Matović, Branko

Link to this page

Authority KeyName Variants
orcid::0000-0001-8022-1863
  • Matović, Branko (338)
Projects
Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Nanostrukturni neoksidni keramički i karbonski materijali i njihovi kompoziti Ministry of Education, Science and Technological Development of the Republic of Serbia
Physics of nanostructured oxide materials and strongly correlated systems Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: significance for the formation of metallic and non-metallic mineral deposits
Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden Nanostructured multifunctional materials and nanocomposites
Nanostrukturni čvrsti rastvori za primenu u elektronici i alternativnim izvorima energije Functional, Functionalized and Advanced Nanomaterials
Lithium-ion batteries and fuel cells - research and development Minerals of Serbia: composition, genesis, application and contribution to the environmental sustainability
Optoelectronics nanodimension systems - the rout towards applications Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing
Fizika niskodimenzionih i nanometarskih struktura i materijala Istraživanje savremenih betonskih kompozita na bazi domaćih sirovina, sa posebnim osvrtom na mogućnosti primene betona sa recikliranim agregatom u betonskim konstrukcijama
Development and characterization of novel biosorbent for natural and waste water treatment H2FC - Integrating European Infrastructure to support science and development of Hydrogen- and Fuel Cell Technologies towards European Strategy for Sustainable, Competitive and Secure Energy
Investigation of intermetallics and semiconductors and possible application in renewable energy sources Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions
Oxide-based environmentally-friendly porous materials for genotoxic substances removal Development of Methods of Monitoring and Removal of Biologically Actives Substances Aimed at Improving the Quality of the Environment
Directed synthesis, structure and properties of multifunctional materials Combinatorial libraries of heterogeneous catalysts, natural products, and their derivatives and analogues: the way to biologically active compounds
Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering The membranes as sites of interaction between the intracellular and apoplastic environments: studies of the bioenergetics and signaling using biophysical and biochemical techniques.
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Sinteza i osobine nanostrukturnih metalnih, intermetalnih i kompozitnih materijala
Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan [2-12-1-N1-29]

Author's Bibliography

The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets

Kostoglou, Nikolaos; Stock, Sebastian; Solomi, Angelos; Holzapfel, Damian M.; Hinder, Steven; Baker, Mark; Constantinides, Georgios; Ryzhkov, Vladislav; Maletaškić, Jelena; Matović, Branko; Schneider, Jochen M.; Rebholz, Claus; Mitterer, Christian

(2024)

TY  - JOUR
AU  - Kostoglou, Nikolaos
AU  - Stock, Sebastian
AU  - Solomi, Angelos
AU  - Holzapfel, Damian M.
AU  - Hinder, Steven
AU  - Baker, Mark
AU  - Constantinides, Georgios
AU  - Ryzhkov, Vladislav
AU  - Maletaškić, Jelena
AU  - Matović, Branko
AU  - Schneider, Jochen M.
AU  - Rebholz, Claus
AU  - Mitterer, Christian
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13135
AB  - This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in hightemperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fouriertransform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 ◦C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermooxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.
T2  - Nanomaterials
T1  - The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets
VL  - 14
IS  - 7
SP  - 601
DO  - 10.3390/nano14070601
ER  - 
@article{
author = "Kostoglou, Nikolaos and Stock, Sebastian and Solomi, Angelos and Holzapfel, Damian M. and Hinder, Steven and Baker, Mark and Constantinides, Georgios and Ryzhkov, Vladislav and Maletaškić, Jelena and Matović, Branko and Schneider, Jochen M. and Rebholz, Claus and Mitterer, Christian",
year = "2024",
abstract = "This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in hightemperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fouriertransform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 ◦C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermooxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.",
journal = "Nanomaterials",
title = "The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets",
volume = "14",
number = "7",
pages = "601",
doi = "10.3390/nano14070601"
}
Kostoglou, N., Stock, S., Solomi, A., Holzapfel, D. M., Hinder, S., Baker, M., Constantinides, G., Ryzhkov, V., Maletaškić, J., Matović, B., Schneider, J. M., Rebholz, C.,& Mitterer, C.. (2024). The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. in Nanomaterials, 14(7), 601.
https://doi.org/10.3390/nano14070601
Kostoglou N, Stock S, Solomi A, Holzapfel DM, Hinder S, Baker M, Constantinides G, Ryzhkov V, Maletaškić J, Matović B, Schneider JM, Rebholz C, Mitterer C. The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets. in Nanomaterials. 2024;14(7):601.
doi:10.3390/nano14070601 .
Kostoglou, Nikolaos, Stock, Sebastian, Solomi, Angelos, Holzapfel, Damian M., Hinder, Steven, Baker, Mark, Constantinides, Georgios, Ryzhkov, Vladislav, Maletaškić, Jelena, Matović, Branko, Schneider, Jochen M., Rebholz, Claus, Mitterer, Christian, "The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets" in Nanomaterials, 14, no. 7 (2024):601,
https://doi.org/10.3390/nano14070601 . .

Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties

Zagorac, Jelena; Schön, Johann Christian; Matović, Branko; Butulija, Svetlana; Zagorac, Dejan

(2024)

TY  - JOUR
AU  - Zagorac, Jelena
AU  - Schön, Johann Christian
AU  - Matović, Branko
AU  - Butulija, Svetlana
AU  - Zagorac, Dejan
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13134
AB  - Hafnium carbide (HfC) is a refractory compound known for its exceptional mechanical, thermal, and electrical properties. This compound has gained significant attention in materials science and engineering due to its high melting point, extreme hardness, and excellent thermal stability. This study presents crystal structure prediction via energy landscape explorations of pristine hafnium carbide supplemented by data mining. Apart from the well-known equilibrium rock salt phase, we predict eight new polymorphs of HfC. The predicted HfC phases appear in the energy landscape with known structure types such as the WC type, NiAs type, 5-5 type, sphalerite (ZnS) type, TlI type, and CsCl type; in addition, we predict two new structure types denoted as ortho_HfC and HfC_polytype, respectively. Moreover, we have investigated the structural characteristics and mechanical properties of hafnium carbide at the DFT level of computation, which opens diverse applications in various technological domains.
T2  - Crystals
T1  - Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties
VL  - 14
IS  - 4
SP  - 340
DO  - 10.3390/cryst14040340
ER  - 
@article{
author = "Zagorac, Jelena and Schön, Johann Christian and Matović, Branko and Butulija, Svetlana and Zagorac, Dejan",
year = "2024",
abstract = "Hafnium carbide (HfC) is a refractory compound known for its exceptional mechanical, thermal, and electrical properties. This compound has gained significant attention in materials science and engineering due to its high melting point, extreme hardness, and excellent thermal stability. This study presents crystal structure prediction via energy landscape explorations of pristine hafnium carbide supplemented by data mining. Apart from the well-known equilibrium rock salt phase, we predict eight new polymorphs of HfC. The predicted HfC phases appear in the energy landscape with known structure types such as the WC type, NiAs type, 5-5 type, sphalerite (ZnS) type, TlI type, and CsCl type; in addition, we predict two new structure types denoted as ortho_HfC and HfC_polytype, respectively. Moreover, we have investigated the structural characteristics and mechanical properties of hafnium carbide at the DFT level of computation, which opens diverse applications in various technological domains.",
journal = "Crystals",
title = "Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties",
volume = "14",
number = "4",
pages = "340",
doi = "10.3390/cryst14040340"
}
Zagorac, J., Schön, J. C., Matović, B., Butulija, S.,& Zagorac, D.. (2024). Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties. in Crystals, 14(4), 340.
https://doi.org/10.3390/cryst14040340
Zagorac J, Schön JC, Matović B, Butulija S, Zagorac D. Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties. in Crystals. 2024;14(4):340.
doi:10.3390/cryst14040340 .
Zagorac, Jelena, Schön, Johann Christian, Matović, Branko, Butulija, Svetlana, Zagorac, Dejan, "Hafnium Carbide: Prediction of Crystalline Structures and Investigation of Mechanical Properties" in Crystals, 14, no. 4 (2024):340,
https://doi.org/10.3390/cryst14040340 . .

