Uskoković, Vuk

Link to this page

Authority KeyName Variants
orcid::0000-0003-3256-1606
  • Uskoković, Vuk (16)
  • Uskokovic, Vuk (2)
Projects
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
National Institute of Health grant R00-DE021416 United States National Institutes of Health grant R00-DE021416
Desai Lab at UCSF, NIH [K99-DE021416] Synthesis, characterization and biological investigation of steroid derivatives and their molecular aggregates
Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200162 (University of Belgrade, Faculty of Physics)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry) Physics and Chemistry with Ion Beams
Sinteza funkcionalnih materijala sa kontrolisanom strukturom na molekularnom i nano nivou Javna Agencija za Raziskovalno Dejavnost RS [J2-8169]
Ministrstvo za visoko šolstvo, znanost in tehnologijo [P2-0091] United States National Institutes of Health [R00-DE021416]
USDA-ARS Biophotonics [Grant # 58-6402-3-018] US National Health Institute grant K99-DE021416

Author's Bibliography

Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition

Anđelković, Ljubica; Šuljagić, Marija; Mirković, Miljana; Pavlović, Vera P.; Petronijević, Ivan; Stanković, Dalibor M.; Jeremić, Dejan; Uskoković, Vuk

(2023)

TY  - JOUR
AU  - Anđelković, Ljubica
AU  - Šuljagić, Marija
AU  - Mirković, Miljana
AU  - Pavlović, Vera P.
AU  - Petronijević, Ivan
AU  - Stanković, Dalibor M.
AU  - Jeremić, Dejan
AU  - Uskoković, Vuk
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10935
AB  - The combination of an intense absorption of visible light and p-type semiconducting nature makes spinel cobalt oxide (Co3O4) a very attractive material for various optoelectronic applications. However, the traditional methods for its synthesis have been either time- and energy-consuming or relying on toxic chemicals. To solve this issue, a simple, facile, and eco-friendly method of synthesis was successfully developed to obtain spinel Co3O4 nanoparticles. The novel method for obtaining pure and monophasic Co3O4 reported here is based on the thermal decomposition of hexaaquacobalt(II) D-camphor10-sulfonate at 900 °C. This fast solid-state synthesis route overcomes the disadvantages of many combustion methods, most critically by avoiding the use of toxic organic solvents. The synthesized material was subjected to a detailed characterization to assess its potential for use as a nanocatalyst. The band gap measurements indicated the presence of two band gaps, one at 2.10 eV and another at 1.22 eV, confirming the purity and semiconducting properties of the sample. The electrochemical studies demonstrated a significant enhancement in the electron transfer kinetics with the addition of the synthesized Co3O4 to the carbon-paste electrode, leading to an enhanced electrocatalytic performance. These prominent functional properties, suitable for a wide range of technological applications, pave way for the implementation of the reported method for the synthesis of Co3O4 on a larger industrial scale. © 2023 Elsevier Ltd and Techna Group S.r.l.
T2  - Ceramics International
T1  - Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition
VL  - 49
IS  - 14, Part A
SP  - 23491
EP  - 23498
DO  - 10.1016/j.ceramint.2023.04.182
ER  - 
@article{
author = "Anđelković, Ljubica and Šuljagić, Marija and Mirković, Miljana and Pavlović, Vera P. and Petronijević, Ivan and Stanković, Dalibor M. and Jeremić, Dejan and Uskoković, Vuk",
year = "2023",
abstract = "The combination of an intense absorption of visible light and p-type semiconducting nature makes spinel cobalt oxide (Co3O4) a very attractive material for various optoelectronic applications. However, the traditional methods for its synthesis have been either time- and energy-consuming or relying on toxic chemicals. To solve this issue, a simple, facile, and eco-friendly method of synthesis was successfully developed to obtain spinel Co3O4 nanoparticles. The novel method for obtaining pure and monophasic Co3O4 reported here is based on the thermal decomposition of hexaaquacobalt(II) D-camphor10-sulfonate at 900 °C. This fast solid-state synthesis route overcomes the disadvantages of many combustion methods, most critically by avoiding the use of toxic organic solvents. The synthesized material was subjected to a detailed characterization to assess its potential for use as a nanocatalyst. The band gap measurements indicated the presence of two band gaps, one at 2.10 eV and another at 1.22 eV, confirming the purity and semiconducting properties of the sample. The electrochemical studies demonstrated a significant enhancement in the electron transfer kinetics with the addition of the synthesized Co3O4 to the carbon-paste electrode, leading to an enhanced electrocatalytic performance. These prominent functional properties, suitable for a wide range of technological applications, pave way for the implementation of the reported method for the synthesis of Co3O4 on a larger industrial scale. © 2023 Elsevier Ltd and Techna Group S.r.l.",
journal = "Ceramics International",
title = "Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition",
volume = "49",
number = "14, Part A",
pages = "23491-23498",
doi = "10.1016/j.ceramint.2023.04.182"
}
Anđelković, L., Šuljagić, M., Mirković, M., Pavlović, V. P., Petronijević, I., Stanković, D. M., Jeremić, D.,& Uskoković, V.. (2023). Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition. in Ceramics International, 49(14, Part A), 23491-23498.
https://doi.org/10.1016/j.ceramint.2023.04.182
Anđelković L, Šuljagić M, Mirković M, Pavlović VP, Petronijević I, Stanković DM, Jeremić D, Uskoković V. Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition. in Ceramics International. 2023;49(14, Part A):23491-23498.
doi:10.1016/j.ceramint.2023.04.182 .
Anđelković, Ljubica, Šuljagić, Marija, Mirković, Miljana, Pavlović, Vera P., Petronijević, Ivan, Stanković, Dalibor M., Jeremić, Dejan, Uskoković, Vuk, "Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition" in Ceramics International, 49, no. 14, Part A (2023):23491-23498,
https://doi.org/10.1016/j.ceramint.2023.04.182 . .

Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites

Šuljagić, Marija; Milenković, Milica; Uskoković, Vuk; Mirković, Miljana M.; Vrbica, Boško; Pavlović, Vladimir B.; Živković-Radovanović, Vukosava; Stanković, Dalibor M.; Anđelković, Ljubica

(2022)

