and characterization of reinforced alumina composites" in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts (2023):115-115,
https://hdl.handle.net/21.15107/rcub_vinar_12360 .

Multicomponent solid solution with pyrochlore structure

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Stevan P.; Todorović, Bratislav; Pejić, Milan; Zagorac, Dejan; Zagorac, Jelena B.; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Stevan P.
AU  - Todorović, Bratislav
AU  - Pejić, Milan
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena B.
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10697
AB  - Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.
T2  - Boletin de la Sociedad Espanola de Ceramica y Vidrio
T1  - Multicomponent solid solution with pyrochlore structure
T1  - Solución sólida multicomponente con estructura de pirocloro
VL  - 62
IS  - 6
SP  - 515
EP  - 526
DO  - 10.1016/j.bsecv.2023.01.005
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Stevan P. and Todorović, Bratislav and Pejić, Milan and Zagorac, Dejan and Zagorac, Jelena B. and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.",
journal = "Boletin de la Sociedad Espanola de Ceramica y Vidrio",
title = "Multicomponent solid solution with pyrochlore structure, Solución sólida multicomponente con estructura de pirocloro",
volume = "62",
number = "6",
pages = "515-526",
doi = "10.1016/j.bsecv.2023.01.005"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S. P., Todorović, B., Pejić, M., Zagorac, D., Zagorac, J. B., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62(6), 515-526.
https://doi.org/10.1016/j.bsecv.2023.01.005
Matović B, Maletaškić J, Maksimović V, Dimitrijević SP, Todorović B, Pejić M, Zagorac D, Zagorac JB, Zeng Y, Cvijović-Alagić I. Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2023;62(6):515-526.
doi:10.1016/j.bsecv.2023.01.005 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Stevan P., Todorović, Bratislav, Pejić, Milan, Zagorac, Dejan, Zagorac, Jelena B., Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Multicomponent solid solution with pyrochlore structure" in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62, no. 6 (2023):515-526,
https://doi.org/10.1016/j.bsecv.2023.01.005 . .
1

Heavily doped high-entropy A2B2O7 pyrochlore

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Zagorac, Jelena; Luković, Aleksa; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Zagorac, Jelena
AU  - Luković, Aleksa
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11324
AB  - A novel class of high-entropy pyrochlore compounds with multiple elements at the A and B site positions (A2B2O7) was successfully obtained. Powders with (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 nominal composition were fabricated from pure metal oxides obtained through a reaction of metal nitrates (for site A) and metal chlorides (for site B) with sodium hydroxide during the solid-state displacement reaction (SSDR). The phase evolution was analyzed using XRD method. During the thermal treatment of ten individual metal oxides, the single pyrochlore phase was created. The present study showed that the highdensity (98%TD) ceramics with a hardness of 8.1GPa was successfully obtained after pressureless sintering at 1650 °C for 4 h. Results of the Raman study and the Rietveld structural refinement showed that sintered highentropy ceramics is characterized by a single-phase pyrochlore structure, which was investigated in detail.
T2  - Processing and Application of Ceramics
T1  - Heavily doped high-entropy A2B2O7 pyrochlore
VL  - 17
IS  - 2
SP  - 113
EP  - 117
DO  - 10.2298/PAC2302113M
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Zagorac, Jelena and Luković, Aleksa and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "A novel class of high-entropy pyrochlore compounds with multiple elements at the A and B site positions (A2B2O7) was successfully obtained. Powders with (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 nominal composition were fabricated from pure metal oxides obtained through a reaction of metal nitrates (for site A) and metal chlorides (for site B) with sodium hydroxide during the solid-state displacement reaction (SSDR). The phase evolution was analyzed using XRD method. During the thermal treatment of ten individual metal oxides, the single pyrochlore phase was created. The present study showed that the highdensity (98%TD) ceramics with a hardness of 8.1GPa was successfully obtained after pressureless sintering at 1650 °C for 4 h. Results of the Raman study and the Rietveld structural refinement showed that sintered highentropy ceramics is characterized by a single-phase pyrochlore structure, which was investigated in detail.",
journal = "Processing and Application of Ceramics",
title = "Heavily doped high-entropy A2B2O7 pyrochlore",
volume = "17",
number = "2",
pages = "113-117",
doi = "10.2298/PAC2302113M"
}
Matović, B., Maletaškić, J., Maksimović, V., Zagorac, J., Luković, A., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Heavily doped high-entropy A2B2O7 pyrochlore. in Processing and Application of Ceramics, 17(2), 113-117.
https://doi.org/10.2298/PAC2302113M
Matović B, Maletaškić J, Maksimović V, Zagorac J, Luković A, Zeng Y, Cvijović-Alagić I. Heavily doped high-entropy A2B2O7 pyrochlore. in Processing and Application of Ceramics. 2023;17(2):113-117.
doi:10.2298/PAC2302113M .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Zagorac, Jelena, Luković, Aleksa, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Heavily doped high-entropy A2B2O7 pyrochlore" in Processing and Application of Ceramics, 17, no. 2 (2023):113-117,
https://doi.org/10.2298/PAC2302113M . .

Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Silvana; Todorović, Branislav; Zagorac, Jelena; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2023)

TY  - CONF
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Silvana
AU  - Todorović, Branislav
AU  - Zagorac, Jelena
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11346
AB  - The goal of this research was to obtain a chemically complex multicomponent
oxide with the A2B2O7 pyrochlore structure with nominal composition
(La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 that contains 10 different
cations in equiatomic amounts which was obtained by reacting metal nitrates (site
A) and metal chlorides (site B) with glycine during the combustion reaction. The
powder synthesized initially was found to be amorphous based on XRD analysis. To
convert the powder into a crystalline pyrochlore structure, the powder underwent
post-calcination at various temperatures ranging from 600–1500 °C. It was
discovered that the desired monophase pyrochlore structure (A2B2O7) was obtained
after calcination at 900 °C. To create a high-density ceramic pellet, the powder
calcined at 900 °C was subjected to pressureless sintering at 1650 °C for four hours
in the presence of air. The resulting pellet had a density of 97% of the theoretical
density and was free from any additives. This process likely caused the powder
particles to fuse together, creating a solid, dense pellet.
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
T1  - Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination
SP  - 84
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11346
ER  - 
@conference{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Silvana and Todorović, Branislav and Zagorac, Jelena and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "The goal of this research was to obtain a chemically complex multicomponent
oxide with the A2B2O7 pyrochlore structure with nominal composition
(La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 that contains 10 different
cations in equiatomic amounts which was obtained by reacting metal nitrates (site
A) and metal chlorides (site B) with glycine during the combustion reaction. The
powder synthesized initially was found to be amorphous based on XRD analysis. To
convert the powder into a crystalline pyrochlore structure, the powder underwent
post-calcination at various temperatures ranging from 600–1500 °C. It was
discovered that the desired monophase pyrochlore structure (A2B2O7) was obtained
after calcination at 900 °C. To create a high-density ceramic pellet, the powder
calcined at 900 °C was subjected to pressureless sintering at 1650 °C for four hours
in the presence of air. The resulting pellet had a density of 97% of the theoretical
density and was free from any additives. This process likely caused the powder
particles to fuse together, creating a solid, dense pellet.",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts",
title = "Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination",
pages = "84",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11346"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S., Todorović, B., Zagorac, J., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 84.
https://hdl.handle.net/21.15107/rcub_vinar_11346
Matović B, Maletaškić J, Maksimović V, Dimitrijević S, Todorović B, Zagorac J, Zeng Y, Cvijović-Alagić I. Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts. 2023;:84.
https://hdl.handle.net/21.15107/rcub_vinar_11346 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Silvana, Todorović, Branislav, Zagorac, Jelena, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination" in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts (2023):84,
https://hdl.handle.net/21.15107/rcub_vinar_11346 .

Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Silvana; Todorović, Bratislav; Zagorac, Jelena; Luković, Aleksa; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Silvana
AU  - Todorović, Bratislav
AU  - Zagorac, Jelena
AU  - Luković, Aleksa
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11350
AB  - Single nano high-entropy pyrochlore-type compound (A2B2O7) with 7 different
rare-earth cations at site A and 3 different metal cations at site B with equiatomic
amounts (7A1/7)2(3B1/3)2O7 is successfully obtained. The powder with nominal
composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 was fabricated by
reacting metal nitrates (site A) and metal chlorides (site B) with glycine during the
combustion reaction. The XRD analysis revealed that the powder attained during
synthesis is in an amorphous state. To induce crystallization of the obtained pyrochlore structure, the post-calcination process at 600-1500 °C was conducted and studied.
Results of this study showed that the monophase pyrochlore (A2B2O7) structure is
obtained during the calcination at 900 °C. The high-density ceramic pellet with 97% of
theoretical density and free of any additives was obtained through pressureless sintering
at 1650 °C for 4 h in the air using the powder calcined at 900 °C.
T2  - Science of Sintering
T1  - Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites
IS  - InPress
SP  - 23
DO  - 10.2298/SOS220802023M
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Silvana and Todorović, Bratislav and Zagorac, Jelena and Luković, Aleksa and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "Single nano high-entropy pyrochlore-type compound (A2B2O7) with 7 different
rare-earth cations at site A and 3 different metal cations at site B with equiatomic
amounts (7A1/7)2(3B1/3)2O7 is successfully obtained. The powder with nominal
composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 was fabricated by
reacting metal nitrates (site A) and metal chlorides (site B) with glycine during the
combustion reaction. The XRD analysis revealed that the powder attained during
synthesis is in an amorphous state. To induce crystallization of the obtained pyrochlore structure, the post-calcination process at 600-1500 °C was conducted and studied.
Results of this study showed that the monophase pyrochlore (A2B2O7) structure is
obtained during the calcination at 900 °C. The high-density ceramic pellet with 97% of
theoretical density and free of any additives was obtained through pressureless sintering
at 1650 °C for 4 h in the air using the powder calcined at 900 °C.",
journal = "Science of Sintering",
title = "Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites",
number = "InPress",
pages = "23",
doi = "10.2298/SOS220802023M"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S., Todorović, B., Zagorac, J., Luković, A., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites. in Science of Sintering(InPress), 23.
https://doi.org/10.2298/SOS220802023M
Matović B, Maletaškić J, Maksimović V, Dimitrijević S, Todorović B, Zagorac J, Luković A, Zeng Y, Cvijović-Alagić I. Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites. in Science of Sintering. 2023;(InPress):23.
doi:10.2298/SOS220802023M .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Silvana, Todorović, Bratislav, Zagorac, Jelena, Luković, Aleksa, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites" in Science of Sintering, no. InPress (2023):23,
https://doi.org/10.2298/SOS220802023M . .