Basalt-based glass-ceramic composites

Luković, Aleksa; Pavkov, Vladimir; Matović, Branko; Nidžović, Emilija; Prekajski-Đorđević, Marija; Maletaškić, Jelena

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Luković, Aleksa
AU  - Pavkov, Vladimir
AU  - Matović, Branko
AU  - Nidžović, Emilija
AU  - Prekajski-Đorđević, Marija
AU  - Maletaškić, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11626
AB  - Two series of glass-ceramic composites (basalt/mine tailings, basalt/basalt fibers) as well as one pure glass-ceramic were prepared from basalt rocks located in the SE part of Serbia (Lukovska Banja). Both composites contained 85, 90 and 95 wt.% basalt glass respectively. The basalt glass was obtained from initial melting of basalt at 1300 °C. In the present study, the crystallization process of basalt glass contained in the glass-ceramic composite, achieved by thermal treatment, was observed, and analyzed. The thermal treatment was done at 900 °C, 950 °C, 1000 °C and 1050 °C respectively, with the retention times of 1, 3, 6, 8 and 16 hours. It was found that the addition of mine tailings and basalt fibers caused a change in the density and microstructure. The study also showed that the best mechanical and structural characteristics of the examined glassceramics were attained at the temperature of 1050 °C, with the retention time of 1 hour. Additionally, structural and optical characteristics of the glass-ceramics were assessed.
PB  - Belgrade : Materials Research Society of Serbia
C3  - YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
T1  - Basalt-based glass-ceramic composites
SP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11626
ER  - 
@conference{
author = "Luković, Aleksa and Pavkov, Vladimir and Matović, Branko and Nidžović, Emilija and Prekajski-Đorđević, Marija and Maletaškić, Jelena",
year = "2023",
abstract = "Two series of glass-ceramic composites (basalt/mine tailings, basalt/basalt fibers) as well as one pure glass-ceramic were prepared from basalt rocks located in the SE part of Serbia (Lukovska Banja). Both composites contained 85, 90 and 95 wt.% basalt glass respectively. The basalt glass was obtained from initial melting of basalt at 1300 °C. In the present study, the crystallization process of basalt glass contained in the glass-ceramic composite, achieved by thermal treatment, was observed, and analyzed. The thermal treatment was done at 900 °C, 950 °C, 1000 °C and 1050 °C respectively, with the retention times of 1, 3, 6, 8 and 16 hours. It was found that the addition of mine tailings and basalt fibers caused a change in the density and microstructure. The study also showed that the best mechanical and structural characteristics of the examined glassceramics were attained at the temperature of 1050 °C, with the retention time of 1 hour. Additionally, structural and optical characteristics of the glass-ceramics were assessed.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro",
title = "Basalt-based glass-ceramic composites",
pages = "77",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11626"
}
Luković, A., Pavkov, V., Matović, B., Nidžović, E., Prekajski-Đorđević, M.,& Maletaškić, J.. (2023). Basalt-based glass-ceramic composites. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
Belgrade : Materials Research Society of Serbia., 77.
https://hdl.handle.net/21.15107/rcub_vinar_11626
Luković A, Pavkov V, Matović B, Nidžović E, Prekajski-Đorđević M, Maletaškić J. Basalt-based glass-ceramic composites. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro. 2023;:77.
https://hdl.handle.net/21.15107/rcub_vinar_11626 .
Luković, Aleksa, Pavkov, Vladimir, Matović, Branko, Nidžović, Emilija, Prekajski-Đorđević, Marija, Maletaškić, Jelena, "Basalt-based glass-ceramic composites" in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro (2023):77,
https://hdl.handle.net/21.15107/rcub_vinar_11626 .

SPS sintering of B4C-SiC composites

Matović, Branko

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11655
AB  - Boron carbide (B4C) - silicon carbide (SiC) ceramic composites were obtained through the densification of B4C and -SiC powders with different ratios using the spark plasma sintering (SPS) technique. The thermal treatment was carried out for 5 min in Ar atmosphere in a temperature range from 1850 to 2000 C under a pressure of 70 MPa. The effect of starting powders ratio on the sintering behavior, relative density, microstructural development, and mechanical properties of the obtained composites was investigated. The obtained results showed that only starting compounds, i.e. B4C and SiC phase, are observed in the sintered ceramic materials. SEM micrographs revealed that the sintered composites are composed of densely compacted B4C and SiC grains with a uniform distribution of both phases. The maximal relative density value (100 %) was achieved for the sample densified at 2000 C with 25 % of B4C and 75 % of SiC. The microhardness of obtained composites ranges from 33 GPa to 43 GPa, depending on the constituents' content and the densification temperature. The maximal microhardness value was achieved for the composite densified at 2000 C which contains a maximal amount of B4C (75 %). In order to examine the behavior of composites in extreme conditions, the surface changes induced through the interaction of obtained composite materials and CO2 pulse laser were also studied. During the irradiation, the laser pulse duration was ~2 µs with average pulse energy of 120 mJ. The results of this study show that the SPS technique can be a very effective densification method for the obtainment of additive-free B4C - -SiC ceramic composites with promising properties for application in radiation at extremes.
PB  - Belgrade : Materials Research Society of Serbia
C3  - YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
T1  - SPS sintering of B4C-SiC composites
SP  - 124
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11655
ER  - 
@conference{
author = "Matović, Branko",
year = "2023",
abstract = "Boron carbide (B4C) - silicon carbide (SiC) ceramic composites were obtained through the densification of B4C and -SiC powders with different ratios using the spark plasma sintering (SPS) technique. The thermal treatment was carried out for 5 min in Ar atmosphere in a temperature range from 1850 to 2000 C under a pressure of 70 MPa. The effect of starting powders ratio on the sintering behavior, relative density, microstructural development, and mechanical properties of the obtained composites was investigated. The obtained results showed that only starting compounds, i.e. B4C and SiC phase, are observed in the sintered ceramic materials. SEM micrographs revealed that the sintered composites are composed of densely compacted B4C and SiC grains with a uniform distribution of both phases. The maximal relative density value (100 %) was achieved for the sample densified at 2000 C with 25 % of B4C and 75 % of SiC. The microhardness of obtained composites ranges from 33 GPa to 43 GPa, depending on the constituents' content and the densification temperature. The maximal microhardness value was achieved for the composite densified at 2000 C which contains a maximal amount of B4C (75 %). In order to examine the behavior of composites in extreme conditions, the surface changes induced through the interaction of obtained composite materials and CO2 pulse laser were also studied. During the irradiation, the laser pulse duration was ~2 µs with average pulse energy of 120 mJ. The results of this study show that the SPS technique can be a very effective densification method for the obtainment of additive-free B4C - -SiC ceramic composites with promising properties for application in radiation at extremes.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro",
title = "SPS sintering of B4C-SiC composites",
pages = "124",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11655"
}
Matović, B.. (2023). SPS sintering of B4C-SiC composites. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
Belgrade : Materials Research Society of Serbia., 124.
https://hdl.handle.net/21.15107/rcub_vinar_11655
Matović B. SPS sintering of B4C-SiC composites. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro. 2023;:124.
https://hdl.handle.net/21.15107/rcub_vinar_11655 .
Matović, Branko, "SPS sintering of B4C-SiC composites" in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro (2023):124,
https://hdl.handle.net/21.15107/rcub_vinar_11655 .

Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces

Jovanović, Dušica; Schön, Johann Christian; Zagorac, Dejan; Zarubica, Aleksandra; Matović, Branko; Zagorac, Jelena

(2023)

TY  - JOUR
AU  - Jovanović, Dušica
AU  - Schön, Johann Christian
AU  - Zagorac, Dejan
AU  - Zarubica, Aleksandra
AU  - Matović, Branko
AU  - Zagorac, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11724
AB  - Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes.
T2  - Nanomaterials
T1  - Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces
VL  - 13
IS  - 19
SP  - 2688
DO  - 10.3390/nano13192688
ER  - 
@article{
author = "Jovanović, Dušica and Schön, Johann Christian and Zagorac, Dejan and Zarubica, Aleksandra and Matović, Branko and Zagorac, Jelena",
year = "2023",
abstract = "Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes.",
journal = "Nanomaterials",
title = "Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces",
volume = "13",
number = "19",
pages = "2688",
doi = "10.3390/nano13192688"
}
Jovanović, D., Schön, J. C., Zagorac, D., Zarubica, A., Matović, B.,& Zagorac, J.. (2023). Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces. in Nanomaterials, 13(19), 2688.
https://doi.org/10.3390/nano13192688
Jovanović D, Schön JC, Zagorac D, Zarubica A, Matović B, Zagorac J. Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces. in Nanomaterials. 2023;13(19):2688.
doi:10.3390/nano13192688 .
Jovanović, Dušica, Schön, Johann Christian, Zagorac, Dejan, Zarubica, Aleksandra, Matović, Branko, Zagorac, Jelena, "Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces" in Nanomaterials, 13, no. 19 (2023):2688,
https://doi.org/10.3390/nano13192688 . .

Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions

Škundrić, Tamara; Matović, Branko; Zarubica, Aleksandra; Chudoba, Dorota; Zagorac, Dejan

(2023)

TY  - JOUR
AU  - Škundrić, Tamara
AU  - Matović, Branko
AU  - Zarubica, Aleksandra
AU  - Chudoba, Dorota
AU  - Zagorac, Dejan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11733
AB  - Calcium carbonate and gypsum are very common and widespread minerals widely used in many fields. However, in order to investigate their behavior under extreme conditions of pressure and temperature, a data-mining ab initio approach has been performed. To analyze structural stability and explore different CaCO3 and gypsum phases in these extreme conditions, the most interesting modifications have been submitted to the DFT calculations. Local optimizations have been performed using the CRYSTAL17 solid-state-quantum-chemical program. Total energies of different gypsum phases are presented and it seems that among the calcite phases, the Calcite I (CaCO3 I) phase has the lowest calculated total energy using the three different functionals in agreement with experimental data. Each of the modified phases of these minerals has been discussed and presented in this study. Due to the very wide industrial and technological application of these natural minerals, further investigation could be of great importance, especially their performances in extreme environments.
T2  - Journal of Innovative Materials in Extreme Conditions
T1  - Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions
VL  - 4
IS  - 1
SP  - 38
EP  - 51
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11733
ER  - 
@article{
author = "Škundrić, Tamara and Matović, Branko and Zarubica, Aleksandra and Chudoba, Dorota and Zagorac, Dejan",
year = "2023",
abstract = "Calcium carbonate and gypsum are very common and widespread minerals widely used in many fields. However, in order to investigate their behavior under extreme conditions of pressure and temperature, a data-mining ab initio approach has been performed. To analyze structural stability and explore different CaCO3 and gypsum phases in these extreme conditions, the most interesting modifications have been submitted to the DFT calculations. Local optimizations have been performed using the CRYSTAL17 solid-state-quantum-chemical program. Total energies of different gypsum phases are presented and it seems that among the calcite phases, the Calcite I (CaCO3 I) phase has the lowest calculated total energy using the three different functionals in agreement with experimental data. Each of the modified phases of these minerals has been discussed and presented in this study. Due to the very wide industrial and technological application of these natural minerals, further investigation could be of great importance, especially their performances in extreme environments.",
journal = "Journal of Innovative Materials in Extreme Conditions",
title = "Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions",
volume = "4",
number = "1",
pages = "38-51",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11733"
}
Škundrić, T., Matović, B., Zarubica, A., Chudoba, D.,& Zagorac, D.. (2023). Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions. in Journal of Innovative Materials in Extreme Conditions, 4(1), 38-51.
https://hdl.handle.net/21.15107/rcub_vinar_11733
Škundrić T, Matović B, Zarubica A, Chudoba D, Zagorac D. Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions. in Journal of Innovative Materials in Extreme Conditions. 2023;4(1):38-51.
https://hdl.handle.net/21.15107/rcub_vinar_11733 .
Škundrić, Tamara, Matović, Branko, Zarubica, Aleksandra, Chudoba, Dorota, Zagorac, Dejan, "Data-Mining Ab Initio Study of Gypsum and CaCO3 Modifications at Standard and Extreme Conditions" in Journal of Innovative Materials in Extreme Conditions, 4, no. 1 (2023):38-51,
https://hdl.handle.net/21.15107/rcub_vinar_11733 .

High-entropy spinel oxides: fundamentals, synthesis and characterization

Nidžović, Emilija; Luković, Aleksa; Maletaškić, Jelena; Matović, Branko; Dapčević, Aleksandra; Prekajski-Đorđević, Marija D.

(Novi Sad : Faculty of Technology, University of Novi Sad, 2023)

TY  - CONF
AU  - Nidžović, Emilija
AU  - Luković, Aleksa
AU  - Maletaškić, Jelena
AU  - Matović, Branko
AU  - Dapčević, Aleksandra
AU  - Prekajski-Đorđević, Marija D.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11741
AB  - High-entropy spinel oxides (HESOs) are oxides with 5 or more cations with the general formula AB2O4 and the spinel ( Fd 3m ) structure. Due to their unique structure and properties, HESOs have shown great potential in various technological applications, i.e. they can be used as catalysts, adsorbents and photocatalysts. Since the first successful synthesis in 2018, researchers have been experimenting with different precursors and synthesis methods. However, further research is still needed in order to fully understand their capabilities and exploit their properties. The aim of this research is to synthesize novel HESOs using the self-propagating room temperature (SPRT) method, which is time and cost-effective and has not been utilized so far. Our results indicate that chlorides are not good precursors, since the formation of spinel structure has not been achieved. On the other hand, the use of nitrates has successfully led to a primary spinel ( Fd 3m ) phase. Still, certain issues persist, as secondary phases are commonly formed, especially in the presence of Mg or Cu. A potential solution that could ensure the formation of a single phase is the use of quenching from high temperatures (1000 °C), instead of gradual cooling.
PB  - Novi Sad : Faculty of Technology, University of Novi Sad
C3  - CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad
T1  - High-entropy spinel oxides: fundamentals, synthesis and characterization
SP  - 39
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11741
ER  - 
@conference{
author = "Nidžović, Emilija and Luković, Aleksa and Maletaškić, Jelena and Matović, Branko and Dapčević, Aleksandra and Prekajski-Đorđević, Marija D.",
year = "2023",
abstract = "High-entropy spinel oxides (HESOs) are oxides with 5 or more cations with the general formula AB2O4 and the spinel ( Fd 3m ) structure. Due to their unique structure and properties, HESOs have shown great potential in various technological applications, i.e. they can be used as catalysts, adsorbents and photocatalysts. Since the first successful synthesis in 2018, researchers have been experimenting with different precursors and synthesis methods. However, further research is still needed in order to fully understand their capabilities and exploit their properties. The aim of this research is to synthesize novel HESOs using the self-propagating room temperature (SPRT) method, which is time and cost-effective and has not been utilized so far. Our results indicate that chlorides are not good precursors, since the formation of spinel structure has not been achieved. On the other hand, the use of nitrates has successfully led to a primary spinel ( Fd 3m ) phase. Still, certain issues persist, as secondary phases are commonly formed, especially in the presence of Mg or Cu. A potential solution that could ensure the formation of a single phase is the use of quenching from high temperatures (1000 °C), instead of gradual cooling.",
publisher = "Novi Sad : Faculty of Technology, University of Novi Sad",
journal = "CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad",
title = "High-entropy spinel oxides: fundamentals, synthesis and characterization",
pages = "39-39",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11741"
}
Nidžović, E., Luković, A., Maletaškić, J., Matović, B., Dapčević, A.,& Prekajski-Đorđević, M. D.. (2023). High-entropy spinel oxides: fundamentals, synthesis and characterization. in CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad
Novi Sad : Faculty of Technology, University of Novi Sad., 39-39.
https://hdl.handle.net/21.15107/rcub_vinar_11741
Nidžović E, Luković A, Maletaškić J, Matović B, Dapčević A, Prekajski-Đorđević MD. High-entropy spinel oxides: fundamentals, synthesis and characterization. in CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad. 2023;:39-39.
https://hdl.handle.net/21.15107/rcub_vinar_11741 .
Nidžović, Emilija, Luković, Aleksa, Maletaškić, Jelena, Matović, Branko, Dapčević, Aleksandra, Prekajski-Đorđević, Marija D., "High-entropy spinel oxides: fundamentals, synthesis and characterization" in CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, programme and book of abstracts; Oct 11-14, Novi Sad (2023):39-39,
https://hdl.handle.net/21.15107/rcub_vinar_11741 .