TY  - JOUR
AU  - Šuljagić, Marija
AU  - Milenković, Milica
AU  - Uskoković, Vuk
AU  - Mirković, Miljana M.
AU  - Vrbica, Boško
AU  - Pavlović, Vladimir B.
AU  - Živković-Radovanović, Vukosava
AU  - Stanković, Dalibor M.
AU  - Anđelković, Ljubica
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10386
AB  - The emerging threat of bacterial resistance to antibiotics prompts the urgent search for biomaterials for the treatment of infectious disease. Here we report on the synthesis and characterization of a multiphasic nanocomposite comprising magnetic iron oxide and silver nanoparticles. The method of synthesis involved the combustion of a metalorganic complex and reduction of the silver ions that were exchanged and/or adsorbed on the surface of iron oxide. Different physical and chemical treatments coupled to the reduction process, including ultrasound and Lugol's iodine solution, respectively, homogenized the distribution of the silver nanoparticles on the iron oxide phase. Remarkably, using ascorbic acid as a reductant enhanced the magnetic properties of the material as a result of the reduction of the magnetic matrix alongside the silver cations. The treatment with ultrasound detached large amounts of silver from the iron oxide phase and resulted in the lowest amount of silver incorporated in the nanocomposite. Despite that, this treatment led to the highest antibacterial activity against both Gram-positive and Gram-negative strains, indicating that the homogeneity of the distribution of silver on the iron oxide matrix is a more important determinant of the antibacterial performance than the amount of silver incorporated in the material. At the same time, the treatment with Lugol's iodine equally increased the distribution homogeneity, but induced excessive ion exchange and crystal lattice substitutions, thereby adversely affecting the antibacterial performance. This has indicated that the mode of binding silver to iron oxide can compensate for the positive effects of homogeneous distribution with respect to the antibacterial performance.
T2  - Materials Today Communications
T1  - Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites
VL  - 32
SP  - 104157
DO  - 10.1016/j.mtcomm.2022.104157
ER  - 
@article{
author = "Šuljagić, Marija and Milenković, Milica and Uskoković, Vuk and Mirković, Miljana M. and Vrbica, Boško and Pavlović, Vladimir B. and Živković-Radovanović, Vukosava and Stanković, Dalibor M. and Anđelković, Ljubica",
year = "2022",
abstract = "The emerging threat of bacterial resistance to antibiotics prompts the urgent search for biomaterials for the treatment of infectious disease. Here we report on the synthesis and characterization of a multiphasic nanocomposite comprising magnetic iron oxide and silver nanoparticles. The method of synthesis involved the combustion of a metalorganic complex and reduction of the silver ions that were exchanged and/or adsorbed on the surface of iron oxide. Different physical and chemical treatments coupled to the reduction process, including ultrasound and Lugol's iodine solution, respectively, homogenized the distribution of the silver nanoparticles on the iron oxide phase. Remarkably, using ascorbic acid as a reductant enhanced the magnetic properties of the material as a result of the reduction of the magnetic matrix alongside the silver cations. The treatment with ultrasound detached large amounts of silver from the iron oxide phase and resulted in the lowest amount of silver incorporated in the nanocomposite. Despite that, this treatment led to the highest antibacterial activity against both Gram-positive and Gram-negative strains, indicating that the homogeneity of the distribution of silver on the iron oxide matrix is a more important determinant of the antibacterial performance than the amount of silver incorporated in the material. At the same time, the treatment with Lugol's iodine equally increased the distribution homogeneity, but induced excessive ion exchange and crystal lattice substitutions, thereby adversely affecting the antibacterial performance. This has indicated that the mode of binding silver to iron oxide can compensate for the positive effects of homogeneous distribution with respect to the antibacterial performance.",
journal = "Materials Today Communications",
title = "Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites",
volume = "32",
pages = "104157",
doi = "10.1016/j.mtcomm.2022.104157"
}
Šuljagić, M., Milenković, M., Uskoković, V., Mirković, M. M., Vrbica, B., Pavlović, V. B., Živković-Radovanović, V., Stanković, D. M.,& Anđelković, L.. (2022). Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites. in Materials Today Communications, 32, 104157.
https://doi.org/10.1016/j.mtcomm.2022.104157
Šuljagić M, Milenković M, Uskoković V, Mirković MM, Vrbica B, Pavlović VB, Živković-Radovanović V, Stanković DM, Anđelković L. Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites. in Materials Today Communications. 2022;32:104157.
doi:10.1016/j.mtcomm.2022.104157 .
Šuljagić, Marija, Milenković, Milica, Uskoković, Vuk, Mirković, Miljana M., Vrbica, Boško, Pavlović, Vladimir B., Živković-Radovanović, Vukosava, Stanković, Dalibor M., Anđelković, Ljubica, "Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites" in Materials Today Communications, 32 (2022):104157,
https://doi.org/10.1016/j.mtcomm.2022.104157 . .
1
1

Colloids or powders: Which nanoparticle formulations do cells like more?

Uskoković, Vuk; Huynh, Eric; Tang, Sean; Jovanović, Sonja; Wu, Victoria

(2019)

TY  - JOUR
AU  - Uskoković, Vuk
AU  - Huynh, Eric
AU  - Tang, Sean
AU  - Jovanović, Sonja
AU  - Wu, Victoria
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0927776519303182
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8202
AB  - Understanding the difference in physicochemical properties and biological response between colloidal and powder formulations of identical materials is important before the given materials are used in a medical milieu. In this study we compared a set of biological effects of colloidal and powder formulations of composite nanoparticles comprising superparamagnetic iron oxide cores and silicate/carbon shells. Magnetic dipole interaction between adjacent nanoparticles was more pronounced in their powders than in their colloidal formulations. Nanoparticles delivered as powders were thus more responsive to the magnetic field, but exhibited reduced uptake in bone and brain cancer cells, including K7M2 osteosarcoma line and U87 and E297 glioblastoma lines. Specifically, while the alternate magnetic field elicited a more rapid heat generation in cell culture media supplemented with the magnetic powders, the nanoparticles dispersed in the same media were uptaken by the cancer cells more copiously. The cellular uptake proved to be more crucial in defining the effect on cell survival, given that suspended formulations elicited a greater degree of cancer cell death in the magnetic field compared to the powder-containing formulations. Because of this effect, colloidal formulations were able to target cancer cells more effectively than the powders: they reduced the viability of all three tested cancer cell lines to a significantly greater degree that the viability of the normal, MDCK-MDR1 cell line. It is concluded that better uptake profile can make up for the lower heating rate in the AC field and lead to a more effective magnetic hyperthermia therapy. These results also demonstrate that the direct delivery of ferrofluids is more optimal than the administration of their constitutive particles as powders. © 2019 Elsevier B.V.
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Colloids or powders: Which nanoparticle formulations do cells like more?
VL  - 181
SP  - 39
EP  - 47
DO  - 10.1016/j.colsurfb.2019.05.019
ER  - 
@article{
author = "Uskoković, Vuk and Huynh, Eric and Tang, Sean and Jovanović, Sonja and Wu, Victoria",
year = "2019",
abstract = "Understanding the difference in physicochemical properties and biological response between colloidal and powder formulations of identical materials is important before the given materials are used in a medical milieu. In this study we compared a set of biological effects of colloidal and powder formulations of composite nanoparticles comprising superparamagnetic iron oxide cores and silicate/carbon shells. Magnetic dipole interaction between adjacent nanoparticles was more pronounced in their powders than in their colloidal formulations. Nanoparticles delivered as powders were thus more responsive to the magnetic field, but exhibited reduced uptake in bone and brain cancer cells, including K7M2 osteosarcoma line and U87 and E297 glioblastoma lines. Specifically, while the alternate magnetic field elicited a more rapid heat generation in cell culture media supplemented with the magnetic powders, the nanoparticles dispersed in the same media were uptaken by the cancer cells more copiously. The cellular uptake proved to be more crucial in defining the effect on cell survival, given that suspended formulations elicited a greater degree of cancer cell death in the magnetic field compared to the powder-containing formulations. Because of this effect, colloidal formulations were able to target cancer cells more effectively than the powders: they reduced the viability of all three tested cancer cell lines to a significantly greater degree that the viability of the normal, MDCK-MDR1 cell line. It is concluded that better uptake profile can make up for the lower heating rate in the AC field and lead to a more effective magnetic hyperthermia therapy. These results also demonstrate that the direct delivery of ferrofluids is more optimal than the administration of their constitutive particles as powders. © 2019 Elsevier B.V.",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Colloids or powders: Which nanoparticle formulations do cells like more?",
volume = "181",
pages = "39-47",
doi = "10.1016/j.colsurfb.2019.05.019"
}
Uskoković, V., Huynh, E., Tang, S., Jovanović, S.,& Wu, V.. (2019). Colloids or powders: Which nanoparticle formulations do cells like more?. in Colloids and Surfaces. B: Biointerfaces, 181, 39-47.
https://doi.org/10.1016/j.colsurfb.2019.05.019
Uskoković V, Huynh E, Tang S, Jovanović S, Wu V. Colloids or powders: Which nanoparticle formulations do cells like more?. in Colloids and Surfaces. B: Biointerfaces. 2019;181:39-47.
doi:10.1016/j.colsurfb.2019.05.019 .
Uskoković, Vuk, Huynh, Eric, Tang, Sean, Jovanović, Sonja, Wu, Victoria, "Colloids or powders: Which nanoparticle formulations do cells like more?" in Colloids and Surfaces. B: Biointerfaces, 181 (2019):39-47,
https://doi.org/10.1016/j.colsurfb.2019.05.019 . .
7
5
9

Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

Ignjatović, Nenad L.; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana M.; Uskoković, Vuk; Lazić, Snežana; Marković, Smilja; Lazarević, Miloš M.; Uskoković, Dragan

(2019)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana M.
AU  - Uskoković, Vuk
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Lazarević, Miloš M.
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8625
AB  - Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility. © 2019, The Author(s).
T2  - Scientific Reports
T1  - Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging
VL  - 9
IS  - 1
SP  - 16305
DO  - 10.1038/s41598-019-52885-0
ER  - 
@article{
author = "Ignjatović, Nenad L. and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana M. and Uskoković, Vuk and Lazić, Snežana and Marković, Smilja and Lazarević, Miloš M. and Uskoković, Dragan",
year = "2019",
abstract = "Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility. © 2019, The Author(s).",
journal = "Scientific Reports",
title = "Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging",
volume = "9",
number = "1",
pages = "16305",
doi = "10.1038/s41598-019-52885-0"
}
Ignjatović, N. L., Mančić, L., Vuković, M., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Jovanović, S., Veselinović, L. M., Uskoković, V., Lazić, S., Marković, S., Lazarević, M. M.,& Uskoković, D.. (2019). Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. in Scientific Reports, 9(1), 16305.
https://doi.org/10.1038/s41598-019-52885-0
Ignjatović NL, Mančić L, Vuković M, Stojanović ZS, Nikolić MG, Škapin SD, Jovanović S, Veselinović LM, Uskoković V, Lazić S, Marković S, Lazarević MM, Uskoković D. Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. in Scientific Reports. 2019;9(1):16305.
doi:10.1038/s41598-019-52885-0 .
Ignjatović, Nenad L., Mančić, Lidija, Vuković, Marina, Stojanović, Zoran S., Nikolić, Marko G., Škapin, Srečo Davor, Jovanović, Sonja, Veselinović, Ljiljana M., Uskoković, Vuk, Lazić, Snežana, Marković, Smilja, Lazarević, Miloš M., Uskoković, Dragan, "Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging" in Scientific Reports, 9, no. 1 (2019):16305,
https://doi.org/10.1038/s41598-019-52885-0 . .
1
75
26
66

Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies

Stojanović, Zoran S.; Ignjatović, Nenad L.; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana M.; Škapin, Srečo Davor; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Stojanović, Zoran S.
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Žunič, Vojka
AU  - Veselinović, Ljiljana M.
AU  - Škapin, Srečo Davor
AU  - Miljković, Miroslav
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7575
AB  - Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.
T2  - Materials Science and Engineering: C
T1  - Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies
VL  - 68
SP  - 746
EP  - 757
DO  - 10.1016/j.msec.2016.06.047
ER  - 
@article{
author = "Stojanović, Zoran S. and Ignjatović, Nenad L. and Wu, Victoria and Žunič, Vojka and Veselinović, Ljiljana M. and Škapin, Srečo Davor and Miljković, Miroslav and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.",
journal = "Materials Science and Engineering: C",
title = "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies",
volume = "68",
pages = "746-757",
doi = "10.1016/j.msec.2016.06.047"
}
Stojanović, Z. S., Ignjatović, N. L., Wu, V., Žunič, V., Veselinović, L. M., Škapin, S. D., Miljković, M., Uskoković, V.,& Uskoković, D.. (2016). Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. in Materials Science and Engineering: C, 68, 746-757.
https://doi.org/10.1016/j.msec.2016.06.047
Stojanović ZS, Ignjatović NL, Wu V, Žunič V, Veselinović LM, Škapin SD, Miljković M, Uskoković V, Uskoković D. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. in Materials Science and Engineering: C. 2016;68:746-757.
doi:10.1016/j.msec.2016.06.047 .
Stojanović, Zoran S., Ignjatović, Nenad L., Wu, Victoria, Žunič, Vojka, Veselinović, Ljiljana M., Škapin, Srečo Davor, Miljković, Miroslav, Uskoković, Vuk, Uskoković, Dragan, "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies" in Materials Science and Engineering: C, 68 (2016):746-757,
https://doi.org/10.1016/j.msec.2016.06.047 . .
32
24
32

Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies

Stojanović, Zoran S.; Ignjatović, Nenad L.; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana M.; Škapin, Srečo Davor; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Stojanović, Zoran S.
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Žunič, Vojka
AU  - Veselinović, Ljiljana M.
AU  - Škapin, Srečo Davor
AU  - Miljković, Miroslav
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7576
AB  - Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.
PB  - Elsevier
T2  - Materials Science and Engineering: C
T1  - Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies
VL  - 68
SP  - 746
EP  - 757
DO  - 10.1016/j.msec.2016.06.047
ER  - 
@article{
author = "Stojanović, Zoran S. and Ignjatović, Nenad L. and Wu, Victoria and Žunič, Vojka and Veselinović, Ljiljana M. and Škapin, Srečo Davor and Miljković, Miroslav and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.",
publisher = "Elsevier",
journal = "Materials Science and Engineering: C",
title = "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies",
volume = "68",
pages = "746-757",
doi = "10.1016/j.msec.2016.06.047"
}
Stojanović, Z. S., Ignjatović, N. L., Wu, V., Žunič, V., Veselinović, L. M., Škapin, S. D., Miljković, M., Uskoković, V.,& Uskoković, D.. (2016). Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. in Materials Science and Engineering: C
Elsevier., 68, 746-757.
https://doi.org/10.1016/j.msec.2016.06.047
Stojanović ZS, Ignjatović NL, Wu V, Žunič V, Veselinović LM, Škapin SD, Miljković M, Uskoković V, Uskoković D. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. in Materials Science and Engineering: C. 2016;68:746-757.
doi:10.1016/j.msec.2016.06.047 .
Stojanović, Zoran S., Ignjatović, Nenad L., Wu, Victoria, Žunič, Vojka, Veselinović, Ljiljana M., Škapin, Srečo Davor, Miljković, Miroslav, Uskoković, Vuk, Uskoković, Dragan, "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies" in Materials Science and Engineering: C, 68 (2016):746-757,
https://doi.org/10.1016/j.msec.2016.06.047 . .
32
24
33

Tumor-selective hybrid system based on hydroxyapatite nanocarrier, chitosan, poly(lactic-co-glycolic acid) and androstan derivate

Ignjatović, Nenad L.; Penov Gaši, Katarina; Wu, Victoria; Ajduković, Jovana; Kojić, Vesna V.; Vasiljević-Radović, Dana; Uskoković, Vuk; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2016)