Performance Assessment of Wood Ash and Bone Char for Manganese Treatment in Acid Mine Drainage

Smičiklas, Ivana D.; Janković, Bojan; Jović, Mihajlo; Maletaškić, Jelena; Manić, Nebojša; Dragović, Snežana

(2023)

TY  - JOUR
AU  - Smičiklas, Ivana D.
AU  - Janković, Bojan
AU  - Jović, Mihajlo
AU  - Maletaškić, Jelena
AU  - Manić, Nebojša
AU  - Dragović, Snežana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11623
AB  - Developing efficient methods for Mn separation is the most challenging in exploring innovative and sustainable acid mine drainage (AMD) treatments. The availability and capacity of certain waste materials for Mn removal warrant further exploration of their performance regarding the effect of process factors. This study addressed the influence of AMD chemistry (initial pH and concentrations of Mn, sulfate, and Fe), the solid/solution ratio, and the contact time on Mn separation by wood ash (WA) and bone char (BC). At an equivalent dose, WA displayed higher neutralization and Mn removal capacity over the initial pH range of 2.5–6.0 due to lime, dicalcium silicate, and fairchildite dissolution. On the other hand, at optimal doses, Mn separation by BC was faster, it was less affected by coexisting sulfate and Fe(II) species, and the carbonated hydroxyapatite structure of BC remained preserved. Efficient removal of Mn was feasible only at final pH values ≥ 9.0 in all systems with WA and at pH 6.0–6.4 using BC. These conclusions were confirmed by treating actual AMD with variable doses of both materials. The water-leaching potential of toxic elements from the AMD/BC treatment residue complied with the limits for inert waste. In contrast, the residue of AMD/WA treatment leached non-toxic quantities of Cr and substantial amounts of Al due to high residual alkalinity. To minimize the amount of secondary waste generated by BC application, its use emerges particularly beneficial after AMD neutralization in the finishing step intended for Mn removal.
T2  - Metals
T1  - Performance Assessment of Wood Ash and Bone Char for Manganese Treatment in Acid Mine Drainage
VL  - 13
IS  - 10
SP  - 1665
DO  - 10.3390/met13101665
ER  - 
@article{
author = "Smičiklas, Ivana D. and Janković, Bojan and Jović, Mihajlo and Maletaškić, Jelena and Manić, Nebojša and Dragović, Snežana",
year = "2023",
abstract = "Developing efficient methods for Mn separation is the most challenging in exploring innovative and sustainable acid mine drainage (AMD) treatments. The availability and capacity of certain waste materials for Mn removal warrant further exploration of their performance regarding the effect of process factors. This study addressed the influence of AMD chemistry (initial pH and concentrations of Mn, sulfate, and Fe), the solid/solution ratio, and the contact time on Mn separation by wood ash (WA) and bone char (BC). At an equivalent dose, WA displayed higher neutralization and Mn removal capacity over the initial pH range of 2.5–6.0 due to lime, dicalcium silicate, and fairchildite dissolution. On the other hand, at optimal doses, Mn separation by BC was faster, it was less affected by coexisting sulfate and Fe(II) species, and the carbonated hydroxyapatite structure of BC remained preserved. Efficient removal of Mn was feasible only at final pH values ≥ 9.0 in all systems with WA and at pH 6.0–6.4 using BC. These conclusions were confirmed by treating actual AMD with variable doses of both materials. The water-leaching potential of toxic elements from the AMD/BC treatment residue complied with the limits for inert waste. In contrast, the residue of AMD/WA treatment leached non-toxic quantities of Cr and substantial amounts of Al due to high residual alkalinity. To minimize the amount of secondary waste generated by BC application, its use emerges particularly beneficial after AMD neutralization in the finishing step intended for Mn removal.",
journal = "Metals",
title = "Performance Assessment of Wood Ash and Bone Char for Manganese Treatment in Acid Mine Drainage",
volume = "13",
number = "10",
pages = "1665",
doi = "10.3390/met13101665"
}
Smičiklas, I. D., Janković, B., Jović, M., Maletaškić, J., Manić, N.,& Dragović, S.. (2023). Performance Assessment of Wood Ash and Bone Char for Manganese Treatment in Acid Mine Drainage. in Metals, 13(10), 1665.
https://doi.org/10.3390/met13101665
Smičiklas ID, Janković B, Jović M, Maletaškić J, Manić N, Dragović S. Performance Assessment of Wood Ash and Bone Char for Manganese Treatment in Acid Mine Drainage. in Metals. 2023;13(10):1665.
doi:10.3390/met13101665 .
Smičiklas, Ivana D., Janković, Bojan, Jović, Mihajlo, Maletaškić, Jelena, Manić, Nebojša, Dragović, Snežana, "Performance Assessment of Wood Ash and Bone Char for Manganese Treatment in Acid Mine Drainage" in Metals, 13, no. 10 (2023):1665,
https://doi.org/10.3390/met13101665 . .
1
1

Nanoemulsification synthesis route for obtaining highly efficient Ag3PO4 photocatalytic nanomaterial

Prekajski-Đorđević, Marija; Zarubica, Aleksandra; Kalijadis, Ana; Babić, Biljana; Butulija, Svetlana; Maletaškić, Jelena; Matović, Branko

(2022)

TY  - JOUR
AU  - Prekajski-Đorđević, Marija
AU  - Zarubica, Aleksandra
AU  - Kalijadis, Ana
AU  - Babić, Biljana
AU  - Butulija, Svetlana
AU  - Maletaškić, Jelena
AU  - Matović, Branko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11174
AB  - Nanoemulsion technique based on Ouzo effect was applied for the fast and simple synthesis of Ag3PO4 at room temperature. X-ray powder diffraction analysis and Raman spectroscopy reviled that synthesized powder was single-phase. Using scanning electron microscopy analysis, it was found that the synthesized Ag3PO4 particles were near-spherical shape with an average diameter of 100 nm. The high value for the specific surface area of obtained powder was measured by Brunauer–Emmet–Teller method. Finally, the Ag3PO4 product was used as a photocatalyst for the photodegradation of crystal violet dye in an aqueous solution. Nanoemulsion strategy procedure provides a simple pathway to obtain a highly efficient single-phase Ag3PO4 photocatalyst.
T2  - Journal of the Serbian Chemical Society
T1  - Nanoemulsification synthesis route for obtaining highly efficient Ag3PO4 photocatalytic nanomaterial
VL  - 87
IS  - 11
SP  - 1285
EP  - 1296
DO  - 10.2298/JSC211103055P
ER  - 
@article{
author = "Prekajski-Đorđević, Marija and Zarubica, Aleksandra and Kalijadis, Ana and Babić, Biljana and Butulija, Svetlana and Maletaškić, Jelena and Matović, Branko",
year = "2022",
abstract = "Nanoemulsion technique based on Ouzo effect was applied for the fast and simple synthesis of Ag3PO4 at room temperature. X-ray powder diffraction analysis and Raman spectroscopy reviled that synthesized powder was single-phase. Using scanning electron microscopy analysis, it was found that the synthesized Ag3PO4 particles were near-spherical shape with an average diameter of 100 nm. The high value for the specific surface area of obtained powder was measured by Brunauer–Emmet–Teller method. Finally, the Ag3PO4 product was used as a photocatalyst for the photodegradation of crystal violet dye in an aqueous solution. Nanoemulsion strategy procedure provides a simple pathway to obtain a highly efficient single-phase Ag3PO4 photocatalyst.",
journal = "Journal of the Serbian Chemical Society",
title = "Nanoemulsification synthesis route for obtaining highly efficient Ag3PO4 photocatalytic nanomaterial",
volume = "87",
number = "11",
pages = "1285-1296",
doi = "10.2298/JSC211103055P"
}
Prekajski-Đorđević, M., Zarubica, A., Kalijadis, A., Babić, B., Butulija, S., Maletaškić, J.,& Matović, B.. (2022). Nanoemulsification synthesis route for obtaining highly efficient Ag3PO4 photocatalytic nanomaterial. in Journal of the Serbian Chemical Society, 87(11), 1285-1296.
https://doi.org/10.2298/JSC211103055P
Prekajski-Đorđević M, Zarubica A, Kalijadis A, Babić B, Butulija S, Maletaškić J, Matović B. Nanoemulsification synthesis route for obtaining highly efficient Ag3PO4 photocatalytic nanomaterial. in Journal of the Serbian Chemical Society. 2022;87(11):1285-1296.
doi:10.2298/JSC211103055P .
Prekajski-Đorđević, Marija, Zarubica, Aleksandra, Kalijadis, Ana, Babić, Biljana, Butulija, Svetlana, Maletaškić, Jelena, Matović, Branko, "Nanoemulsification synthesis route for obtaining highly efficient Ag3PO4 photocatalytic nanomaterial" in Journal of the Serbian Chemical Society, 87, no. 11 (2022):1285-1296,
https://doi.org/10.2298/JSC211103055P . .

Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering

Matović, Branko; Maletaškić, Jelena; Prikhna, Tatiana; Urbanovich, Vladimir; Girman, Vladimir; Lisnichuk, Maksym; Todorović, Bratislav; Yoshida, Katsumi; Cvijović-Alagić, Ivana

(2021)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Prikhna, Tatiana
AU  - Urbanovich, Vladimir
AU  - Girman, Vladimir
AU  - Lisnichuk, Maksym
AU  - Todorović, Bratislav
AU  - Yoshida, Katsumi
AU  - Cvijović-Alagić, Ivana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9405
AB  - Additive-free boron carbide (B4C) – silicon carbide (SiC) ceramic composites with different B4C and β-SiC powders ratio were densified using the high-pressure “anvil-type with hollows” apparatus at 1500 °C under a pressure of 4 GPa for 60 s in air. The effect of starting powders ratio on the composites sintering behavior, relative density, microstructural development, and thermomechanical properties was studied. The sintered samples hardness was found to be in the range from 24 to 31 GPa. The thermal conductivity measurements, conducted in the temperature range from room temperature to 1000 °C, showed that the thermal diffusivity of sintered samples was between 6 and 9.5 mm2/s whereas the thermal conductivity was in the range from 16 to 28 W/(m K). The results of this study show that the high-pressure sintering can be a very effective low-temperature densification method for the obtainment of additive-free B4C - β-SiC ceramic composites. © 2021 Elsevier Ltd
T2  - Journal of the European Ceramic Society
T1  - Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering
VL  - 41
IS  - 9
SP  - 4755
EP  - 4760
DO  - 10.1016/j.jeurceramsoc.2021.03.047
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Prikhna, Tatiana and Urbanovich, Vladimir and Girman, Vladimir and Lisnichuk, Maksym and Todorović, Bratislav and Yoshida, Katsumi and Cvijović-Alagić, Ivana",
year = "2021",
abstract = "Additive-free boron carbide (B4C) – silicon carbide (SiC) ceramic composites with different B4C and β-SiC powders ratio were densified using the high-pressure “anvil-type with hollows” apparatus at 1500 °C under a pressure of 4 GPa for 60 s in air. The effect of starting powders ratio on the composites sintering behavior, relative density, microstructural development, and thermomechanical properties was studied. The sintered samples hardness was found to be in the range from 24 to 31 GPa. The thermal conductivity measurements, conducted in the temperature range from room temperature to 1000 °C, showed that the thermal diffusivity of sintered samples was between 6 and 9.5 mm2/s whereas the thermal conductivity was in the range from 16 to 28 W/(m K). The results of this study show that the high-pressure sintering can be a very effective low-temperature densification method for the obtainment of additive-free B4C - β-SiC ceramic composites. © 2021 Elsevier Ltd",
journal = "Journal of the European Ceramic Society",
title = "Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering",
volume = "41",
number = "9",
pages = "4755-4760",
doi = "10.1016/j.jeurceramsoc.2021.03.047"
}
Matović, B., Maletaškić, J., Prikhna, T., Urbanovich, V., Girman, V., Lisnichuk, M., Todorović, B., Yoshida, K.,& Cvijović-Alagić, I.. (2021). Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering. in Journal of the European Ceramic Society, 41(9), 4755-4760.
https://doi.org/10.1016/j.jeurceramsoc.2021.03.047
Matović B, Maletaškić J, Prikhna T, Urbanovich V, Girman V, Lisnichuk M, Todorović B, Yoshida K, Cvijović-Alagić I. Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering. in Journal of the European Ceramic Society. 2021;41(9):4755-4760.
doi:10.1016/j.jeurceramsoc.2021.03.047 .
Matović, Branko, Maletaškić, Jelena, Prikhna, Tatiana, Urbanovich, Vladimir, Girman, Vladimir, Lisnichuk, Maksym, Todorović, Bratislav, Yoshida, Katsumi, Cvijović-Alagić, Ivana, "Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering" in Journal of the European Ceramic Society, 41, no. 9 (2021):4755-4760,
https://doi.org/10.1016/j.jeurceramsoc.2021.03.047 . .
23
4
21

Erratum: “Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering” [J. Eur. Ceram. Soc. 41 (August) (2021) 4755–4760] (Journal of the European Ceramic Society (2021) 41(9) (4755–4760), (S0955221921002089), (10.1016/j.jeurceramsoc.2021.03.047))

Matović, Branko; Maletaškić, Jelena; Prikhna, Tatiana; Urbanovich, Vladimir; Girman, Vladimir; Lisnichuk, Maksym; Todorović, Bratislav; Yoshida, Kutsami; Cvijović-Alagić, Ivana

(2021)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Prikhna, Tatiana
AU  - Urbanovich, Vladimir
AU  - Girman, Vladimir
AU  - Lisnichuk, Maksym
AU  - Todorović, Bratislav
AU  - Yoshida, Kutsami
AU  - Cvijović-Alagić, Ivana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9835
T2  - Journal of the European Ceramic Society
T1  - Erratum: “Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering” [J. Eur. Ceram. Soc. 41 (August) (2021) 4755–4760] (Journal of the European Ceramic Society (2021) 41(9) (4755–4760), (S0955221921002089), (10.1016/j.jeurceramsoc.2021.03.047))
VL  - 41
IS  - 9
DO  - 10.1016/j.jeurceramsoc.2021.03.047
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Prikhna, Tatiana and Urbanovich, Vladimir and Girman, Vladimir and Lisnichuk, Maksym and Todorović, Bratislav and Yoshida, Kutsami and Cvijović-Alagić, Ivana",
year = "2021",
journal = "Journal of the European Ceramic Society",
title = "Erratum: “Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering” [J. Eur. Ceram. Soc. 41 (August) (2021) 4755–4760] (Journal of the European Ceramic Society (2021) 41(9) (4755–4760), (S0955221921002089), (10.1016/j.jeurceramsoc.2021.03.047))",
volume = "41",
number = "9",
doi = "10.1016/j.jeurceramsoc.2021.03.047"
}
Matović, B., Maletaškić, J., Prikhna, T., Urbanovich, V., Girman, V., Lisnichuk, M., Todorović, B., Yoshida, K.,& Cvijović-Alagić, I.. (2021). Erratum: “Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering” [J. Eur. Ceram. Soc. 41 (August) (2021) 4755–4760] (Journal of the European Ceramic Society (2021) 41(9) (4755–4760), (S0955221921002089), (10.1016/j.jeurceramsoc.2021.03.047)). in Journal of the European Ceramic Society, 41(9).
https://doi.org/10.1016/j.jeurceramsoc.2021.03.047
Matović B, Maletaškić J, Prikhna T, Urbanovich V, Girman V, Lisnichuk M, Todorović B, Yoshida K, Cvijović-Alagić I. Erratum: “Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering” [J. Eur. Ceram. Soc. 41 (August) (2021) 4755–4760] (Journal of the European Ceramic Society (2021) 41(9) (4755–4760), (S0955221921002089), (10.1016/j.jeurceramsoc.2021.03.047)). in Journal of the European Ceramic Society. 2021;41(9).
doi:10.1016/j.jeurceramsoc.2021.03.047 .
Matović, Branko, Maletaškić, Jelena, Prikhna, Tatiana, Urbanovich, Vladimir, Girman, Vladimir, Lisnichuk, Maksym, Todorović, Bratislav, Yoshida, Kutsami, Cvijović-Alagić, Ivana, "Erratum: “Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering” [J. Eur. Ceram. Soc. 41 (August) (2021) 4755–4760] (Journal of the European Ceramic Society (2021) 41(9) (4755–4760), (S0955221921002089), (10.1016/j.jeurceramsoc.2021.03.047))" in Journal of the European Ceramic Society, 41, no. 9 (2021),
https://doi.org/10.1016/j.jeurceramsoc.2021.03.047 . .
23

Effect of organoclay modifier structure on the viscoelastic and thermal properties of poly(methyl methacrylate)/organoclay nanocomposites

Godiya, Chirag B.; Marcantoni, Enrico; Dunjić, Branko; Tomić, Miloš; Nikolić, Marija; Maletaškić, Jelena; Đonlagić, Jasna

(2021)