Time resolved study of temperature sensing using Gd 2 O 3 :Er,Yb: deep learning approach

Rabasović, Maja S; Savić-Šević, Svetlana N.; Križan, Janez; Matović, Branko; Nikolić, Marko; Šević, Dragutin

(2023)

TY  - JOUR
AU  - Rabasović, Maja S
AU  - Savić-Šević, Svetlana N.
AU  - Križan, Janez
AU  - Matović, Branko
AU  - Nikolić, Marko
AU  - Šević, Dragutin
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11984
AB  - This paper examines the potential applications of machine learning algorithms in the analysis of optical spectra from Gd2O3:Er,Yb thermophosphor. The material was synthesized using the solution combustion method. For data acquisition, we employed pulsed laser diode excitation at 980 nm and utilized a streak camera with a spectrograph to obtain time-resolved spectral data of the optical emission from Gd2O3:Er,Yb. To ensure data consistency and facilitate visualization, we employed principal component analysis and Uniform Manifold Approximation and Projection clustering. Our findings demonstrate that, instead of the conventional approach of identifying spectral peaks and calculating intensity ratios, it is feasible to train computer software to recognize time-resolved spectra associated with different temperatures of the thermophosphor. Through our analysis, we have successfully devised a technique for remote temperature estimation by leveraging deep learning artificial neural networks.
T2  - Physica Scripta
T1  - Time resolved study of temperature sensing using Gd                    2                    O                    3                    :Er,Yb: deep learning approach
VL  - 98
IS  - 11
SP  - 116003
DO  - 10.1088/1402-4896/ad01ed
ER  - 
@article{
author = "Rabasović, Maja S and Savić-Šević, Svetlana N. and Križan, Janez and Matović, Branko and Nikolić, Marko and Šević, Dragutin",
year = "2023",
abstract = "This paper examines the potential applications of machine learning algorithms in the analysis of optical spectra from Gd2O3:Er,Yb thermophosphor. The material was synthesized using the solution combustion method. For data acquisition, we employed pulsed laser diode excitation at 980 nm and utilized a streak camera with a spectrograph to obtain time-resolved spectral data of the optical emission from Gd2O3:Er,Yb. To ensure data consistency and facilitate visualization, we employed principal component analysis and Uniform Manifold Approximation and Projection clustering. Our findings demonstrate that, instead of the conventional approach of identifying spectral peaks and calculating intensity ratios, it is feasible to train computer software to recognize time-resolved spectra associated with different temperatures of the thermophosphor. Through our analysis, we have successfully devised a technique for remote temperature estimation by leveraging deep learning artificial neural networks.",
journal = "Physica Scripta",
title = "Time resolved study of temperature sensing using Gd                    2                    O                    3                    :Er,Yb: deep learning approach",
volume = "98",
number = "11",
pages = "116003",
doi = "10.1088/1402-4896/ad01ed"
}
Rabasović, M. S., Savić-Šević, S. N., Križan, J., Matović, B., Nikolić, M.,& Šević, D.. (2023). Time resolved study of temperature sensing using Gd                    2                    O                    3                    :Er,Yb: deep learning approach. in Physica Scripta, 98(11), 116003.
https://doi.org/10.1088/1402-4896/ad01ed
Rabasović MS, Savić-Šević SN, Križan J, Matović B, Nikolić M, Šević D. Time resolved study of temperature sensing using Gd                    2                    O                    3                    :Er,Yb: deep learning approach. in Physica Scripta. 2023;98(11):116003.
doi:10.1088/1402-4896/ad01ed .
Rabasović, Maja S, Savić-Šević, Svetlana N., Križan, Janez, Matović, Branko, Nikolić, Marko, Šević, Dragutin, "Time resolved study of temperature sensing using Gd                    2                    O                    3                    :Er,Yb: deep learning approach" in Physica Scripta, 98, no. 11 (2023):116003,
https://doi.org/10.1088/1402-4896/ad01ed . .

Structure, Mechanical Properties, and High-Temperature Stability of ZrB2- and HfB2-Based Materials

Prikhna, T. O.; Lokatkina, A. S.; Barvitskyi, P. P.; Karpets, M. V.; Ponomaryov, S. S.; Bondar, A. A.; Büchner, B.; Werner, J.; Kluge, R.; Moshchil, V. E.; Borymskyi, O. I.; Devin, L. M.; Rychev, S. V.; Haber, R.; Yasar, Zeynep Ayguzer; Matović, Branko; Rucki, M.; Prisyazhna, O. V.

(2023)

TY  - JOUR
AU  - Prikhna, T. O.
AU  - Lokatkina, A. S.
AU  - Barvitskyi, P. P.
AU  - Karpets, M. V.
AU  - Ponomaryov, S. S.
AU  - Bondar, A. A.
AU  - Büchner, B.
AU  - Werner, J.
AU  - Kluge, R.
AU  - Moshchil, V. E.
AU  - Borymskyi, O. I.
AU  - Devin, L. M.
AU  - Rychev, S. V.
AU  - Haber, R.
AU  - Yasar, Zeynep Ayguzer
AU  - Matović, Branko
AU  - Rucki, M.
AU  - Prisyazhna, O. V.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11985
AB  - The structure, mechanical characteristics, and high-temperature stability in vacuum and air of ZrB2 and HfB2-based materials sintered at a high quasi-hydrostatic pressure (4.1 GPa) under hot pressing (at a pressure of 30 MPa) with and without SiC and Si3N4 additives have been studied. It has been shown that short-term sintering (4 min) under high pressure conditions and at a comparatively low temperature (1800°C) essentially improves the mechanical properties of these materials as compared to the similar materials synthesized by the other method (hot pressing and spark-plasma sintering). In the case of sintering at a high pressure (4.1 GPa), the addition of 20 wt % SiC to ZrB2 and 30 wt % SiC to HfB2 leads to a decrease in the specific gravity of ZrB2 and HfB2 and increases their hardness by 17 and 46% and fracture toughness by 40 and 21%, respectively. When SiC is added, there occurs the formation of solid solutions through the mutual diffusion of C and Si into the ZrB2 or HfB2 matrix phases and the slight diffusion of Zr and Hf into SiC-enriched areas. The improvement of the mechanical properties of ZrB2 and HfB2 sintered at a high pressure without additives is explained by the formation of stronger bonds between the sintered material grains. The addition of SiC to ZrB2 slightly decreases the Young modulus, but increases the damping ability of the synthesized materials. The simultaneous addition of SiC and Si3N4 to ZrB2 leads to an increase in the hardness to a smaller extent, but results in a further increase in fracture toughness. The melting temperature in vacuum of sintered ZrB2 and HfB2 has proven to be much higher as compared to the materials with SiC additives. The composite material synthesized from a HfB2–30 wt % SiC mixture has a density ρ = 6.21 g/cm3 , a microhardness HV(9.8 N) = 38.1 ± 1.4 GPa, HV(49 N) = 27.7 ± 0.24 GPa, HV(98 N) = 26.3 ± 2.03 GPa, and a fracture toughness KІс(9.8 N) = 8.2 ± 0.2 MPa m0.5, KІс(49 N) = 6.8 ± 0.6 MPa m0.5, KІс(98 N) = 6.4 ± 0.11 MPa m0.5, which are much higher than the similar characteristics of HfB2 sintered under the same conditions, but without the additives.
T2  - Journal of Superhard Materials
T1  - Structure, Mechanical Properties, and High-Temperature Stability of ZrB2- and HfB2-Based Materials
VL  - 45
IS  - 5
SP  - 321
EP  - 335
DO  - 10.3103/S1063457623050076
ER  - 
@article{
author = "Prikhna, T. O. and Lokatkina, A. S. and Barvitskyi, P. P. and Karpets, M. V. and Ponomaryov, S. S. and Bondar, A. A. and Büchner, B. and Werner, J. and Kluge, R. and Moshchil, V. E. and Borymskyi, O. I. and Devin, L. M. and Rychev, S. V. and Haber, R. and Yasar, Zeynep Ayguzer and Matović, Branko and Rucki, M. and Prisyazhna, O. V.",
year = "2023",
abstract = "The structure, mechanical characteristics, and high-temperature stability in vacuum and air of ZrB2 and HfB2-based materials sintered at a high quasi-hydrostatic pressure (4.1 GPa) under hot pressing (at a pressure of 30 MPa) with and without SiC and Si3N4 additives have been studied. It has been shown that short-term sintering (4 min) under high pressure conditions and at a comparatively low temperature (1800°C) essentially improves the mechanical properties of these materials as compared to the similar materials synthesized by the other method (hot pressing and spark-plasma sintering). In the case of sintering at a high pressure (4.1 GPa), the addition of 20 wt % SiC to ZrB2 and 30 wt % SiC to HfB2 leads to a decrease in the specific gravity of ZrB2 and HfB2 and increases their hardness by 17 and 46% and fracture toughness by 40 and 21%, respectively. When SiC is added, there occurs the formation of solid solutions through the mutual diffusion of C and Si into the ZrB2 or HfB2 matrix phases and the slight diffusion of Zr and Hf into SiC-enriched areas. The improvement of the mechanical properties of ZrB2 and HfB2 sintered at a high pressure without additives is explained by the formation of stronger bonds between the sintered material grains. The addition of SiC to ZrB2 slightly decreases the Young modulus, but increases the damping ability of the synthesized materials. The simultaneous addition of SiC and Si3N4 to ZrB2 leads to an increase in the hardness to a smaller extent, but results in a further increase in fracture toughness. The melting temperature in vacuum of sintered ZrB2 and HfB2 has proven to be much higher as compared to the materials with SiC additives. The composite material synthesized from a HfB2–30 wt % SiC mixture has a density ρ = 6.21 g/cm3 , a microhardness HV(9.8 N) = 38.1 ± 1.4 GPa, HV(49 N) = 27.7 ± 0.24 GPa, HV(98 N) = 26.3 ± 2.03 GPa, and a fracture toughness KІс(9.8 N) = 8.2 ± 0.2 MPa m0.5, KІс(49 N) = 6.8 ± 0.6 MPa m0.5, KІс(98 N) = 6.4 ± 0.11 MPa m0.5, which are much higher than the similar characteristics of HfB2 sintered under the same conditions, but without the additives.",
journal = "Journal of Superhard Materials",
title = "Structure, Mechanical Properties, and High-Temperature Stability of ZrB2- and HfB2-Based Materials",
volume = "45",
number = "5",
pages = "321-335",
doi = "10.3103/S1063457623050076"
}
Prikhna, T. O., Lokatkina, A. S., Barvitskyi, P. P., Karpets, M. V., Ponomaryov, S. S., Bondar, A. A., Büchner, B., Werner, J., Kluge, R., Moshchil, V. E., Borymskyi, O. I., Devin, L. M., Rychev, S. V., Haber, R., Yasar, Z. A., Matović, B., Rucki, M.,& Prisyazhna, O. V.. (2023). Structure, Mechanical Properties, and High-Temperature Stability of ZrB2- and HfB2-Based Materials. in Journal of Superhard Materials, 45(5), 321-335.
https://doi.org/10.3103/S1063457623050076
Prikhna TO, Lokatkina AS, Barvitskyi PP, Karpets MV, Ponomaryov SS, Bondar AA, Büchner B, Werner J, Kluge R, Moshchil VE, Borymskyi OI, Devin LM, Rychev SV, Haber R, Yasar ZA, Matović B, Rucki M, Prisyazhna OV. Structure, Mechanical Properties, and High-Temperature Stability of ZrB2- and HfB2-Based Materials. in Journal of Superhard Materials. 2023;45(5):321-335.
doi:10.3103/S1063457623050076 .
Prikhna, T. O., Lokatkina, A. S., Barvitskyi, P. P., Karpets, M. V., Ponomaryov, S. S., Bondar, A. A., Büchner, B., Werner, J., Kluge, R., Moshchil, V. E., Borymskyi, O. I., Devin, L. M., Rychev, S. V., Haber, R., Yasar, Zeynep Ayguzer, Matović, Branko, Rucki, M., Prisyazhna, O. V., "Structure, Mechanical Properties, and High-Temperature Stability of ZrB2- and HfB2-Based Materials" in Journal of Superhard Materials, 45, no. 5 (2023):321-335,
https://doi.org/10.3103/S1063457623050076 . .