TY  - CONF
AU  - Ignjatović, Nenad L.
AU  - Penov Gaši, Katarina
AU  - Wu, Victoria
AU  - Ajduković, Jovana
AU  - Kojić, Vesna V.
AU  - Vasiljević-Radović, Dana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/896
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7553
AB  - The applicative potential of synthetic calcium phosphates, especially hydroxyapatite (HAp), has become intensely broadened in the past 10 years, from bone tissue engineering to multiple other fields of biomedicine. Previously we have shown that hydroxyapatite nanoparticles coated with chitosan-poly(D,L)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous administration into mice. For this purpose radioactive 125-Iodine (125I), a low energy gamma emitter, was used to develop a novel in situ method for radiolabeling of particles and investigation of their biodistribution. In this study we utilize an emulsification process and freeze drying to load the composite particles based on hydroxyapatite nanocarrier, chitosane and poly(lactic-co-glycolic acid) with 17β- hydroxy-17α-picolyl-androst-5-en-3β-acetate (A), a chemotherapeutic derivative of androstane. The picolyl androstane derivatives showed high potency in the cell inhibitors of hormonedependent cancers (adenocarcinoma, prostate cancer, cervix carcinoma, colon cancer, etc.). 1H NMR, 13C NMR and high-resolution time-of-flight mass spectrometry (MS) techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The synthesized particles of A-loaded HAp/Ch-PLGA were found to be spherical in shape with a uniform size distribution of d50=168 nm. The release of A from HAp/Ch-PLGA was sustained, with no burst release or plateauing after three weeks. The obtained results of the DET and MTT tests show that the particles of A-loaded HAp/Ch-PLGA exhibit almost three times higher cytotoxicity towards lung adenocarcinoma cells (A549) than towards healthy cells (MRC5), while at the same time allowing twice as fast recovery of healthy cells. We have also analyzed the period of recovery of healthy, as well as cancer cells, following the treatment with A-loaded HAp/Ch-PLGA. After treatment with A-loaded HAp/Ch-PLGA, healthy cells recover twice as fast as the malignant ones. Immunofluorescent staining of primary fibroblasts interacting with HAp/Ch-PLGA and A-HAp/Ch-PLGA particles demonstrates no negative morphological or proliferative effects on cells.
PB  - Belgrade : Materials Research Society of Serbia
C3  - YUCOMAT 2016 : 18th Annual Conference YUCOMAT 2016 : programme and the book of abstracts; September 5-10, Herceg Novi
T1  - Tumor-selective hybrid system based on hydroxyapatite nanocarrier, chitosan, poly(lactic-co-glycolic acid) and androstan derivate
SP  - 27
EP  - 27
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7553
ER  - 
@conference{
author = "Ignjatović, Nenad L. and Penov Gaši, Katarina and Wu, Victoria and Ajduković, Jovana and Kojić, Vesna V. and Vasiljević-Radović, Dana and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "The applicative potential of synthetic calcium phosphates, especially hydroxyapatite (HAp), has become intensely broadened in the past 10 years, from bone tissue engineering to multiple other fields of biomedicine. Previously we have shown that hydroxyapatite nanoparticles coated with chitosan-poly(D,L)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous administration into mice. For this purpose radioactive 125-Iodine (125I), a low energy gamma emitter, was used to develop a novel in situ method for radiolabeling of particles and investigation of their biodistribution. In this study we utilize an emulsification process and freeze drying to load the composite particles based on hydroxyapatite nanocarrier, chitosane and poly(lactic-co-glycolic acid) with 17β- hydroxy-17α-picolyl-androst-5-en-3β-acetate (A), a chemotherapeutic derivative of androstane. The picolyl androstane derivatives showed high potency in the cell inhibitors of hormonedependent cancers (adenocarcinoma, prostate cancer, cervix carcinoma, colon cancer, etc.). 1H NMR, 13C NMR and high-resolution time-of-flight mass spectrometry (MS) techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The synthesized particles of A-loaded HAp/Ch-PLGA were found to be spherical in shape with a uniform size distribution of d50=168 nm. The release of A from HAp/Ch-PLGA was sustained, with no burst release or plateauing after three weeks. The obtained results of the DET and MTT tests show that the particles of A-loaded HAp/Ch-PLGA exhibit almost three times higher cytotoxicity towards lung adenocarcinoma cells (A549) than towards healthy cells (MRC5), while at the same time allowing twice as fast recovery of healthy cells. We have also analyzed the period of recovery of healthy, as well as cancer cells, following the treatment with A-loaded HAp/Ch-PLGA. After treatment with A-loaded HAp/Ch-PLGA, healthy cells recover twice as fast as the malignant ones. Immunofluorescent staining of primary fibroblasts interacting with HAp/Ch-PLGA and A-HAp/Ch-PLGA particles demonstrates no negative morphological or proliferative effects on cells.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "YUCOMAT 2016 : 18th Annual Conference YUCOMAT 2016 : programme and the book of abstracts; September 5-10, Herceg Novi",
title = "Tumor-selective hybrid system based on hydroxyapatite nanocarrier, chitosan, poly(lactic-co-glycolic acid) and androstan derivate",
pages = "27-27",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7553"
}
Ignjatović, N. L., Penov Gaši, K., Wu, V., Ajduković, J., Kojić, V. V., Vasiljević-Radović, D., Uskoković, V.,& Uskoković, D.. (2016). Tumor-selective hybrid system based on hydroxyapatite nanocarrier, chitosan, poly(lactic-co-glycolic acid) and androstan derivate. in YUCOMAT 2016 : 18th Annual Conference YUCOMAT 2016 : programme and the book of abstracts; September 5-10, Herceg Novi
Belgrade : Materials Research Society of Serbia., 27-27.
https://hdl.handle.net/21.15107/rcub_vinar_7553
Ignjatović NL, Penov Gaši K, Wu V, Ajduković J, Kojić VV, Vasiljević-Radović D, Uskoković V, Uskoković D. Tumor-selective hybrid system based on hydroxyapatite nanocarrier, chitosan, poly(lactic-co-glycolic acid) and androstan derivate. in YUCOMAT 2016 : 18th Annual Conference YUCOMAT 2016 : programme and the book of abstracts; September 5-10, Herceg Novi. 2016;:27-27.
https://hdl.handle.net/21.15107/rcub_vinar_7553 .
Ignjatović, Nenad L., Penov Gaši, Katarina, Wu, Victoria, Ajduković, Jovana, Kojić, Vesna V., Vasiljević-Radović, Dana, Uskoković, Vuk, Uskoković, Dragan, "Tumor-selective hybrid system based on hydroxyapatite nanocarrier, chitosan, poly(lactic-co-glycolic acid) and androstan derivate" in YUCOMAT 2016 : 18th Annual Conference YUCOMAT 2016 : programme and the book of abstracts; September 5-10, Herceg Novi (2016):27-27,
https://hdl.handle.net/21.15107/rcub_vinar_7553 .

Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor

Ignjatović, Nenad L.; Penov-Gaši, Katarina; Wu, Victoria; Ajduković, Jovana; Kojić, Vesna V.; Vasiljević-Radović, Dana; Kuzmanović, Maja D.; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Penov-Gaši, Katarina
AU  - Wu, Victoria
AU  - Ajduković, Jovana
AU  - Kojić, Vesna V.
AU  - Vasiljević-Radović, Dana
AU  - Kuzmanović, Maja D.
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/15974
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7569
AB  - In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.
PB  - Elsevier
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor
VL  - 148
SP  - 629
EP  - 639
DO  - 10.1016/j.colsurfb.2016.09.041
ER  - 
@article{
author = "Ignjatović, Nenad L. and Penov-Gaši, Katarina and Wu, Victoria and Ajduković, Jovana and Kojić, Vesna V. and Vasiljević-Radović, Dana and Kuzmanović, Maja D. and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.",
publisher = "Elsevier",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor",
volume = "148",
pages = "629-639",
doi = "10.1016/j.colsurfb.2016.09.041"
}
Ignjatović, N. L., Penov-Gaši, K., Wu, V., Ajduković, J., Kojić, V. V., Vasiljević-Radović, D., Kuzmanović, M. D., Uskoković, V.,& Uskoković, D.. (2016). Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. in Colloids and Surfaces. B: Biointerfaces
Elsevier., 148, 629-639.
https://doi.org/10.1016/j.colsurfb.2016.09.041
Ignjatović NL, Penov-Gaši K, Wu V, Ajduković J, Kojić VV, Vasiljević-Radović D, Kuzmanović MD, Uskoković V, Uskoković D. Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. in Colloids and Surfaces. B: Biointerfaces. 2016;148:629-639.
doi:10.1016/j.colsurfb.2016.09.041 .
Ignjatović, Nenad L., Penov-Gaši, Katarina, Wu, Victoria, Ajduković, Jovana, Kojić, Vesna V., Vasiljević-Radović, Dana, Kuzmanović, Maja D., Uskoković, Vuk, Uskoković, Dragan, "Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor" in Colloids and Surfaces. B: Biointerfaces, 148 (2016):629-639,
https://doi.org/10.1016/j.colsurfb.2016.09.041 . .
25
18
28

Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues

Ignjatović, Nenad L.; Wu, Victoria; Ajduković, Zorica; Mihajilov-Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Ajduković, Zorica
AU  - Mihajilov-Krstev, Tatjana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7570
AB  - Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.
PB  - Elsevier
T2  - Materials Science and Engineering C
T1  - Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues
VL  - 60
SP  - 357
EP  - 364
DO  - 10.1016/j.msec.2015.11.061
ER  - 
@article{
author = "Ignjatović, Nenad L. and Wu, Victoria and Ajduković, Zorica and Mihajilov-Krstev, Tatjana and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.",
publisher = "Elsevier",
journal = "Materials Science and Engineering C",
title = "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues",
volume = "60",
pages = "357-364",
doi = "10.1016/j.msec.2015.11.061"
}
Ignjatović, N. L., Wu, V., Ajduković, Z., Mihajilov-Krstev, T., Uskoković, V.,& Uskoković, D.. (2016). Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. in Materials Science and Engineering C
Elsevier., 60, 357-364.
https://doi.org/10.1016/j.msec.2015.11.061
Ignjatović NL, Wu V, Ajduković Z, Mihajilov-Krstev T, Uskoković V, Uskoković D. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. in Materials Science and Engineering C. 2016;60:357-364.
doi:10.1016/j.msec.2015.11.061 .
Ignjatović, Nenad L., Wu, Victoria, Ajduković, Zorica, Mihajilov-Krstev, Tatjana, Uskoković, Vuk, Uskoković, Dragan, "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues" in Materials Science and Engineering C, 60 (2016):357-364,
https://doi.org/10.1016/j.msec.2015.11.061 . .
76
57
73

Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues

Ignjatović, Nenad L.; Wu, Victoria; Ajduković, Zorica; Mihajilov Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Ajduković, Zorica
AU  - Mihajilov Krstev, Tatjana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7573
AB  - Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.
T2  - Materials science & engineering. C, Materials for biological applications
T1  - Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues
VL  - 60
SP  - 357
EP  - 364
DO  - 10.1016/j.msec.2015.11.061
ER  - 
@article{
author = "Ignjatović, Nenad L. and Wu, Victoria and Ajduković, Zorica and Mihajilov Krstev, Tatjana and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.",
journal = "Materials science & engineering. C, Materials for biological applications",
title = "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues",
volume = "60",
pages = "357-364",
doi = "10.1016/j.msec.2015.11.061"
}
Ignjatović, N. L., Wu, V., Ajduković, Z., Mihajilov Krstev, T., Uskoković, V.,& Uskoković, D.. (2016). Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. in Materials science & engineering. C, Materials for biological applications, 60, 357-364.
https://doi.org/10.1016/j.msec.2015.11.061
Ignjatović NL, Wu V, Ajduković Z, Mihajilov Krstev T, Uskoković V, Uskoković D. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. in Materials science & engineering. C, Materials for biological applications. 2016;60:357-364.
doi:10.1016/j.msec.2015.11.061 .
Ignjatović, Nenad L., Wu, Victoria, Ajduković, Zorica, Mihajilov Krstev, Tatjana, Uskoković, Vuk, Uskoković, Dragan, "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues" in Materials science & engineering. C, Materials for biological applications, 60 (2016):357-364,
https://doi.org/10.1016/j.msec.2015.11.061 . .
75
57
75

Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties

Ignjatović, Nenad L.; Uskoković, Vuk; Ajduković, Zorica; Mihajlov Krstev, Tatjana; Uskoković, Dragan

(2015)

TY  - CONF
AU  - Ignjatović, Nenad L.
AU  - Uskoković, Vuk
AU  - Ajduković, Zorica
AU  - Mihajlov Krstev, Tatjana
AU  - Uskoković, Dragan
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/824
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7541
AB  - Composite biomaterials based on nano-hydroxyapatite have an enormous potential for natural bone tissue reparation, filling and augmentation. Multifunctional nanoparticulate systems based on HAp coated with biocompatible and bioresorbable polymers make a separate group of filler systems in bone tissue engineering [1,2]. Chitosan has many physicochemical (reactive OH and NH2 groups) and biological (biocompatible, biodegradable) properties that make it an attractive material for use in bone tissue engineering. However, chitosan may induce thrombosis and it is therefore unsuitable as blood – contacting biomaterial. One of the strategies to improve the biocompatibility of chitosan is combination of this biopolymer with compounds that exhibit complementary properties. In our studies, we present the synthesis, characterization, in vitro and in vivo research of a particulate form of nano HAp-coated polymer systems. We synthesized nanoparticulate HAp coated with chitosan (Ch) and a chitosan-poly-D,L-lactide-co-glycolide (Ch-PLGA) polymer blend obtained via the solvent/non-solvent method and freeze-drying processing. We also examined the possibility of using Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a finger print for identification purposes in coating processes. The quantitative antimicrobial test has shown that HAp/Ch-PLGA have some antibacterial properties (MIC (mg/mL): Pseudomonas aeruginosa – 6.40, Staphylococcus aureus – 6.40, Staphylococcus epidermidis – 3.20). MTT assay was used to test cytotoxicity and cell viability. By using HAp/Ch-PLGA in the form of a filler a high level of reparatory ability, with the presence Haversian canals and cement lines in reconstructed of bone defect, was achieved in vivo. [1] N. Ignjatovic, C. Liu, J. Czernuszka, D. Uskokovic, Micro and nano/injectable composite biomaterials containing calcium phosphate coated with poly(dl-lactide-co-glycolide), Acta Biomaterialia, 3 (2007) 927-935 [2] N. Ignjatović, V. Uskoković, Z. Ajduković, D. Uskoković, Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol, Materials Science and Engineering: C 33 (2013) 943–950
C3  - ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts
T1  - Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties
SP  - 15
EP  - 16
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7541
ER  - 
@conference{
author = "Ignjatović, Nenad L. and Uskoković, Vuk and Ajduković, Zorica and Mihajlov Krstev, Tatjana and Uskoković, Dragan",
year = "2015",
abstract = "Composite biomaterials based on nano-hydroxyapatite have an enormous potential for natural bone tissue reparation, filling and augmentation. Multifunctional nanoparticulate systems based on HAp coated with biocompatible and bioresorbable polymers make a separate group of filler systems in bone tissue engineering [1,2]. Chitosan has many physicochemical (reactive OH and NH2 groups) and biological (biocompatible, biodegradable) properties that make it an attractive material for use in bone tissue engineering. However, chitosan may induce thrombosis and it is therefore unsuitable as blood – contacting biomaterial. One of the strategies to improve the biocompatibility of chitosan is combination of this biopolymer with compounds that exhibit complementary properties. In our studies, we present the synthesis, characterization, in vitro and in vivo research of a particulate form of nano HAp-coated polymer systems. We synthesized nanoparticulate HAp coated with chitosan (Ch) and a chitosan-poly-D,L-lactide-co-glycolide (Ch-PLGA) polymer blend obtained via the solvent/non-solvent method and freeze-drying processing. We also examined the possibility of using Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a finger print for identification purposes in coating processes. The quantitative antimicrobial test has shown that HAp/Ch-PLGA have some antibacterial properties (MIC (mg/mL): Pseudomonas aeruginosa – 6.40, Staphylococcus aureus – 6.40, Staphylococcus epidermidis – 3.20). MTT assay was used to test cytotoxicity and cell viability. By using HAp/Ch-PLGA in the form of a filler a high level of reparatory ability, with the presence Haversian canals and cement lines in reconstructed of bone defect, was achieved in vivo. [1] N. Ignjatovic, C. Liu, J. Czernuszka, D. Uskokovic, Micro and nano/injectable composite biomaterials containing calcium phosphate coated with poly(dl-lactide-co-glycolide), Acta Biomaterialia, 3 (2007) 927-935 [2] N. Ignjatović, V. Uskoković, Z. Ajduković, D. Uskoković, Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol, Materials Science and Engineering: C 33 (2013) 943–950",
journal = "ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts",
title = "Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties",
pages = "15-16",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7541"
}
Ignjatović, N. L., Uskoković, V., Ajduković, Z., Mihajlov Krstev, T.,& Uskoković, D.. (2015). Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties. in ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts, 15-16.
https://hdl.handle.net/21.15107/rcub_vinar_7541
Ignjatović NL, Uskoković V, Ajduković Z, Mihajlov Krstev T, Uskoković D. Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties. in ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts. 2015;:15-16.
https://hdl.handle.net/21.15107/rcub_vinar_7541 .
Ignjatović, Nenad L., Uskoković, Vuk, Ajduković, Zorica, Mihajlov Krstev, Tatjana, Uskoković, Dragan, "Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties" in ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts (2015):15-16,
https://hdl.handle.net/21.15107/rcub_vinar_7541 .

Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones

Ignjatović, Nenad L.; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran S.; Uskoković, Vuk; Uskoković, Dragan

(2013)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Ajduković, Zorica
AU  - Savić, Vojin
AU  - Najman, Stevo
AU  - Mihailović, Dragan
AU  - Vasiljević, Perica
AU  - Stojanović, Zoran S.
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7410
AB  - Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.
T2  - Journal of Materials Science: Materials in Medicine
T1  - Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones
SP  - 343
EP  - 354
DO  - 10.1007/s10856-012-4793-1
ER  - 
@article{
author = "Ignjatović, Nenad L. and Ajduković, Zorica and Savić, Vojin and Najman, Stevo and Mihailović, Dragan and Vasiljević, Perica and Stojanović, Zoran S. and Uskoković, Vuk and Uskoković, Dragan",
year = "2013",
abstract = "Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.",
journal = "Journal of Materials Science: Materials in Medicine",
title = "Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones",
pages = "343-354",
doi = "10.1007/s10856-012-4793-1"
}
Ignjatović, N. L., Ajduković, Z., Savić, V., Najman, S., Mihailović, D., Vasiljević, P., Stojanović, Z. S., Uskoković, V.,& Uskoković, D.. (2013). Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. in Journal of Materials Science: Materials in Medicine, 343-354.
https://doi.org/10.1007/s10856-012-4793-1
Ignjatović NL, Ajduković Z, Savić V, Najman S, Mihailović D, Vasiljević P, Stojanović ZS, Uskoković V, Uskoković D. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. in Journal of Materials Science: Materials in Medicine. 2013;:343-354.
doi:10.1007/s10856-012-4793-1 .
Ignjatović, Nenad L., Ajduković, Zorica, Savić, Vojin, Najman, Stevo, Mihailović, Dragan, Vasiljević, Perica, Stojanović, Zoran S., Uskoković, Vuk, Uskoković, Dragan, "Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones" in Journal of Materials Science: Materials in Medicine (2013):343-354,
https://doi.org/10.1007/s10856-012-4793-1 . .
82
62
88

Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones

Ignjatović, Nenad L.; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran S.; Uskoković, Vuk; Uskoković, Dragan

(2013)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Ajduković, Zorica
AU  - Savić, Vojin
AU  - Najman, Stevo
AU  - Mihailović, Dragan
AU  - Vasiljević, Perica
AU  - Stojanović, Zoran S.
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7481
AB  - Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.
T2  - Journal of Materials Science: Materials in Medicine
T1  - Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones
SP  - 343
EP  - 354
DO  - 10.1007/s10856-012-4793-1
ER  - 
@article{
author = "Ignjatović, Nenad L. and Ajduković, Zorica and Savić, Vojin and Najman, Stevo and Mihailović, Dragan and Vasiljević, Perica and Stojanović, Zoran S. and Uskoković, Vuk and Uskoković, Dragan",
year = "2013",
abstract = "Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.",
journal = "Journal of Materials Science: Materials in Medicine",
title = "Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones",
pages = "343-354",
doi = "10.1007/s10856-012-4793-1"
}
Ignjatović, N. L., Ajduković, Z., Savić, V., Najman, S., Mihailović, D., Vasiljević, P., Stojanović, Z. S., Uskoković, V.,& Uskoković, D.. (2013). Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. in Journal of Materials Science: Materials in Medicine, 343-354.
https://doi.org/10.1007/s10856-012-4793-1
Ignjatović NL, Ajduković Z, Savić V, Najman S, Mihailović D, Vasiljević P, Stojanović ZS, Uskoković V, Uskoković D. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. in Journal of Materials Science: Materials in Medicine. 2013;:343-354.
doi:10.1007/s10856-012-4793-1 .
Ignjatović, Nenad L., Ajduković, Zorica, Savić, Vojin, Najman, Stevo, Mihailović, Dragan, Vasiljević, Perica, Stojanović, Zoran S., Uskoković, Vuk, Uskoković, Dragan, "Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones" in Journal of Materials Science: Materials in Medicine (2013):343-354,
https://doi.org/10.1007/s10856-012-4793-1 . .
82
62
88

Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol

Ignjatović, Nenad L.; Uskoković, Vuk; Ajduković, Zorica; Uskoković, Dragan

(Elsevier, 2013)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Uskoković, Vuk
AU  - Ajduković, Zorica
AU  - Uskoković, Dragan
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7411
AB  - Cholecalciferol, vitamin D3, plays an important role in bone metabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(d,l-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(d,l)-lactide-co-glycolide (HAp/D3/PLGA).Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems.
PB  - Elsevier
T2  - Materials Science and Engineering: C
T1  - Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol
SP  - 943
EP  - 950
DO  - 10.1016/j.msec.2012.11.026
ER  - 
@article{
author = "Ignjatović, Nenad L. and Uskoković, Vuk and Ajduković, Zorica and Uskoković, Dragan",
year = "2013",
abstract = "Cholecalciferol, vitamin D3, plays an important role in bone metabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(d,l-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(d,l)-lactide-co-glycolide (HAp/D3/PLGA).Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems.",
publisher = "Elsevier",
journal = "Materials Science and Engineering: C",
title = "Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol",
pages = "943-950",
doi = "10.1016/j.msec.2012.11.026"
}
Ignjatović, N. L., Uskoković, V., Ajduković, Z.,& Uskoković, D.. (2013). Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. in Materials Science and Engineering: C
Elsevier., 943-950.
https://doi.org/10.1016/j.msec.2012.11.026
Ignjatović NL, Uskoković V, Ajduković Z, Uskoković D. Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. in Materials Science and Engineering: C. 2013;:943-950.
doi:10.1016/j.msec.2012.11.026 .
Ignjatović, Nenad L., Uskoković, Vuk, Ajduković, Zorica, Uskoković, Dragan, "Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol" in Materials Science and Engineering: C (2013):943-950,
https://doi.org/10.1016/j.msec.2012.11.026 . .
56
40
59

Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol

Ignjatović, Nenad L.; Uskoković, Vuk; Ajduković, Zorica; Uskoković, Dragan

(2013)

TY  - JOUR
AU  - Ignjatović, Nenad L.
AU  - Uskoković, Vuk
AU  - Ajduković, Zorica
AU  - Uskoković, Dragan
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7571
AB  - Cholecalciferol, vitamin D3, plays an important role in bone metabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA).Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems.
T2  - Materials Science and Engineering: C
T1  - Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol
VL  - 33
IS  - 2
SP  - 943
EP  - 950
DO  - 10.1016/j.msec.2012.11.026
ER  - 
@article{
author = "Ignjatović, Nenad L. and Uskoković, Vuk and Ajduković, Zorica and Uskoković, Dragan",
year = "2013",
abstract = "Cholecalciferol, vitamin D3, plays an important role in bone metabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA).Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems.",
journal = "Materials Science and Engineering: C",
title = "Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol",
volume = "33",
number = "2",
pages = "943-950",
doi = "10.1016/j.msec.2012.11.026"
}
Ignjatović, N. L., Uskoković, V., Ajduković, Z.,& Uskoković, D.. (2013). Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. in Materials Science and Engineering: C, 33(2), 943-950.
https://doi.org/10.1016/j.msec.2012.11.026
Ignjatović NL, Uskoković V, Ajduković Z, Uskoković D. Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. in Materials Science and Engineering: C. 2013;33(2):943-950.
doi:10.1016/j.msec.2012.11.026 .
Ignjatović, Nenad L., Uskoković, Vuk, Ajduković, Zorica, Uskoković, Dragan, "Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol" in Materials Science and Engineering: C, 33, no. 2 (2013):943-950,
https://doi.org/10.1016/j.msec.2012.11.026 . .
56
40
59

A new, simple, green, and one-pot four-component synthesis of bare and poly(alpha,gamma,l-glutamic acid)-capped silver nanoparticles

Stevanović, Magdalena; Savanovic, Igor; Uskokovic, Vuk; Škapin, Srečo Davor; Bracko, Ines; Jovanović, Uroš D.; Uskoković, Dragan

(2012)

TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Savanovic, Igor
AU  - Uskokovic, Vuk
AU  - Škapin, Srečo Davor
AU  - Bracko, Ines
AU  - Jovanović, Uroš D.
AU  - Uskoković, Dragan
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4659
AB  - A simple and green chemical method has been developed to synthesize stable bare and capped silver nanoparticles based on the reduction of silver ions by glucose and capping by poly(alpha,gamma,l-glutamic acid) (PGA). The use of ammonia during synthesis was avoided. PGA has had a dual role in the synthesis and was used as a capping agent to make the silver nanoparticle more biocompatible and to protect the nanoparticles from agglomerating in the liquid medium. The synthesized PGA-capped silver nanoparticles in the size range 5-45 nm were stable over long periods of time, without signs of precipitation. Morphological examination has shown that the silver nanoparticles had a nearly spherical, multiply twinned structure. The effects of the reaction temperature and the reaction time during the synthesis were investigated too. The biocompatibility of the PGA-capped silver nanoparticles is discussed in terms of in vitro toxicity with human intestinal Caco-2 cells. The samples were characterized by UV-Visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurements.
T2  - Colloid and Polymer Science
T1  - A new, simple, green, and one-pot four-component synthesis of bare and poly(alpha,gamma,l-glutamic acid)-capped silver nanoparticles
VL  - 290
IS  - 3
SP  - 221
EP  - 231
DO  - 10.1007/s00396-011-2540-7
ER  - 
@article{
author = "Stevanović, Magdalena and Savanovic, Igor and Uskokovic, Vuk and Škapin, Srečo Davor and Bracko, Ines and Jovanović, Uroš D. and Uskoković, Dragan",
year = "2012",
abstract = "A simple and green chemical method has been developed to synthesize stable bare and capped silver nanoparticles based on the reduction of silver ions by glucose and capping by poly(alpha,gamma,l-glutamic acid) (PGA). The use of ammonia during synthesis was avoided. PGA has had a dual role in the synthesis and was used as a capping agent to make the silver nanoparticle more biocompatible and to protect the nanoparticles from agglomerating in the liquid medium. The synthesized PGA-capped silver nanoparticles in the size range 5-45 nm were stable over long periods of time, without signs of precipitation. Morphological examination has shown that the silver nanoparticles had a nearly spherical, multiply twinned structure. The effects of the reaction temperature and the reaction time during the synthesis were investigated too. The biocompatibility of the PGA-capped silver nanoparticles is discussed in terms of in vitro toxicity with human intestinal Caco-2 cells. The samples were characterized by UV-Visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurements.",
journal = "Colloid and Polymer Science",
title = "A new, simple, green, and one-pot four-component synthesis of bare and poly(alpha,gamma,l-glutamic acid)-capped silver nanoparticles",
volume = "290",
number = "3",
pages = "221-231",
doi = "10.1007/s00396-011-2540-7"
}
Stevanović, M., Savanovic, I., Uskokovic, V., Škapin, S. D., Bracko, I., Jovanović, U. D.,& Uskoković, D.. (2012). A new, simple, green, and one-pot four-component synthesis of bare and poly(alpha,gamma,l-glutamic acid)-capped silver nanoparticles. in Colloid and Polymer Science, 290(3), 221-231.
https://doi.org/10.1007/s00396-011-2540-7
Stevanović M, Savanovic I, Uskokovic V, Škapin SD, Bracko I, Jovanović UD, Uskoković D. A new, simple, green, and one-pot four-component synthesis of bare and poly(alpha,gamma,l-glutamic acid)-capped silver nanoparticles. in Colloid and Polymer Science. 2012;290(3):221-231.
doi:10.1007/s00396-011-2540-7 .
Stevanović, Magdalena, Savanovic, Igor, Uskokovic, Vuk, Škapin, Srečo Davor, Bracko, Ines, Jovanović, Uroš D., Uskoković, Dragan, "A new, simple, green, and one-pot four-component synthesis of bare and poly(alpha,gamma,l-glutamic acid)-capped silver nanoparticles" in Colloid and Polymer Science, 290, no. 3 (2012):221-231,
https://doi.org/10.1007/s00396-011-2540-7 . .
32
29
36

Multifunctional nano scale drug delivery particles based on vitamin D3-loaded hydroxyapatite in bone tissue engineering

Ignjatović, Nenad L.; Ajduković, Zorica; Uskoković, Vuk; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2012)