TY  - JOUR
AU  - Godiya, Chirag B.
AU  - Marcantoni, Enrico
AU  - Dunjić, Branko
AU  - Tomić, Miloš
AU  - Nikolić, Marija
AU  - Maletaškić, Jelena
AU  - Đonlagić, Jasna
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13115
AB  - Poly(methyl methacrylate) (PMMA)/clay nanocomposites (NCs) were prepared by suspension polymerization of methyl methacrylate in the presence of two different organoclays (Cloisite 30B, Cloisite 15A) with clay loading ranged from 0.5 to 5 wt%. Increase in molecular weight of the PMMA matrix with addition of the clay was revealed by gel permeation chromatography (GPC) and intrinsic viscosity measurements. As confirmed by X-ray diffraction (XRD), the NCs had an intercalated structure. The organoclays-MMA/PMMA compatibility was investigated by swelling tests and solubility parameter approach. Rheological behavior of PMMA NCs in molten state was analyzed through construction of master curves of complex viscosity, storage, and loss modulus by applying the time-temperature superposition procedure. Melt rheology, scanning electron microscopy (SEM), and UV/Vis spectroscopy results confirmed higher extent of clay dispersion in the NCs with Cloisite 30B. Compared to pure PMMA, all these NCs show increase of glass transition temperature as measured by DSC and improved thermal stability determined by thermogravimetric analysis (TGA). The results obtained by dynamic mechanical analysis showed that the storage modulus of the NCs was higher by incorporation of clay into the PMMA matrix, increasing as the amount of clay increased and that their mechanical performance was significantly enhanced.
T2  - Polymer Bulletin
T1  - Effect of organoclay modifier structure on the viscoelastic and thermal properties of poly(methyl methacrylate)/organoclay nanocomposites
VL  - 78
IS  - 6
SP  - 2911
EP  - 2932
DO  - 10.1007/s00289-020-03248-7
ER  - 
@article{
author = "Godiya, Chirag B. and Marcantoni, Enrico and Dunjić, Branko and Tomić, Miloš and Nikolić, Marija and Maletaškić, Jelena and Đonlagić, Jasna",
year = "2021",
abstract = "Poly(methyl methacrylate) (PMMA)/clay nanocomposites (NCs) were prepared by suspension polymerization of methyl methacrylate in the presence of two different organoclays (Cloisite 30B, Cloisite 15A) with clay loading ranged from 0.5 to 5 wt%. Increase in molecular weight of the PMMA matrix with addition of the clay was revealed by gel permeation chromatography (GPC) and intrinsic viscosity measurements. As confirmed by X-ray diffraction (XRD), the NCs had an intercalated structure. The organoclays-MMA/PMMA compatibility was investigated by swelling tests and solubility parameter approach. Rheological behavior of PMMA NCs in molten state was analyzed through construction of master curves of complex viscosity, storage, and loss modulus by applying the time-temperature superposition procedure. Melt rheology, scanning electron microscopy (SEM), and UV/Vis spectroscopy results confirmed higher extent of clay dispersion in the NCs with Cloisite 30B. Compared to pure PMMA, all these NCs show increase of glass transition temperature as measured by DSC and improved thermal stability determined by thermogravimetric analysis (TGA). The results obtained by dynamic mechanical analysis showed that the storage modulus of the NCs was higher by incorporation of clay into the PMMA matrix, increasing as the amount of clay increased and that their mechanical performance was significantly enhanced.",
journal = "Polymer Bulletin",
title = "Effect of organoclay modifier structure on the viscoelastic and thermal properties of poly(methyl methacrylate)/organoclay nanocomposites",
volume = "78",
number = "6",
pages = "2911-2932",
doi = "10.1007/s00289-020-03248-7"
}
Godiya, C. B., Marcantoni, E., Dunjić, B., Tomić, M., Nikolić, M., Maletaškić, J.,& Đonlagić, J.. (2021). Effect of organoclay modifier structure on the viscoelastic and thermal properties of poly(methyl methacrylate)/organoclay nanocomposites. in Polymer Bulletin, 78(6), 2911-2932.
https://doi.org/10.1007/s00289-020-03248-7
Godiya CB, Marcantoni E, Dunjić B, Tomić M, Nikolić M, Maletaškić J, Đonlagić J. Effect of organoclay modifier structure on the viscoelastic and thermal properties of poly(methyl methacrylate)/organoclay nanocomposites. in Polymer Bulletin. 2021;78(6):2911-2932.
doi:10.1007/s00289-020-03248-7 .
Godiya, Chirag B., Marcantoni, Enrico, Dunjić, Branko, Tomić, Miloš, Nikolić, Marija, Maletaškić, Jelena, Đonlagić, Jasna, "Effect of organoclay modifier structure on the viscoelastic and thermal properties of poly(methyl methacrylate)/organoclay nanocomposites" in Polymer Bulletin, 78, no. 6 (2021):2911-2932,
https://doi.org/10.1007/s00289-020-03248-7 . .

Synthesis, densification and characterization of Ag doped ceria nanopowders

Matović, Branko; Butulija, Svetlana; Dohčević-Mitrović, Zorana; Minović-Arsić, Tamara; Luković, Jelena M.; Bošković, Snežana B.; Maletaškić, Jelena

(2020)

TY  - JOUR
AU  - Matović, Branko
AU  - Butulija, Svetlana
AU  - Dohčević-Mitrović, Zorana
AU  - Minović-Arsić, Tamara
AU  - Luković, Jelena M.
AU  - Bošković, Snežana B.
AU  - Maletaškić, Jelena
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8572
AB  - Nanosized Ag-doped ceria (Ce1-xAlxO2-δ)powders (0.1 ≤ x ≤ 0.04) were obtained by self-propagating room temperature reaction. The solid solubility of Ag into ceria lattice was the highest reported so far. X-ray diffraction analysis and field emission scanning microscopy results showed that the doped samples are single phase solid solutions with fluorite-type structure and all prepared powders were nanometric in size. The average size of Ce1-xAgxO2-▯ particles lies at about 4 nm. Raman spectra revealed an increase in the amount of oxygen vacancies with the increase of Ag concentration, such as is foreseen. The thermal stability of solid solution was followed by XRD. Microstructure development was studied by scanning electron microscopy. By controlling the processing variables, it was possible to obtain high density samples with homogeneous microstructure at low sintering temperature. © 2020 Elsevier Ltd
T2  - Journal of the European Ceramic Society
T1  - Synthesis, densification and characterization of Ag doped ceria nanopowders
VL  - 40
IS  - 5
SP  - 1983
EP  - 1988
DO  - 10.1016/j.jeurceramsoc.2020.01.013
ER  - 
@article{
author = "Matović, Branko and Butulija, Svetlana and Dohčević-Mitrović, Zorana and Minović-Arsić, Tamara and Luković, Jelena M. and Bošković, Snežana B. and Maletaškić, Jelena",
year = "2020",
abstract = "Nanosized Ag-doped ceria (Ce1-xAlxO2-δ)powders (0.1 ≤ x ≤ 0.04) were obtained by self-propagating room temperature reaction. The solid solubility of Ag into ceria lattice was the highest reported so far. X-ray diffraction analysis and field emission scanning microscopy results showed that the doped samples are single phase solid solutions with fluorite-type structure and all prepared powders were nanometric in size. The average size of Ce1-xAgxO2-▯ particles lies at about 4 nm. Raman spectra revealed an increase in the amount of oxygen vacancies with the increase of Ag concentration, such as is foreseen. The thermal stability of solid solution was followed by XRD. Microstructure development was studied by scanning electron microscopy. By controlling the processing variables, it was possible to obtain high density samples with homogeneous microstructure at low sintering temperature. © 2020 Elsevier Ltd",
journal = "Journal of the European Ceramic Society",
title = "Synthesis, densification and characterization of Ag doped ceria nanopowders",
volume = "40",
number = "5",
pages = "1983-1988",
doi = "10.1016/j.jeurceramsoc.2020.01.013"
}
Matović, B., Butulija, S., Dohčević-Mitrović, Z., Minović-Arsić, T., Luković, J. M., Bošković, S. B.,& Maletaškić, J.. (2020). Synthesis, densification and characterization of Ag doped ceria nanopowders. in Journal of the European Ceramic Society, 40(5), 1983-1988.
https://doi.org/10.1016/j.jeurceramsoc.2020.01.013
Matović B, Butulija S, Dohčević-Mitrović Z, Minović-Arsić T, Luković JM, Bošković SB, Maletaškić J. Synthesis, densification and characterization of Ag doped ceria nanopowders. in Journal of the European Ceramic Society. 2020;40(5):1983-1988.
doi:10.1016/j.jeurceramsoc.2020.01.013 .
Matović, Branko, Butulija, Svetlana, Dohčević-Mitrović, Zorana, Minović-Arsić, Tamara, Luković, Jelena M., Bošković, Snežana B., Maletaškić, Jelena, "Synthesis, densification and characterization of Ag doped ceria nanopowders" in Journal of the European Ceramic Society, 40, no. 5 (2020):1983-1988,
https://doi.org/10.1016/j.jeurceramsoc.2020.01.013 . .
6
5
6

Synthesis and characterization of pyrochlore lanthanide (Pr, Sm) zirconate ceramics

Matović, Branko; Maletaškić, Jelena; Zagorac, Jelena B.; Pavkov, Vladimir; Maki, Ryosuke S.S.; Yoshida, Katsumi; Yano, Toyohiko