Controllable Synthesis of Doped Ceria Nanopowders by Cations With Different Valence State

Matović, Branko

(Leskovac : Faculty of Technology, University of Niš, 2023)

TY  - CONF
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12249
AB  - Great attention has been devoted to the development of new technologies for the synthesis of nanoparticles and nanostructured materials, which are profitable for industrial production and are environmentally safe. Such materials have new and specific physical properties and find application in almost all spheres of human life. When it comes to nanoparticle materials, there are significant changes in physical characteristics, compared to microcrystalline ones, which in some cases can differ to several orders of magnitude. These specific changes in properties of the nanomaterial are observed in the change of magnetic, mechanical and optical characteristics, phase relations, the conductivity, etc. In this presentation, self-propagating room temperature synthesis has been applied for controllable synthesis of nanostructured CeO2 powders with fluorite-type structure, as well as single Me-ceria solid solutions (Me: cations with different valence state; monovalent (Ag+), divalent (Sr2+, Fe2+, Mg2+ and Pb2+), trivalent (Bi3+) and tetravalent (Pr4+). The solid solubility of Me into ceria lattice was the topmost reported so far. Due to rapid change of its oxidation state and its ability to store and realize oxygen, different dopants enable the same compound to be used for different purposes: biomedicine, catalysis, nuclear waste immobilization, environmental protection, energy related application, pigments. All these applications will be practically shown and discussed individually. Powder properties such as, crystallite and particle size, its thermal stability, as well as lattice parameters have been studied. Crystal structure of fluorites, point defects, specific features and properties connected to it, this innovative method of nanopowders synthesis, and properties of ceria based materials will be discussed through: crystal structure and defect chemistry, synthesis of nanostructured solid solutions, hot consolidation of ceria nanopowders, some key properties of nanostructured ceria.
PB  - Leskovac : Faculty of Technology, University of Niš
C3  - 15th International symposium „Novel technologies and sustainable development" : Book of Abstracts
T1  - Controllable Synthesis of Doped Ceria Nanopowders by Cations With Different Valence State
SP  - 25
EP  - 25
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12249
ER  - 
@conference{
author = "Matović, Branko",
year = "2023",
abstract = "Great attention has been devoted to the development of new technologies for the synthesis of nanoparticles and nanostructured materials, which are profitable for industrial production and are environmentally safe. Such materials have new and specific physical properties and find application in almost all spheres of human life. When it comes to nanoparticle materials, there are significant changes in physical characteristics, compared to microcrystalline ones, which in some cases can differ to several orders of magnitude. These specific changes in properties of the nanomaterial are observed in the change of magnetic, mechanical and optical characteristics, phase relations, the conductivity, etc. In this presentation, self-propagating room temperature synthesis has been applied for controllable synthesis of nanostructured CeO2 powders with fluorite-type structure, as well as single Me-ceria solid solutions (Me: cations with different valence state; monovalent (Ag+), divalent (Sr2+, Fe2+, Mg2+ and Pb2+), trivalent (Bi3+) and tetravalent (Pr4+). The solid solubility of Me into ceria lattice was the topmost reported so far. Due to rapid change of its oxidation state and its ability to store and realize oxygen, different dopants enable the same compound to be used for different purposes: biomedicine, catalysis, nuclear waste immobilization, environmental protection, energy related application, pigments. All these applications will be practically shown and discussed individually. Powder properties such as, crystallite and particle size, its thermal stability, as well as lattice parameters have been studied. Crystal structure of fluorites, point defects, specific features and properties connected to it, this innovative method of nanopowders synthesis, and properties of ceria based materials will be discussed through: crystal structure and defect chemistry, synthesis of nanostructured solid solutions, hot consolidation of ceria nanopowders, some key properties of nanostructured ceria.",
publisher = "Leskovac : Faculty of Technology, University of Niš",
journal = "15th International symposium „Novel technologies and sustainable development" : Book of Abstracts",
title = "Controllable Synthesis of Doped Ceria Nanopowders by Cations With Different Valence State",
pages = "25-25",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12249"
}
Matović, B.. (2023). Controllable Synthesis of Doped Ceria Nanopowders by Cations With Different Valence State. in 15th International symposium „Novel technologies and sustainable development" : Book of Abstracts
Leskovac : Faculty of Technology, University of Niš., 25-25.
https://hdl.handle.net/21.15107/rcub_vinar_12249
Matović B. Controllable Synthesis of Doped Ceria Nanopowders by Cations With Different Valence State. in 15th International symposium „Novel technologies and sustainable development" : Book of Abstracts. 2023;:25-25.
https://hdl.handle.net/21.15107/rcub_vinar_12249 .
Matović, Branko, "Controllable Synthesis of Doped Ceria Nanopowders by Cations With Different Valence State" in 15th International symposium „Novel technologies and sustainable development" : Book of Abstracts (2023):25-25,
https://hdl.handle.net/21.15107/rcub_vinar_12249 .