TY  - CONF
AU  - Ignjatović, Nenad L.
AU  - Ajduković, Zorica
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/434
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7436
AB  - Specific group of controlled drug delivery systems in bone tissue engineering are multifunctional nanoparticle systems (MNPs) based on hydroxyapatite coated with drug loadedbioresorbable polymer. This study illustrates the possibility for controlled synthesis of multifunctional nanoparticulate forms based on hydroxyapatite as a system for local delivery of vitamin D3 and secondary delivery of defect filler hydroxyapatite. The results were two type of nanoparticle powder of controlled shapes, sizes and properties: hydroxyapatite nano particles as vitamin D3 carriers (HAp/D3) and vitamin D3-loaded hydroxyapatite coated with poly-D,Llactide-co-glycolide (HAp/D3/PLGA) with particle sizes of d50=68 nm and d50=71 nm, respectively. Simultaneously, biocompatibility of the materials was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. Biocompatibility tests carried out on cell cultures have shown intact monolayers of epithelial cells in contact with both materials and no negative effects on the cell viability. The aim of this work was application in living/human systems, and it has been tested in vivo; artificially made bone defects of a mandible damaged by osteoporosis have been reconstructed with both types of materials. The best results were achieved 24 weeks after implantation of vitamin D3-loaded hydroxyapatite coated with poly-D,L-lactide-co-glycolide. Accelerated angiogenesis, vascularization, osteogenesis and bone structure differentiation has been achieved in the presence of specific islet-like forms of ossification centers.
PB  - Belgrade : Materials Research Society of Serbia
C3  - The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts
T1  - Multifunctional nano scale drug delivery particles based on vitamin D3-loaded hydroxyapatite in bone tissue engineering
SP  - 32
EP  - 32
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7436
ER  - 
@conference{
author = "Ignjatović, Nenad L. and Ajduković, Zorica and Uskoković, Vuk and Uskoković, Dragan",
year = "2012",
abstract = "Specific group of controlled drug delivery systems in bone tissue engineering are multifunctional nanoparticle systems (MNPs) based on hydroxyapatite coated with drug loadedbioresorbable polymer. This study illustrates the possibility for controlled synthesis of multifunctional nanoparticulate forms based on hydroxyapatite as a system for local delivery of vitamin D3 and secondary delivery of defect filler hydroxyapatite. The results were two type of nanoparticle powder of controlled shapes, sizes and properties: hydroxyapatite nano particles as vitamin D3 carriers (HAp/D3) and vitamin D3-loaded hydroxyapatite coated with poly-D,Llactide-co-glycolide (HAp/D3/PLGA) with particle sizes of d50=68 nm and d50=71 nm, respectively. Simultaneously, biocompatibility of the materials was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. Biocompatibility tests carried out on cell cultures have shown intact monolayers of epithelial cells in contact with both materials and no negative effects on the cell viability. The aim of this work was application in living/human systems, and it has been tested in vivo; artificially made bone defects of a mandible damaged by osteoporosis have been reconstructed with both types of materials. The best results were achieved 24 weeks after implantation of vitamin D3-loaded hydroxyapatite coated with poly-D,L-lactide-co-glycolide. Accelerated angiogenesis, vascularization, osteogenesis and bone structure differentiation has been achieved in the presence of specific islet-like forms of ossification centers.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts",
title = "Multifunctional nano scale drug delivery particles based on vitamin D3-loaded hydroxyapatite in bone tissue engineering",
pages = "32-32",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7436"
}
Ignjatović, N. L., Ajduković, Z., Uskoković, V.,& Uskoković, D.. (2012). Multifunctional nano scale drug delivery particles based on vitamin D3-loaded hydroxyapatite in bone tissue engineering. in The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts
Belgrade : Materials Research Society of Serbia., 32-32.
https://hdl.handle.net/21.15107/rcub_vinar_7436
Ignjatović NL, Ajduković Z, Uskoković V, Uskoković D. Multifunctional nano scale drug delivery particles based on vitamin D3-loaded hydroxyapatite in bone tissue engineering. in The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts. 2012;:32-32.
https://hdl.handle.net/21.15107/rcub_vinar_7436 .
Ignjatović, Nenad L., Ajduković, Zorica, Uskoković, Vuk, Uskoković, Dragan, "Multifunctional nano scale drug delivery particles based on vitamin D3-loaded hydroxyapatite in bone tissue engineering" in The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts (2012):32-32,
https://hdl.handle.net/21.15107/rcub_vinar_7436 .

Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery

Vukomanovic, Marija; Škapin, Srečo Davor; Jančar, Boštjan; Maksin, Tatjana N.; Ignjatović, Nenad L.; Uskokovic, Vuk; Uskoković, Dragan

(2011)

TY  - JOUR
AU  - Vukomanovic, Marija
AU  - Škapin, Srečo Davor
AU  - Jančar, Boštjan
AU  - Maksin, Tatjana N.
AU  - Ignjatović, Nenad L.
AU  - Uskokovic, Vuk
AU  - Uskoković, Dragan
PY  - 2011
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4188
AB  - Biodegradable poly(D,L-lactide-co-glycolide) (PLGA) and bioactive hydroxyapatite (HAP) are selected for the formation of a multifunctional system with the specific core-shell structure to be applied as a carrier of a drug. As a result, both components of PLGA/HAp core-shells are able to capture one part of the drug. Polymeric shells consisting of small nanospheres up to 20 nm in size act as a matrix in which one part of the drug is dispersed. In the same time, ceramic cores are formed of rod-like hydroxyapatite particles at the surface of which another part of the drug is adsorbed onto the interface between the polymer and the ceramics. The content of the loaded drug, as well as the selected solvent/non-solvent system, have a crucial influence on the resulting PLGA/HAp morphology and, finally, unimodal distribution of core-shells is obtained. The redistribution of the drug between the organic and inorganic parts of the material is expected to provide an interesting contribution to the kinetics of the drug release resulting in non-typical two-step drug release. (C) 2010 Elsevier B.V. All rights reserved.
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery
VL  - 82
IS  - 2
SP  - 404
EP  - 413
DO  - 10.1016/j.colsurfb.2010.09.011
ER  - 
@article{
author = "Vukomanovic, Marija and Škapin, Srečo Davor and Jančar, Boštjan and Maksin, Tatjana N. and Ignjatović, Nenad L. and Uskokovic, Vuk and Uskoković, Dragan",
year = "2011",
abstract = "Biodegradable poly(D,L-lactide-co-glycolide) (PLGA) and bioactive hydroxyapatite (HAP) are selected for the formation of a multifunctional system with the specific core-shell structure to be applied as a carrier of a drug. As a result, both components of PLGA/HAp core-shells are able to capture one part of the drug. Polymeric shells consisting of small nanospheres up to 20 nm in size act as a matrix in which one part of the drug is dispersed. In the same time, ceramic cores are formed of rod-like hydroxyapatite particles at the surface of which another part of the drug is adsorbed onto the interface between the polymer and the ceramics. The content of the loaded drug, as well as the selected solvent/non-solvent system, have a crucial influence on the resulting PLGA/HAp morphology and, finally, unimodal distribution of core-shells is obtained. The redistribution of the drug between the organic and inorganic parts of the material is expected to provide an interesting contribution to the kinetics of the drug release resulting in non-typical two-step drug release. (C) 2010 Elsevier B.V. All rights reserved.",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery",
volume = "82",
number = "2",
pages = "404-413",
doi = "10.1016/j.colsurfb.2010.09.011"
}
Vukomanovic, M., Škapin, S. D., Jančar, B., Maksin, T. N., Ignjatović, N. L., Uskokovic, V.,& Uskoković, D.. (2011). Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. in Colloids and Surfaces. B: Biointerfaces, 82(2), 404-413.
https://doi.org/10.1016/j.colsurfb.2010.09.011
Vukomanovic M, Škapin SD, Jančar B, Maksin TN, Ignjatović NL, Uskokovic V, Uskoković D. Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. in Colloids and Surfaces. B: Biointerfaces. 2011;82(2):404-413.
doi:10.1016/j.colsurfb.2010.09.011 .
Vukomanovic, Marija, Škapin, Srečo Davor, Jančar, Boštjan, Maksin, Tatjana N., Ignjatović, Nenad L., Uskokovic, Vuk, Uskoković, Dragan, "Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery" in Colloids and Surfaces. B: Biointerfaces, 82, no. 2 (2011):404-413,
https://doi.org/10.1016/j.colsurfb.2010.09.011 . .
6
29
25
31