(2020)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Zagorac, Jelena B.
AU  - Pavkov, Vladimir
AU  - Maki, Ryosuke S.S.
AU  - Yoshida, Katsumi
AU  - Yano, Toyohiko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8668
AB  - Three different lanthanide zirconate powders: Pr2Zr2O7, Sm2Zr2O7 and PrSmZr2O7 were prepared by combustion synthesis. The synthesis initially yielded amorphous powders, which crystallized after subsequent thermal treatment. Well-crystallized compounds were formed after calcination at temperature as low as 950 °C. Effect of the thermal treatment on the phase evolution was studied by X-ray powder diffraction (XRD). The powders calcined at the highest temperature (1550 °C) showed that all compositions possess the pyrochlore structure with the space group No. 227. The obtained powders were compacted and pressureless sintered without additive at 1600 °C for 4 h in the air. Microstructure development was examined by field emission scanning electron microscopy, as well as by transmission electron microscopy. It was found that the lowest value for thermal conductivity, 1.2 W/m K, was obtained for mixed lanthanide composition with pyrochlore structure (PrSmZr2O7). The effect of chemical composition on micro-hardness and thermal conductivity of the obtained zirconates was studied. © 2019 Elsevier Ltd
T2  - Journal of the European Ceramic Society
T1  - Synthesis and characterization of pyrochlore lanthanide (Pr, Sm) zirconate ceramics
VL  - 40
IS  - 7
SP  - 2652
EP  - 2657
DO  - 10.1016/j.jeurceramsoc.2019.11.012
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Zagorac, Jelena B. and Pavkov, Vladimir and Maki, Ryosuke S.S. and Yoshida, Katsumi and Yano, Toyohiko",
year = "2020",
abstract = "Three different lanthanide zirconate powders: Pr2Zr2O7, Sm2Zr2O7 and PrSmZr2O7 were prepared by combustion synthesis. The synthesis initially yielded amorphous powders, which crystallized after subsequent thermal treatment. Well-crystallized compounds were formed after calcination at temperature as low as 950 °C. Effect of the thermal treatment on the phase evolution was studied by X-ray powder diffraction (XRD). The powders calcined at the highest temperature (1550 °C) showed that all compositions possess the pyrochlore structure with the space group No. 227. The obtained powders were compacted and pressureless sintered without additive at 1600 °C for 4 h in the air. Microstructure development was examined by field emission scanning electron microscopy, as well as by transmission electron microscopy. It was found that the lowest value for thermal conductivity, 1.2 W/m K, was obtained for mixed lanthanide composition with pyrochlore structure (PrSmZr2O7). The effect of chemical composition on micro-hardness and thermal conductivity of the obtained zirconates was studied. © 2019 Elsevier Ltd",
journal = "Journal of the European Ceramic Society",
title = "Synthesis and characterization of pyrochlore lanthanide (Pr, Sm) zirconate ceramics",
volume = "40",
number = "7",
pages = "2652-2657",
doi = "10.1016/j.jeurceramsoc.2019.11.012"
}
Matović, B., Maletaškić, J., Zagorac, J. B., Pavkov, V., Maki, R. S.S., Yoshida, K.,& Yano, T.. (2020). Synthesis and characterization of pyrochlore lanthanide (Pr, Sm) zirconate ceramics. in Journal of the European Ceramic Society, 40(7), 2652-2657.
https://doi.org/10.1016/j.jeurceramsoc.2019.11.012
Matović B, Maletaškić J, Zagorac JB, Pavkov V, Maki RS, Yoshida K, Yano T. Synthesis and characterization of pyrochlore lanthanide (Pr, Sm) zirconate ceramics. in Journal of the European Ceramic Society. 2020;40(7):2652-2657.
doi:10.1016/j.jeurceramsoc.2019.11.012 .
Matović, Branko, Maletaškić, Jelena, Zagorac, Jelena B., Pavkov, Vladimir, Maki, Ryosuke S.S., Yoshida, Katsumi, Yano, Toyohiko, "Synthesis and characterization of pyrochlore lanthanide (Pr, Sm) zirconate ceramics" in Journal of the European Ceramic Society, 40, no. 7 (2020):2652-2657,
https://doi.org/10.1016/j.jeurceramsoc.2019.11.012 . .
12
2
13

Influence of Ni2+/Co2+ ratio in electrolyte on morphology, structure and magnetic properties of electrolytically produced Ni−Co alloy powders

Maksimović, Vesna; Kusigerski, Vladan; Stoiljković, Milovan; Maletaškić, Jelena; Nikolić, Nebojša D.

(2020)

TY  - JOUR
AU  - Maksimović, Vesna
AU  - Kusigerski, Vladan
AU  - Stoiljković, Milovan
AU  - Maletaškić, Jelena
AU  - Nikolić, Nebojša D.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8950
AB  - Nickel−cobalt (Ni−Co) alloy powders were produced galvanostatically by using sulphate electrolytes withvarious ratios of Ni2+/Co2+ (mole ratios). The morphology, phase structure, chemical composition and magneticproperties were examined by scanning electron microscope (SEM), X-ray diffractometer (XRD), atomic emissionspectrometer (AES), and SQUID-based magnetometer, respectively. Morphology of the particles changed fromcauliflower-like and dendritic to coral-like and spongy-like ones with increasing Ni2+/Co2+ ratio from 0.25 to 4.0. XRDanalysis of the Ni−Co powders revealed that the decrease of Ni2+/Co2+ ratios (the increase of Co content) caused achange of structure from face centered cubic (FCC) obtained for the ratios of 4.0, 1.5 and 0.67 to a mixture of FCC andhexagonal closed-packed (HCP) phases for the ratio of 0.25. The increasing content of nickel led to change ofmechanism of electrolysis from irregular (up to ~40 wt.% Ni in the electrolytes) to close to equilibrium (between~40 and 60 wt.% Ni in the electrolytes) and anomalous co-deposition (over 60 wt.% Ni in the electrolytes) type. All ofthe obtained Ni−Co alloy samples behaved as soft magnetic materials while their magnetic parameters showedimmediate composition dependence since both coercivity and saturation magnetization almost linearly increased withincrease of the Co content.
T2  - Transactions of Nonferrous Metals Society of China
T1  - Influence of Ni2+/Co2+ ratio in electrolyte on morphology, structure and magnetic properties of electrolytically produced Ni−Co alloy powders
VL  - 30
IS  - 4
SP  - 1046
EP  - 1057
DO  - 10.1016/S1003-6326(20)65276-1
ER  - 
@article{
author = "Maksimović, Vesna and Kusigerski, Vladan and Stoiljković, Milovan and Maletaškić, Jelena and Nikolić, Nebojša D.",
year = "2020",
abstract = "Nickel−cobalt (Ni−Co) alloy powders were produced galvanostatically by using sulphate electrolytes withvarious ratios of Ni2+/Co2+ (mole ratios). The morphology, phase structure, chemical composition and magneticproperties were examined by scanning electron microscope (SEM), X-ray diffractometer (XRD), atomic emissionspectrometer (AES), and SQUID-based magnetometer, respectively. Morphology of the particles changed fromcauliflower-like and dendritic to coral-like and spongy-like ones with increasing Ni2+/Co2+ ratio from 0.25 to 4.0. XRDanalysis of the Ni−Co powders revealed that the decrease of Ni2+/Co2+ ratios (the increase of Co content) caused achange of structure from face centered cubic (FCC) obtained for the ratios of 4.0, 1.5 and 0.67 to a mixture of FCC andhexagonal closed-packed (HCP) phases for the ratio of 0.25. The increasing content of nickel led to change ofmechanism of electrolysis from irregular (up to ~40 wt.% Ni in the electrolytes) to close to equilibrium (between~40 and 60 wt.% Ni in the electrolytes) and anomalous co-deposition (over 60 wt.% Ni in the electrolytes) type. All ofthe obtained Ni−Co alloy samples behaved as soft magnetic materials while their magnetic parameters showedimmediate composition dependence since both coercivity and saturation magnetization almost linearly increased withincrease of the Co content.",
journal = "Transactions of Nonferrous Metals Society of China",
title = "Influence of Ni2+/Co2+ ratio in electrolyte on morphology, structure and magnetic properties of electrolytically produced Ni−Co alloy powders",
volume = "30",
number = "4",
pages = "1046-1057",
doi = "10.1016/S1003-6326(20)65276-1"
}
Maksimović, V., Kusigerski, V., Stoiljković, M., Maletaškić, J.,& Nikolić, N. D.. (2020). Influence of Ni2+/Co2+ ratio in electrolyte on morphology, structure and magnetic properties of electrolytically produced Ni−Co alloy powders. in Transactions of Nonferrous Metals Society of China, 30(4), 1046-1057.
https://doi.org/10.1016/S1003-6326(20)65276-1
Maksimović V, Kusigerski V, Stoiljković M, Maletaškić J, Nikolić ND. Influence of Ni2+/Co2+ ratio in electrolyte on morphology, structure and magnetic properties of electrolytically produced Ni−Co alloy powders. in Transactions of Nonferrous Metals Society of China. 2020;30(4):1046-1057.
doi:10.1016/S1003-6326(20)65276-1 .
Maksimović, Vesna, Kusigerski, Vladan, Stoiljković, Milovan, Maletaškić, Jelena, Nikolić, Nebojša D., "Influence of Ni2+/Co2+ ratio in electrolyte on morphology, structure and magnetic properties of electrolytically produced Ni−Co alloy powders" in Transactions of Nonferrous Metals Society of China, 30, no. 4 (2020):1046-1057,
https://doi.org/10.1016/S1003-6326(20)65276-1 . .
3
3

Synthesis and characterization of monophase CaO-TiO2-SiO2 (sphene) based glass-ceramics

Maletaškić, Jelena; Todorović, Bratislav; Gilić, Martina; Marinović-Cincović, Milena; Yoshida, Katsumi; Gubarevich, Anna; Matović, Branko

(2020)