Densification of additive-free B4C-SiC composites by spark plasma sintering

Matović, Branko; Tatarko, Peter; Maksimović, Vesna; Maletaškić, Jelena; Stoiljković, Milovan; Hanzel, Ondrej; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Tatarko, Peter
AU  - Maksimović, Vesna
AU  - Maletaškić, Jelena
AU  - Stoiljković, Milovan
AU  - Hanzel, Ondrej
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12284
AB  - The B4C-SiC composites were obtained through densification of B4C and β-SiC powders with different ratios using Spark Plasma Sintering (SPS). Thermal treatment was conducted in the 1850–2000 °C temperature range under pressure of 70 MPa. Starting powder ratio effect on sintering behavior, relative density, microstructural development, and mechanical properties of obtained composites was investigated. Results showed that only starting compounds were observed in sintered ceramics with uniformly distributed and densely compacted B4C and SiC grains. Maximal relative density (100 %) was achieved for 25 % B4C-75 % SiC sample densified at 2000 °C. Obtained composites' microhardness ranged from 33 to 43 GPa, depending on constituents' content and densification temperature. Maximal microhardness was achieved for composite with the maximal amount (75 %) of B4C densified at 2000 °C. Composites' behavior in extreme conditions was evaluated through their interactions with laser beam and obtained results showed that SPS is effective densification method for obtainment of additive-free B4C-SiC composites applicable in extreme radiation environments.
T2  - Journal of the European Ceramic Society
T1  - Densification of additive-free B4C-SiC composites by spark plasma sintering
IS  - InPress
DO  - 10.1016/j.jeurceramsoc.2023.12.024
ER  - 
@article{
author = "Matović, Branko and Tatarko, Peter and Maksimović, Vesna and Maletaškić, Jelena and Stoiljković, Milovan and Hanzel, Ondrej and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "The B4C-SiC composites were obtained through densification of B4C and β-SiC powders with different ratios using Spark Plasma Sintering (SPS). Thermal treatment was conducted in the 1850–2000 °C temperature range under pressure of 70 MPa. Starting powder ratio effect on sintering behavior, relative density, microstructural development, and mechanical properties of obtained composites was investigated. Results showed that only starting compounds were observed in sintered ceramics with uniformly distributed and densely compacted B4C and SiC grains. Maximal relative density (100 %) was achieved for 25 % B4C-75 % SiC sample densified at 2000 °C. Obtained composites' microhardness ranged from 33 to 43 GPa, depending on constituents' content and densification temperature. Maximal microhardness was achieved for composite with the maximal amount (75 %) of B4C densified at 2000 °C. Composites' behavior in extreme conditions was evaluated through their interactions with laser beam and obtained results showed that SPS is effective densification method for obtainment of additive-free B4C-SiC composites applicable in extreme radiation environments.",
journal = "Journal of the European Ceramic Society",
title = "Densification of additive-free B4C-SiC composites by spark plasma sintering",
number = "InPress",
doi = "10.1016/j.jeurceramsoc.2023.12.024"
}
Matović, B., Tatarko, P., Maksimović, V., Maletaškić, J., Stoiljković, M., Hanzel, O.,& Cvijović-Alagić, I.. (2023). Densification of additive-free B4C-SiC composites by spark plasma sintering. in Journal of the European Ceramic Society(InPress).
https://doi.org/10.1016/j.jeurceramsoc.2023.12.024
Matović B, Tatarko P, Maksimović V, Maletaškić J, Stoiljković M, Hanzel O, Cvijović-Alagić I. Densification of additive-free B4C-SiC composites by spark plasma sintering. in Journal of the European Ceramic Society. 2023;(InPress).
doi:10.1016/j.jeurceramsoc.2023.12.024 .
Matović, Branko, Tatarko, Peter, Maksimović, Vesna, Maletaškić, Jelena, Stoiljković, Milovan, Hanzel, Ondrej, Cvijović-Alagić, Ivana, "Densification of additive-free B4C-SiC composites by spark plasma sintering" in Journal of the European Ceramic Society, no. InPress (2023),
https://doi.org/10.1016/j.jeurceramsoc.2023.12.024 . .
1

Entropy-stabilized oxides owning fluorite structure: preparation and sintering

Prekajski-Đorđević, Marija; Erčić, Jelena; Nidžović, Emilija; Luković, Aleksa; Kumar, Ravi; Matović, Branko; Maletaškić, Jelena

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2023)

TY  - CONF
AU  - Prekajski-Đorđević, Marija
AU  - Erčić, Jelena
AU  - Nidžović, Emilija
AU  - Luković, Aleksa
AU  - Kumar, Ravi
AU  - Matović, Branko
AU  - Maletaškić, Jelena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12298
AB  - Entropy-Stabilized Oxides are advanced ceramic materials that possess highly desirable functional properties. Through a five-component oxide formulation, these materials utilize configurational entropy to achieve phase stabilization. In this study we have successfully synthesized a novel type of high-entropy fluorite oxide, specifically Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ, through the Self Propagation Room Temperature reaction (SPRT) method. Through heat treatment experiments, it was observed that the phase composition of all samples remained a single phase after high-temperature heating. Furthermore, a thermal treatment at 1500°C resulted in a fully crystallised single-phase fluorite structure. The powders also demonstrated a lack of agglomeration, which allowed for the sintered specimen to exhibit sufficient densification with a small porosity that was uniformly distributed throughout the samples.
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
T1  - Entropy-stabilized oxides owning fluorite structure: preparation and sintering
SP  - 85
EP  - 85
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12298
ER  - 
@conference{
author = "Prekajski-Đorđević, Marija and Erčić, Jelena and Nidžović, Emilija and Luković, Aleksa and Kumar, Ravi and Matović, Branko and Maletaškić, Jelena",
year = "2023",
abstract = "Entropy-Stabilized Oxides are advanced ceramic materials that possess highly desirable functional properties. Through a five-component oxide formulation, these materials utilize configurational entropy to achieve phase stabilization. In this study we have successfully synthesized a novel type of high-entropy fluorite oxide, specifically Zr0.2Hf0.2Ce0.2Yb0.2Gd0.2O2-δ, through the Self Propagation Room Temperature reaction (SPRT) method. Through heat treatment experiments, it was observed that the phase composition of all samples remained a single phase after high-temperature heating. Furthermore, a thermal treatment at 1500°C resulted in a fully crystallised single-phase fluorite structure. The powders also demonstrated a lack of agglomeration, which allowed for the sintered specimen to exhibit sufficient densification with a small porosity that was uniformly distributed throughout the samples.",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts",
title = "Entropy-stabilized oxides owning fluorite structure: preparation and sintering",
pages = "85-85",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12298"
}
Prekajski-Đorđević, M., Erčić, J., Nidžović, E., Luković, A., Kumar, R., Matović, B.,& Maletaškić, J.. (2023). Entropy-stabilized oxides owning fluorite structure: preparation and sintering. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 85-85.
https://hdl.handle.net/21.15107/rcub_vinar_12298
Prekajski-Đorđević M, Erčić J, Nidžović E, Luković A, Kumar R, Matović B, Maletaškić J. Entropy-stabilized oxides owning fluorite structure: preparation and sintering. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts. 2023;:85-85.
https://hdl.handle.net/21.15107/rcub_vinar_12298 .
Prekajski-Đorđević, Marija, Erčić, Jelena, Nidžović, Emilija, Luković, Aleksa, Kumar, Ravi, Matović, Branko, Maletaškić, Jelena, "Entropy-stabilized oxides owning fluorite structure: preparation and sintering" in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts (2023):85-85,
https://hdl.handle.net/21.15107/rcub_vinar_12298 .

Synthesis and characterization of reinforced alumina composites

Maletaškić, Jelena; Luković, Aleksa; Erčić, Jelena; Nidžović, Emilija; Prekajski-Đorđević, Marija; Matović, Branko

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2023)

TY  - CONF
AU  - Maletaškić, Jelena
AU  - Luković, Aleksa
AU  - Erčić, Jelena
AU  - Nidžović, Emilija
AU  - Prekajski-Đorđević, Marija
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12360
AB  - Alumina composite was prepared via simple route. Alumina ceramics that resembels seashells are made of aligned micron-sized monocrystalline platelets joined together by silica secondary phase. SiO2 was added to improve mechanical properties of composite. The evolution of the phase composition during thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses. Effect of sintering temperature on mechanical properties, due to the increase of sintering temperature that can produce a higher strength and higher density, was also investigated. SEM observation of composite was also included. Ceramics composites such as this are good candidates for high temperature oxidation atmosphere applications, as they have excellent mechanical and other performance requirements.
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
T1  - Synthesis and characterization of reinforced alumina composites
SP  - 115
EP  - 115
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12360
ER  - 
@conference{
author = "Maletaškić, Jelena and Luković, Aleksa and Erčić, Jelena and Nidžović, Emilija and Prekajski-Đorđević, Marija and Matović, Branko",
year = "2023",
abstract = "Alumina composite was prepared via simple route. Alumina ceramics that resembels seashells are made of aligned micron-sized monocrystalline platelets joined together by silica secondary phase. SiO2 was added to improve mechanical properties of composite. The evolution of the phase composition during thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses. Effect of sintering temperature on mechanical properties, due to the increase of sintering temperature that can produce a higher strength and higher density, was also investigated. SEM observation of composite was also included. Ceramics composites such as this are good candidates for high temperature oxidation atmosphere applications, as they have excellent mechanical and other performance requirements.",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts",
title = "Synthesis and characterization of reinforced alumina composites",
pages = "115-115",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12360"
}
Maletaškić, J., Luković, A., Erčić, J., Nidžović, E., Prekajski-Đorđević, M.,& Matović, B.. (2023). Synthesis and characterization of reinforced alumina composites. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 115-115.
https://hdl.handle.net/21.15107/rcub_vinar_12360
Maletaškić J, Luković A, Erčić J, Nidžović E, Prekajski-Đorđević M, Matović B. Synthesis and characterization of reinforced alumina composites. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts. 2023;:115-115.
https://hdl.handle.net/21.15107/rcub_vinar_12360 .
Maletaškić, Jelena, Luković, Aleksa, Erčić, Jelena, Nidžović, Emilija, Prekajski-Đorđević, Marija, Matović, Branko, "Synthesis and characterization of reinforced alumina composites" in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts (2023):115-115,
https://hdl.handle.net/21.15107/rcub_vinar_12360 .