TY  - JOUR
AU  - Maletaškić, Jelena
AU  - Todorović, Bratislav
AU  - Gilić, Martina
AU  - Marinović-Cincović, Milena
AU  - Yoshida, Katsumi
AU  - Gubarevich, Anna
AU  - Matović, Branko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8983
AB  - Sphene based glass-ceramics (CaTiSiO5), an excellent candidate for a host lattice of ceramic materials and for nuclear waste immobilization, has been prepared from a powder mixture of CaCO3, TiO2 and SiO2 using vibro-milling for homogenization. Starting powders were melted at 1400?C for 2 h, cooled to room temperature, grounded again, then crystallized by thermal treatment yielding a sphene glass-ceramic. The evolution of the phase composition during thermal treatment was investigated by X-ray powder diffraction (XRPD), FT-IR, Raman and thermal analyses (TG-DTA). Pure synthetic single phase sphene was formed at 800?C for 4 h, even it is very hard to obtain monophase powder at such low temperature. Powder morphology was analyzed by scanning electron microscopy (SEM).
T2  - Science of Sintering
T1  - Synthesis and characterization of monophase CaO-TiO2-SiO2 (sphene) based glass-ceramics
VL  - 52
IS  - 1
SP  - 41
EP  - 52
DO  - 10.2298/SOS2001041M
ER  - 
@article{
author = "Maletaškić, Jelena and Todorović, Bratislav and Gilić, Martina and Marinović-Cincović, Milena and Yoshida, Katsumi and Gubarevich, Anna and Matović, Branko",
year = "2020",
abstract = "Sphene based glass-ceramics (CaTiSiO5), an excellent candidate for a host lattice of ceramic materials and for nuclear waste immobilization, has been prepared from a powder mixture of CaCO3, TiO2 and SiO2 using vibro-milling for homogenization. Starting powders were melted at 1400?C for 2 h, cooled to room temperature, grounded again, then crystallized by thermal treatment yielding a sphene glass-ceramic. The evolution of the phase composition during thermal treatment was investigated by X-ray powder diffraction (XRPD), FT-IR, Raman and thermal analyses (TG-DTA). Pure synthetic single phase sphene was formed at 800?C for 4 h, even it is very hard to obtain monophase powder at such low temperature. Powder morphology was analyzed by scanning electron microscopy (SEM).",
journal = "Science of Sintering",
title = "Synthesis and characterization of monophase CaO-TiO2-SiO2 (sphene) based glass-ceramics",
volume = "52",
number = "1",
pages = "41-52",
doi = "10.2298/SOS2001041M"
}
Maletaškić, J., Todorović, B., Gilić, M., Marinović-Cincović, M., Yoshida, K., Gubarevich, A.,& Matović, B.. (2020). Synthesis and characterization of monophase CaO-TiO2-SiO2 (sphene) based glass-ceramics. in Science of Sintering, 52(1), 41-52.
https://doi.org/10.2298/SOS2001041M
Maletaškić J, Todorović B, Gilić M, Marinović-Cincović M, Yoshida K, Gubarevich A, Matović B. Synthesis and characterization of monophase CaO-TiO2-SiO2 (sphene) based glass-ceramics. in Science of Sintering. 2020;52(1):41-52.
doi:10.2298/SOS2001041M .
Maletaškić, Jelena, Todorović, Bratislav, Gilić, Martina, Marinović-Cincović, Milena, Yoshida, Katsumi, Gubarevich, Anna, Matović, Branko, "Synthesis and characterization of monophase CaO-TiO2-SiO2 (sphene) based glass-ceramics" in Science of Sintering, 52, no. 1 (2020):41-52,
https://doi.org/10.2298/SOS2001041M . .
7
2
7

Luminescence properties of Eu3+ activated Y2MoO6 powders calcined at different temperatures

Stanković, Nadežda; Nikolić, Marko G.; Jelenković, Branislav; Daneu, Nina; Maletaškić, Jelena; Prekajski-Đorđević, Marija D.; Matović, Branko

(2020)

TY  - JOUR
AU  - Stanković, Nadežda
AU  - Nikolić, Marko G.
AU  - Jelenković, Branislav
AU  - Daneu, Nina
AU  - Maletaškić, Jelena
AU  - Prekajski-Đorđević, Marija D.
AU  - Matović, Branko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9009
AB  - In the last decade, an immense progress has been made in white LEDs, mainly due to the development of red-emitting phosphors. In this paper, we report on the synthesis of Eu3+ activated Y2MoO6 by a self-initiated and self-sustained method. The obtained powder was calcined at various temperatures in the 600–1400 °C range and examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The results revealed that all powders are single phase Y2MoO6:Eu3+, with particle size in the nanorange at lower treatment temperatures (600 and 800 °C) and in the microrange at higher calcination temperatures (1000–1400 °C). The obtained powders are promising materials for white light-emitting diodes as they can efficiently absorb energy in 324–425 nm region (near-UV to blue light region) and emit at 611 nm in the red region of the spectrum, while exhibiting high thermal and chemical stability.
T2  - Processing and Application of Ceramics
T1  - Luminescence properties of Eu3+ activated Y2MoO6 powders calcined at different temperatures
VL  - 14
IS  - 1
SP  - 71
EP  - 76
DO  - 10.2298/PAC2001071S
ER  - 
@article{
author = "Stanković, Nadežda and Nikolić, Marko G. and Jelenković, Branislav and Daneu, Nina and Maletaškić, Jelena and Prekajski-Đorđević, Marija D. and Matović, Branko",
year = "2020",
abstract = "In the last decade, an immense progress has been made in white LEDs, mainly due to the development of red-emitting phosphors. In this paper, we report on the synthesis of Eu3+ activated Y2MoO6 by a self-initiated and self-sustained method. The obtained powder was calcined at various temperatures in the 600–1400 °C range and examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The results revealed that all powders are single phase Y2MoO6:Eu3+, with particle size in the nanorange at lower treatment temperatures (600 and 800 °C) and in the microrange at higher calcination temperatures (1000–1400 °C). The obtained powders are promising materials for white light-emitting diodes as they can efficiently absorb energy in 324–425 nm region (near-UV to blue light region) and emit at 611 nm in the red region of the spectrum, while exhibiting high thermal and chemical stability.",
journal = "Processing and Application of Ceramics",
title = "Luminescence properties of Eu3+ activated Y2MoO6 powders calcined at different temperatures",
volume = "14",
number = "1",
pages = "71-76",
doi = "10.2298/PAC2001071S"
}
Stanković, N., Nikolić, M. G., Jelenković, B., Daneu, N., Maletaškić, J., Prekajski-Đorđević, M. D.,& Matović, B.. (2020). Luminescence properties of Eu3+ activated Y2MoO6 powders calcined at different temperatures. in Processing and Application of Ceramics, 14(1), 71-76.
https://doi.org/10.2298/PAC2001071S
Stanković N, Nikolić MG, Jelenković B, Daneu N, Maletaškić J, Prekajski-Đorđević MD, Matović B. Luminescence properties of Eu3+ activated Y2MoO6 powders calcined at different temperatures. in Processing and Application of Ceramics. 2020;14(1):71-76.
doi:10.2298/PAC2001071S .
Stanković, Nadežda, Nikolić, Marko G., Jelenković, Branislav, Daneu, Nina, Maletaškić, Jelena, Prekajski-Đorđević, Marija D., Matović, Branko, "Luminescence properties of Eu3+ activated Y2MoO6 powders calcined at different temperatures" in Processing and Application of Ceramics, 14, no. 1 (2020):71-76,
https://doi.org/10.2298/PAC2001071S . .
1
1
1

Thermo-responsive hydrogels based on poly(N-isopropyl- acrylamide) and hyaluronic acid cross-linked with nanoclays

Mirković, Ilinka; Nikolić, Marija; Ostojić, Sanja; Maletaškić, Jelena; Petrović, Zoran; Đonlagić, Jasna

(2020)

TY  - JOUR
AU  - Mirković, Ilinka
AU  - Nikolić, Marija
AU  - Ostojić, Sanja
AU  - Maletaškić, Jelena
AU  - Petrović, Zoran
AU  - Đonlagić, Jasna
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9718
AB  - Semi-interpenetrating polymer networks (SIPN) based on thermo-responsive poly(N-isopropylacrylamide) (PNIPA) and water-soluble sodium salts of linear hyaluronic acid (Na-HA) were physically cross-linked with synthetic nanoclay (laponite XLG). PNIPA hydrogels with different cross-linking densities and Na-HA concentrations were synthesized by in situ free-radical redox polymerization. The structure and heterogeneity of the semi-IPN hydrogels were examined by SEM and XRD. The content of clay incorporated in the gel was determined by TGA. DSC measurements showed that volume phase transition temperature and its enthalpy varied with the clay and hyaluronic acid content. SIPN hydrogels containing negatively charged polyelectrolyte, Na-HA, exhibited higher Q(e) and faster deswelling rates than the corresponding PNIPA NC hydrogels. The presence of the anionic Na-HA polymer reduced the storage modulus, indicating a weakening of the hydrogel network structure, especially at lower clay contents. The nanocomposite hydrogels exhibited high tan delta values, which increased with increasing Na-HA content.
T2  - Journal of the Serbian Chemical Society
T1  - Thermo-responsive hydrogels based on poly(N-isopropyl- acrylamide) and hyaluronic acid cross-linked with nanoclays
VL  - 85
IS  - 9
SP  - 1197
EP  - 1221
DO  - 10.2298/JSC200109023M
ER  - 
@article{
author = "Mirković, Ilinka and Nikolić, Marija and Ostojić, Sanja and Maletaškić, Jelena and Petrović, Zoran and Đonlagić, Jasna",
year = "2020",
abstract = "Semi-interpenetrating polymer networks (SIPN) based on thermo-responsive poly(N-isopropylacrylamide) (PNIPA) and water-soluble sodium salts of linear hyaluronic acid (Na-HA) were physically cross-linked with synthetic nanoclay (laponite XLG). PNIPA hydrogels with different cross-linking densities and Na-HA concentrations were synthesized by in situ free-radical redox polymerization. The structure and heterogeneity of the semi-IPN hydrogels were examined by SEM and XRD. The content of clay incorporated in the gel was determined by TGA. DSC measurements showed that volume phase transition temperature and its enthalpy varied with the clay and hyaluronic acid content. SIPN hydrogels containing negatively charged polyelectrolyte, Na-HA, exhibited higher Q(e) and faster deswelling rates than the corresponding PNIPA NC hydrogels. The presence of the anionic Na-HA polymer reduced the storage modulus, indicating a weakening of the hydrogel network structure, especially at lower clay contents. The nanocomposite hydrogels exhibited high tan delta values, which increased with increasing Na-HA content.",
journal = "Journal of the Serbian Chemical Society",
title = "Thermo-responsive hydrogels based on poly(N-isopropyl- acrylamide) and hyaluronic acid cross-linked with nanoclays",
volume = "85",
number = "9",
pages = "1197-1221",
doi = "10.2298/JSC200109023M"
}
Mirković, I., Nikolić, M., Ostojić, S., Maletaškić, J., Petrović, Z.,& Đonlagić, J.. (2020). Thermo-responsive hydrogels based on poly(N-isopropyl- acrylamide) and hyaluronic acid cross-linked with nanoclays. in Journal of the Serbian Chemical Society, 85(9), 1197-1221.
https://doi.org/10.2298/JSC200109023M
Mirković I, Nikolić M, Ostojić S, Maletaškić J, Petrović Z, Đonlagić J. Thermo-responsive hydrogels based on poly(N-isopropyl- acrylamide) and hyaluronic acid cross-linked with nanoclays. in Journal of the Serbian Chemical Society. 2020;85(9):1197-1221.
doi:10.2298/JSC200109023M .
Mirković, Ilinka, Nikolić, Marija, Ostojić, Sanja, Maletaškić, Jelena, Petrović, Zoran, Đonlagić, Jasna, "Thermo-responsive hydrogels based on poly(N-isopropyl- acrylamide) and hyaluronic acid cross-linked with nanoclays" in Journal of the Serbian Chemical Society, 85, no. 9 (2020):1197-1221,
https://doi.org/10.2298/JSC200109023M . .
3
2
4

Luminescence Properties Of Eu3+ Doped Mayenite Under High Pressure

Matović, Branko; Nikolić, Marko G.; Prekajski-Đorđević, Marija D.; Dmitrović, Svetlana; Luković, Jelena M.; Maletaškić, Jelena; Jelenković, Branislav

(2020)

TY  - JOUR
AU  - Matović, Branko
AU  - Nikolić, Marko G.
AU  - Prekajski-Đorđević, Marija D.
AU  - Dmitrović, Svetlana
AU  - Luković, Jelena M.
AU  - Maletaškić, Jelena
AU  - Jelenković, Branislav
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9938
AB  - Europium doped mayenite (C12A7) powders of different concentrations (0.5, 1.0, 1.5, and 2.0 at.%) have been synthesized by a modified glycine/nitrate procedure - MGNP). Obtained samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE- SEM), and steady-state photoluminescence spectroscopy. The effect of doping concentration on photoluminescence properties of Eu3+ doped mayenite was studied and discussed. With the increasing of Eu3+ doping concentration, the red-emitting intensity exhibited behavior that increased firstly and then decreased. The optimal Eu3+ ion concentration is found to be 1.5%. High-pressure luminescence was measured in a Betsa high-pressure membrane diamond anvil cell up to 23 GPa.
T2  - Journal of Innovative Materials in Extreme Conditions
T1  - Luminescence Properties Of Eu3+ Doped Mayenite Under High Pressure
VL  - 1
IS  - 1
SP  - 12
EP  - 18
UR  - https://hdl.handle.net/21.15107/rcub_vinar_9938
ER  - 
@article{
author = "Matović, Branko and Nikolić, Marko G. and Prekajski-Đorđević, Marija D. and Dmitrović, Svetlana and Luković, Jelena M. and Maletaškić, Jelena and Jelenković, Branislav",
year = "2020",
abstract = "Europium doped mayenite (C12A7) powders of different concentrations (0.5, 1.0, 1.5, and 2.0 at.%) have been synthesized by a modified glycine/nitrate procedure - MGNP). Obtained samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE- SEM), and steady-state photoluminescence spectroscopy. The effect of doping concentration on photoluminescence properties of Eu3+ doped mayenite was studied and discussed. With the increasing of Eu3+ doping concentration, the red-emitting intensity exhibited behavior that increased firstly and then decreased. The optimal Eu3+ ion concentration is found to be 1.5%. High-pressure luminescence was measured in a Betsa high-pressure membrane diamond anvil cell up to 23 GPa.",
journal = "Journal of Innovative Materials in Extreme Conditions",
title = "Luminescence Properties Of Eu3+ Doped Mayenite Under High Pressure",
volume = "1",
number = "1",
pages = "12-18",
url = "https://hdl.handle.net/21.15107/rcub_vinar_9938"
}
Matović, B., Nikolić, M. G., Prekajski-Đorđević, M. D., Dmitrović, S., Luković, J. M., Maletaškić, J.,& Jelenković, B.. (2020). Luminescence Properties Of Eu3+ Doped Mayenite Under High Pressure. in Journal of Innovative Materials in Extreme Conditions, 1(1), 12-18.
https://hdl.handle.net/21.15107/rcub_vinar_9938
Matović B, Nikolić MG, Prekajski-Đorđević MD, Dmitrović S, Luković JM, Maletaškić J, Jelenković B. Luminescence Properties Of Eu3+ Doped Mayenite Under High Pressure. in Journal of Innovative Materials in Extreme Conditions. 2020;1(1):12-18.
https://hdl.handle.net/21.15107/rcub_vinar_9938 .
Matović, Branko, Nikolić, Marko G., Prekajski-Đorđević, Marija D., Dmitrović, Svetlana, Luković, Jelena M., Maletaškić, Jelena, Jelenković, Branislav, "Luminescence Properties Of Eu3+ Doped Mayenite Under High Pressure" in Journal of Innovative Materials in Extreme Conditions, 1, no. 1 (2020):12-18,
https://hdl.handle.net/21.15107/rcub_vinar_9938 .

Combined magnetic and structural characterization of hidrothermal bismuth ferrite (BiFeO3) nanoparticles

Maletaškić, Jelena; Čebela, Maria; Prekajski-Đorđević, Marija D.; Kozlenko, Denis; Kichanov, Sergey; Mitrić, Miodrag; Matović, Branko

(2019)

TY  - JOUR
AU  - Maletaškić, Jelena
AU  - Čebela, Maria
AU  - Prekajski-Đorđević, Marija D.
AU  - Kozlenko, Denis
AU  - Kichanov, Sergey
AU  - Mitrić, Miodrag
AU  - Matović, Branko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8429
AB  - Bismuth ferrite (BiFeO3) was synthesized by hydrothermal method. The crystal and magnetic structures of BiFeO3 have been studied by means of X-ray diffraction and neutron powder diffraction at ambient temperature. Microstructure was analysed by scanning electron microscopy. Quantitative phase analysis by the Rietveld method was conducted and crystallite sizes of 27 nm were determined from the XRD line broadening. The magnetic structure of BiFeO3 is described by the G-type antiferromagnetic order with magnetic peak located at 4.6 Å and a noticeable magnetic contribution to a reflection located at 2.4 Å in the diffraction pattern. The values of the ordered magnetic moment of Fe ions μFe=3.8(1) μB, obtained at ambient conditions, are consistent with those determined earlier. The magnetic moments in the crystal plane z = const are arranged in parallel, changing the direction from [100] to [ 110 ] when moving from one to the other z = const plane. © 2018 Authors. Published by the International Institute for the Science of Sintering.
T2  - Science of Sintering
T1  - Combined magnetic and structural characterization of hidrothermal bismuth ferrite (BiFeO3) nanoparticles
VL  - 51
IS  - 1
SP  - 71
EP  - 79
DO  - 10.2298/SOS1901071M
ER  - 
@article{
author = "Maletaškić, Jelena and Čebela, Maria and Prekajski-Đorđević, Marija D. and Kozlenko, Denis and Kichanov, Sergey and Mitrić, Miodrag and Matović, Branko",
year = "2019",
abstract = "Bismuth ferrite (BiFeO3) was synthesized by hydrothermal method. The crystal and magnetic structures of BiFeO3 have been studied by means of X-ray diffraction and neutron powder diffraction at ambient temperature. Microstructure was analysed by scanning electron microscopy. Quantitative phase analysis by the Rietveld method was conducted and crystallite sizes of 27 nm were determined from the XRD line broadening. The magnetic structure of BiFeO3 is described by the G-type antiferromagnetic order with magnetic peak located at 4.6 Å and a noticeable magnetic contribution to a reflection located at 2.4 Å in the diffraction pattern. The values of the ordered magnetic moment of Fe ions μFe=3.8(1) μB, obtained at ambient conditions, are consistent with those determined earlier. The magnetic moments in the crystal plane z = const are arranged in parallel, changing the direction from [100] to [ 110 ] when moving from one to the other z = const plane. © 2018 Authors. Published by the International Institute for the Science of Sintering.",
journal = "Science of Sintering",
title = "Combined magnetic and structural characterization of hidrothermal bismuth ferrite (BiFeO3) nanoparticles",
volume = "51",
number = "1",
pages = "71-79",
doi = "10.2298/SOS1901071M"
}
Maletaškić, J., Čebela, M., Prekajski-Đorđević, M. D., Kozlenko, D., Kichanov, S., Mitrić, M.,& Matović, B.. (2019). Combined magnetic and structural characterization of hidrothermal bismuth ferrite (BiFeO3) nanoparticles. in Science of Sintering, 51(1), 71-79.
https://doi.org/10.2298/SOS1901071M
Maletaškić J, Čebela M, Prekajski-Đorđević MD, Kozlenko D, Kichanov S, Mitrić M, Matović B. Combined magnetic and structural characterization of hidrothermal bismuth ferrite (BiFeO3) nanoparticles. in Science of Sintering. 2019;51(1):71-79.
doi:10.2298/SOS1901071M .
Maletaškić, Jelena, Čebela, Maria, Prekajski-Đorđević, Marija D., Kozlenko, Denis, Kichanov, Sergey, Mitrić, Miodrag, Matović, Branko, "Combined magnetic and structural characterization of hidrothermal bismuth ferrite (BiFeO3) nanoparticles" in Science of Sintering, 51, no. 1 (2019):71-79,
https://doi.org/10.2298/SOS1901071M . .
1
2
3

The influence of short thermal treatment on structure, morphology and optical properties of Er and Pr doped ceria pigments: Comparative study

Mićović, Dragana; Pagnacco, Maja C.; Banković, Predrag T.; Maletaškić, Jelena; Matović, Branko; Đokić, Veljko R.; Stojmenović, Marija

(2019)

TY  - JOUR
AU  - Mićović, Dragana
AU  - Pagnacco, Maja C.
AU  - Banković, Predrag T.
AU  - Maletaškić, Jelena
AU  - Matović, Branko
AU  - Đokić, Veljko R.
AU  - Stojmenović, Marija
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8599
AB  - Potential non-toxic pink and red ceramic pigments based on CeO2 were successfully synthesized by self-propagating room temperature method and thermally treated at 600, 900 and 1200 °C for 15 min. The structure, morphology and optical properties, as well as thermal stability of Ce1-xErxO2-δ and Ce1-xPrxO2-δ (x = 0.05) were examined. Single-phase composition of all obtained CeO2 pigments was confirmed using XRPD method and Raman spectroscopy and it was not dependent on temperature. The mechanism of structural behaviour was thoroughly examined using Raman and FTIR spectroscopy. Nanometric dimensions of the crystallites of all pigments were confirmed using XRPD, TEM and FE-SEM analysis. Colour properties were dependent on the temperature treatment, and their position in the chromaticity diagram was studied using UV/VIS spectrophotometry. Colour efficiency measurements were supplemented by colorimetric analysis. It is proved that all samples are thermally stable in the investigated temperature range (up to 1200 °C), and their potential application as environmentally friendly pigments of desired colour is confirmed.
T2  - Processing and Application of Ceramics
T1  - The influence of short thermal treatment on structure, morphology and optical properties of Er and Pr doped ceria pigments: Comparative study
VL  - 13
IS  - 3
SP  - 310
EP  - 321
DO  - 10.2298/PAC1903310M
ER  - 
@article{
author = "Mićović, Dragana and Pagnacco, Maja C. and Banković, Predrag T. and Maletaškić, Jelena and Matović, Branko and Đokić, Veljko R. and Stojmenović, Marija",
year = "2019",
abstract = "Potential non-toxic pink and red ceramic pigments based on CeO2 were successfully synthesized by self-propagating room temperature method and thermally treated at 600, 900 and 1200 °C for 15 min. The structure, morphology and optical properties, as well as thermal stability of Ce1-xErxO2-δ and Ce1-xPrxO2-δ (x = 0.05) were examined. Single-phase composition of all obtained CeO2 pigments was confirmed using XRPD method and Raman spectroscopy and it was not dependent on temperature. The mechanism of structural behaviour was thoroughly examined using Raman and FTIR spectroscopy. Nanometric dimensions of the crystallites of all pigments were confirmed using XRPD, TEM and FE-SEM analysis. Colour properties were dependent on the temperature treatment, and their position in the chromaticity diagram was studied using UV/VIS spectrophotometry. Colour efficiency measurements were supplemented by colorimetric analysis. It is proved that all samples are thermally stable in the investigated temperature range (up to 1200 °C), and their potential application as environmentally friendly pigments of desired colour is confirmed.",
journal = "Processing and Application of Ceramics",
title = "The influence of short thermal treatment on structure, morphology and optical properties of Er and Pr doped ceria pigments: Comparative study",
volume = "13",
number = "3",
pages = "310-321",
doi = "10.2298/PAC1903310M"
}
Mićović, D., Pagnacco, M. C., Banković, P. T., Maletaškić, J., Matović, B., Đokić, V. R.,& Stojmenović, M.. (2019). The influence of short thermal treatment on structure, morphology and optical properties of Er and Pr doped ceria pigments: Comparative study. in Processing and Application of Ceramics, 13(3), 310-321.
https://doi.org/10.2298/PAC1903310M
Mićović D, Pagnacco MC, Banković PT, Maletaškić J, Matović B, Đokić VR, Stojmenović M. The influence of short thermal treatment on structure, morphology and optical properties of Er and Pr doped ceria pigments: Comparative study. in Processing and Application of Ceramics. 2019;13(3):310-321.
doi:10.2298/PAC1903310M .
Mićović, Dragana, Pagnacco, Maja C., Banković, Predrag T., Maletaškić, Jelena, Matović, Branko, Đokić, Veljko R., Stojmenović, Marija, "The influence of short thermal treatment on structure, morphology and optical properties of Er and Pr doped ceria pigments: Comparative study" in Processing and Application of Ceramics, 13, no. 3 (2019):310-321,
https://doi.org/10.2298/PAC1903310M . .
5
2
6

High-temperature synthesis and characterization of boron suboxide (B6O) and boron containing hard materials

Maletaškić, Jelena; Luković, Jelena M.; Yoshida, Katsumi; Yano, Toyohiko; Maki, Ryosuke S. S.; Gubarevich, Anna; Matović, Branko

(2019)

TY  - JOUR
AU  - Maletaškić, Jelena
AU  - Luković, Jelena M.
AU  - Yoshida, Katsumi
AU  - Yano, Toyohiko
AU  - Maki, Ryosuke S. S.
AU  - Gubarevich, Anna
AU  - Matović, Branko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9720
AB  - Boron-rich phases like boron carbide and boron suboxide (nominally B6O), with high hardness, low density and chemical inertness, are used as an excellent thermal conducting material, as abrasives and for other high-wear applications. In addition, their application as a nuclear material is especially significant. This study presents a synthetic method for preparation of B6O at temperatures between 1200° and 1800°C. The synthesis was done in an argon atmosphere by using amorphous boron and boric acid in appropriate molar ratio. The evolution of the phase composition during thermal treatment was investigated by X-ray diffraction. A sample obtained at 1800°C consisted of B6O and B4C phases, revealing the intense reaction of B6O with carbon substrate in a vacuum. Sintering behaviour of the synthesized boron suboxide was followed with a scanning electron microscope
T2  - Materials Today: Proceedings
T1  - High-temperature synthesis and characterization of boron suboxide (B6O) and boron containing hard materials
VL  - 16
SP  - 95
EP  - 101
DO  - 10.1016/j.matpr.2019.05.281
ER  - 
@article{
author = "Maletaškić, Jelena and Luković, Jelena M. and Yoshida, Katsumi and Yano, Toyohiko and Maki, Ryosuke S. S. and Gubarevich, Anna and Matović, Branko",
year = "2019",
abstract = "Boron-rich phases like boron carbide and boron suboxide (nominally B6O), with high hardness, low density and chemical inertness, are used as an excellent thermal conducting material, as abrasives and for other high-wear applications. In addition, their application as a nuclear material is especially significant. This study presents a synthetic method for preparation of B6O at temperatures between 1200° and 1800°C. The synthesis was done in an argon atmosphere by using amorphous boron and boric acid in appropriate molar ratio. The evolution of the phase composition during thermal treatment was investigated by X-ray diffraction. A sample obtained at 1800°C consisted of B6O and B4C phases, revealing the intense reaction of B6O with carbon substrate in a vacuum. Sintering behaviour of the synthesized boron suboxide was followed with a scanning electron microscope",
journal = "Materials Today: Proceedings",
title = "High-temperature synthesis and characterization of boron suboxide (B6O) and boron containing hard materials",
volume = "16",
pages = "95-101",
doi = "10.1016/j.matpr.2019.05.281"
}
Maletaškić, J., Luković, J. M., Yoshida, K., Yano, T., Maki, R. S. S., Gubarevich, A.,& Matović, B.. (2019). High-temperature synthesis and characterization of boron suboxide (B6O) and boron containing hard materials. in Materials Today: Proceedings, 16, 95-101.
https://doi.org/10.1016/j.matpr.2019.05.281
Maletaškić J, Luković JM, Yoshida K, Yano T, Maki RSS, Gubarevich A, Matović B. High-temperature synthesis and characterization of boron suboxide (B6O) and boron containing hard materials. in Materials Today: Proceedings. 2019;16:95-101.
doi:10.1016/j.matpr.2019.05.281 .
Maletaškić, Jelena, Luković, Jelena M., Yoshida, Katsumi, Yano, Toyohiko, Maki, Ryosuke S. S., Gubarevich, Anna, Matović, Branko, "High-temperature synthesis and characterization of boron suboxide (B6O) and boron containing hard materials" in Materials Today: Proceedings, 16 (2019):95-101,
https://doi.org/10.1016/j.matpr.2019.05.281 . .
1