A Review of the Synthesis of Compositionally Complex Ultra-High-Temperature Ceramics

Teppala, Dharma Teja; Kredel, Samuel Aeneas; Ionescu, Emanuel; Matović, Branko

(2023)

TY  - JOUR
AU  - Teppala, Dharma Teja
AU  - Kredel, Samuel Aeneas
AU  - Ionescu, Emanuel
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12864
AB  - Ultra-high temperature ceramics (UHTC) are a class of ceramics that possess melting points greater than 3000 °C and can withstand temperatures higher than 2000 °C without structural failure. The need to increase the performance inherently leads to the implementation of extreme temperatures, leading to the search for a new class of materials with better thermal properties. Compositionally complex ultra-high temperature ceramics with the inclusion of additional elements, whether resulting in an equimolar or non-equimolar site occupation in the respective sublattices, can improve properties due to the contributions of the configurational entropy. The term compositional complexity can be used as an umbrella term for the class of compositions with 3 or more elements and also their non-equimolar parts. The current review paper is based on the classification of the different compositionally complex ultrahigh temperature ceramics as borides, carbides, nitrides, etc., and reviews the different procedures employed for the bulk or powder synthesis thereof.
T2  - Journal of Innovative Materials in Extreme Conditions
T1  - A Review of the Synthesis of Compositionally Complex Ultra-High-Temperature Ceramics
VL  - 4
IS  - 2
SP  - 77
EP  - 103
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12864
ER  - 
@article{
author = "Teppala, Dharma Teja and Kredel, Samuel Aeneas and Ionescu, Emanuel and Matović, Branko",
year = "2023",
abstract = "Ultra-high temperature ceramics (UHTC) are a class of ceramics that possess melting points greater than 3000 °C and can withstand temperatures higher than 2000 °C without structural failure. The need to increase the performance inherently leads to the implementation of extreme temperatures, leading to the search for a new class of materials with better thermal properties. Compositionally complex ultra-high temperature ceramics with the inclusion of additional elements, whether resulting in an equimolar or non-equimolar site occupation in the respective sublattices, can improve properties due to the contributions of the configurational entropy. The term compositional complexity can be used as an umbrella term for the class of compositions with 3 or more elements and also their non-equimolar parts. The current review paper is based on the classification of the different compositionally complex ultrahigh temperature ceramics as borides, carbides, nitrides, etc., and reviews the different procedures employed for the bulk or powder synthesis thereof.",
journal = "Journal of Innovative Materials in Extreme Conditions",
title = "A Review of the Synthesis of Compositionally Complex Ultra-High-Temperature Ceramics",
volume = "4",
number = "2",
pages = "77-103",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12864"
}
Teppala, D. T., Kredel, S. A., Ionescu, E.,& Matović, B.. (2023). A Review of the Synthesis of Compositionally Complex Ultra-High-Temperature Ceramics. in Journal of Innovative Materials in Extreme Conditions, 4(2), 77-103.
https://hdl.handle.net/21.15107/rcub_vinar_12864
Teppala DT, Kredel SA, Ionescu E, Matović B. A Review of the Synthesis of Compositionally Complex Ultra-High-Temperature Ceramics. in Journal of Innovative Materials in Extreme Conditions. 2023;4(2):77-103.
https://hdl.handle.net/21.15107/rcub_vinar_12864 .
Teppala, Dharma Teja, Kredel, Samuel Aeneas, Ionescu, Emanuel, Matović, Branko, "A Review of the Synthesis of Compositionally Complex Ultra-High-Temperature Ceramics" in Journal of Innovative Materials in Extreme Conditions, 4, no. 2 (2023):77-103,
https://hdl.handle.net/21.15107/rcub_vinar_12864 .

Multicomponent solid solution with pyrochlore structure

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Stevan P.; Todorović, Bratislav; Pejić, Milan; Zagorac, Dejan; Zagorac, Jelena B.; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Stevan P.
AU  - Todorović, Bratislav
AU  - Pejić, Milan
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena B.
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10697
AB  - Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.
T2  - Boletin de la Sociedad Espanola de Ceramica y Vidrio
T1  - Multicomponent solid solution with pyrochlore structure
T1  - Solución sólida multicomponente con estructura de pirocloro
VL  - 62
IS  - 6
SP  - 515
EP  - 526
DO  - 10.1016/j.bsecv.2023.01.005
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Stevan P. and Todorović, Bratislav and Pejić, Milan and Zagorac, Dejan and Zagorac, Jelena B. and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.",
journal = "Boletin de la Sociedad Espanola de Ceramica y Vidrio",
title = "Multicomponent solid solution with pyrochlore structure, Solución sólida multicomponente con estructura de pirocloro",
volume = "62",
number = "6",
pages = "515-526",
doi = "10.1016/j.bsecv.2023.01.005"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S. P., Todorović, B., Pejić, M., Zagorac, D., Zagorac, J. B., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62(6), 515-526.
https://doi.org/10.1016/j.bsecv.2023.01.005
Matović B, Maletaškić J, Maksimović V, Dimitrijević SP, Todorović B, Pejić M, Zagorac D, Zagorac JB, Zeng Y, Cvijović-Alagić I. Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2023;62(6):515-526.
doi:10.1016/j.bsecv.2023.01.005 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Stevan P., Todorović, Bratislav, Pejić, Milan, Zagorac, Dejan, Zagorac, Jelena B., Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Multicomponent solid solution with pyrochlore structure" in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62, no. 6 (2023):515-526,
https://doi.org/10.1016/j.bsecv.2023.01.005 . .
1

Heavily doped high-entropy A2B2O7 pyrochlore

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Zagorac, Jelena; Luković, Aleksa; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Zagorac, Jelena
AU  - Luković, Aleksa
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11324
AB  - A novel class of high-entropy pyrochlore compounds with multiple elements at the A and B site positions (A2B2O7) was successfully obtained. Powders with (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 nominal composition were fabricated from pure metal oxides obtained through a reaction of metal nitrates (for site A) and metal chlorides (for site B) with sodium hydroxide during the solid-state displacement reaction (SSDR). The phase evolution was analyzed using XRD method. During the thermal treatment of ten individual metal oxides, the single pyrochlore phase was created. The present study showed that the highdensity (98%TD) ceramics with a hardness of 8.1GPa was successfully obtained after pressureless sintering at 1650 °C for 4 h. Results of the Raman study and the Rietveld structural refinement showed that sintered highentropy ceramics is characterized by a single-phase pyrochlore structure, which was investigated in detail.
T2  - Processing and Application of Ceramics
T1  - Heavily doped high-entropy A2B2O7 pyrochlore
VL  - 17
IS  - 2
SP  - 113
EP  - 117
DO  - 10.2298/PAC2302113M
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Zagorac, Jelena and Luković, Aleksa and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "A novel class of high-entropy pyrochlore compounds with multiple elements at the A and B site positions (A2B2O7) was successfully obtained. Powders with (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 nominal composition were fabricated from pure metal oxides obtained through a reaction of metal nitrates (for site A) and metal chlorides (for site B) with sodium hydroxide during the solid-state displacement reaction (SSDR). The phase evolution was analyzed using XRD method. During the thermal treatment of ten individual metal oxides, the single pyrochlore phase was created. The present study showed that the highdensity (98%TD) ceramics with a hardness of 8.1GPa was successfully obtained after pressureless sintering at 1650 °C for 4 h. Results of the Raman study and the Rietveld structural refinement showed that sintered highentropy ceramics is characterized by a single-phase pyrochlore structure, which was investigated in detail.",
journal = "Processing and Application of Ceramics",
title = "Heavily doped high-entropy A2B2O7 pyrochlore",
volume = "17",
number = "2",
pages = "113-117",
doi = "10.2298/PAC2302113M"
}
Matović, B., Maletaškić, J., Maksimović, V., Zagorac, J., Luković, A., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Heavily doped high-entropy A2B2O7 pyrochlore. in Processing and Application of Ceramics, 17(2), 113-117.
https://doi.org/10.2298/PAC2302113M
Matović B, Maletaškić J, Maksimović V, Zagorac J, Luković A, Zeng Y, Cvijović-Alagić I. Heavily doped high-entropy A2B2O7 pyrochlore. in Processing and Application of Ceramics. 2023;17(2):113-117.
doi:10.2298/PAC2302113M .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Zagorac, Jelena, Luković, Aleksa, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Heavily doped high-entropy A2B2O7 pyrochlore" in Processing and Application of Ceramics, 17, no. 2 (2023):113-117,
https://doi.org/10.2298/PAC2302113M . .

Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Silvana; Todorović, Branislav; Zagorac, Jelena; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2023)

TY  - CONF
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Silvana
AU  - Todorović, Branislav
AU  - Zagorac, Jelena
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11346
AB  - The goal of this research was to obtain a chemically complex multicomponent
oxide with the A2B2O7 pyrochlore structure with nominal composition
(La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 that contains 10 different
cations in equiatomic amounts which was obtained by reacting metal nitrates (site
A) and metal chlorides (site B) with glycine during the combustion reaction. The
powder synthesized initially was found to be amorphous based on XRD analysis. To
convert the powder into a crystalline pyrochlore structure, the powder underwent
post-calcination at various temperatures ranging from 600–1500 °C. It was
discovered that the desired monophase pyrochlore structure (A2B2O7) was obtained
after calcination at 900 °C. To create a high-density ceramic pellet, the powder
calcined at 900 °C was subjected to pressureless sintering at 1650 °C for four hours
in the presence of air. The resulting pellet had a density of 97% of the theoretical
density and was free from any additives. This process likely caused the powder
particles to fuse together, creating a solid, dense pellet.
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
T1  - Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination
SP  - 84
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11346
ER  - 
@conference{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Silvana and Todorović, Branislav and Zagorac, Jelena and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "The goal of this research was to obtain a chemically complex multicomponent
oxide with the A2B2O7 pyrochlore structure with nominal composition
(La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 that contains 10 different
cations in equiatomic amounts which was obtained by reacting metal nitrates (site
A) and metal chlorides (site B) with glycine during the combustion reaction. The
powder synthesized initially was found to be amorphous based on XRD analysis. To
convert the powder into a crystalline pyrochlore structure, the powder underwent
post-calcination at various temperatures ranging from 600–1500 °C. It was
discovered that the desired monophase pyrochlore structure (A2B2O7) was obtained
after calcination at 900 °C. To create a high-density ceramic pellet, the powder
calcined at 900 °C was subjected to pressureless sintering at 1650 °C for four hours
in the presence of air. The resulting pellet had a density of 97% of the theoretical
density and was free from any additives. This process likely caused the powder
particles to fuse together, creating a solid, dense pellet.",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts",
title = "Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination",
pages = "84",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11346"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S., Todorović, B., Zagorac, J., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 84.
https://hdl.handle.net/21.15107/rcub_vinar_11346
Matović B, Maletaškić J, Maksimović V, Dimitrijević S, Todorović B, Zagorac J, Zeng Y, Cvijović-Alagić I. Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination. in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts. 2023;:84.
https://hdl.handle.net/21.15107/rcub_vinar_11346 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Silvana, Todorović, Branislav, Zagorac, Jelena, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Characterization of High-Entropy A2B2O7 Pyrochlore Obtained via Combustion Synthesis and Post-Calcination" in 7CSCS-2023 : 7th Conference of The Serbian Society for Ceramic Materials : Book of abstracts (2023):84,
https://hdl.handle.net/21.15107/rcub_vinar_11346 .

Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites

Matović, Branko; Maletaškić, Jelena; Maksimović, Vesna; Dimitrijević, Silvana; Todorović, Bratislav; Zagorac, Jelena; Luković, Aleksa; Zeng, Yu-Ping; Cvijović-Alagić, Ivana

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Silvana
AU  - Todorović, Bratislav
AU  - Zagorac, Jelena
AU  - Luković, Aleksa
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11350
AB  - Single nano high-entropy pyrochlore-type compound (A2B2O7) with 7 different
rare-earth cations at site A and 3 different metal cations at site B with equiatomic
amounts (7A1/7)2(3B1/3)2O7 is successfully obtained. The powder with nominal
composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 was fabricated by
reacting metal nitrates (site A) and metal chlorides (site B) with glycine during the
combustion reaction. The XRD analysis revealed that the powder attained during
synthesis is in an amorphous state. To induce crystallization of the obtained pyrochlore structure, the post-calcination process at 600-1500 °C was conducted and studied.
Results of this study showed that the monophase pyrochlore (A2B2O7) structure is
obtained during the calcination at 900 °C. The high-density ceramic pellet with 97% of
theoretical density and free of any additives was obtained through pressureless sintering
at 1650 °C for 4 h in the air using the powder calcined at 900 °C.
T2  - Science of Sintering
T1  - Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites
IS  - InPress
SP  - 23
DO  - 10.2298/SOS220802023M
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Silvana and Todorović, Bratislav and Zagorac, Jelena and Luković, Aleksa and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "Single nano high-entropy pyrochlore-type compound (A2B2O7) with 7 different
rare-earth cations at site A and 3 different metal cations at site B with equiatomic
amounts (7A1/7)2(3B1/3)2O7 is successfully obtained. The powder with nominal
composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 was fabricated by
reacting metal nitrates (site A) and metal chlorides (site B) with glycine during the
combustion reaction. The XRD analysis revealed that the powder attained during
synthesis is in an amorphous state. To induce crystallization of the obtained pyrochlore structure, the post-calcination process at 600-1500 °C was conducted and studied.
Results of this study showed that the monophase pyrochlore (A2B2O7) structure is
obtained during the calcination at 900 °C. The high-density ceramic pellet with 97% of
theoretical density and free of any additives was obtained through pressureless sintering
at 1650 °C for 4 h in the air using the powder calcined at 900 °C.",
journal = "Science of Sintering",
title = "Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites",
number = "InPress",
pages = "23",
doi = "10.2298/SOS220802023M"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S., Todorović, B., Zagorac, J., Luković, A., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites. in Science of Sintering(InPress), 23.
https://doi.org/10.2298/SOS220802023M
Matović B, Maletaškić J, Maksimović V, Dimitrijević S, Todorović B, Zagorac J, Luković A, Zeng Y, Cvijović-Alagić I. Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites. in Science of Sintering. 2023;(InPress):23.
doi:10.2298/SOS220802023M .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Silvana, Todorović, Bratislav, Zagorac, Jelena, Luković, Aleksa, Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Synthesis and characterization of high-entropy A2B2O7 pyrochlore with multiple elements at A and B sites" in Science of Sintering, no. InPress (2023):23,
https://doi.org/10.2298/SOS220802023M . .

Fabrication and characterization of high entropy pyrochlore ceramics

Matović, Branko; Zagorac, Dejan; Cvijović-Alagić, Ivana; Zagorac, Jelena B.; Butulija, Svetlana; Erčić, Jelena; Hanzel, Ondrej; Sedlák, Richard; Lisnichuk, Maksym; Tatarko, Peter

(2023)

TY  - JOUR
AU  - Matović, Branko
AU  - Zagorac, Dejan
AU  - Cvijović-Alagić, Ivana
AU  - Zagorac, Jelena B.
AU  - Butulija, Svetlana
AU  - Erčić, Jelena
AU  - Hanzel, Ondrej
AU  - Sedlák, Richard
AU  - Lisnichuk, Maksym
AU  - Tatarko, Peter
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10083
AB  - High-entropy rare-earth (RE) zirconates with pyrochlore structure were successfully fabricated by pressureless and spark plasma sintering. RE2Zr2O7 compound with nominal composition (La0.2Y0.2Gd0.2Nd0.2Sm0.2)Zr2O7 was prepared by simple glycine nitrate procedure (GNP). GNP process yielded powders with low crystallinity and after subsequent calcination, well crystalline ceramics were formed. During calcination defective fluorite (F-RE2Zr2O7) and crystal pyrochlore (Py-RE2Zr2O7) structures coexist. Formation of pure crystalline pyrochlore occurs after sintering at 1450°C. High-density ceramics, free of any additives, were obtained after powders compaction and pressureless (PS), as well as field assisted sintering technique (FAST) at 1450°C. Theoretical investigations of the high-entropy RE2Zr2O7 pyrochlore systems were performed. Unit cell parameter of the obtained Py-RE2Zr2O7 is 10.5892(2)Å and 10.5999(2)Å for PS and FAST sintering, respectively, which is in good agreement with the results of Density Functional Theory (DFT) calculations. The thermal diffusivity of sintered samples at room temperature was ∼0.7mm2/s for both sintering methods.ResumenSe fabricaron con éxito, mediante sinterización por plasma sin presión y por chispa, los circonatos de tierras raras (RE) de alta entropía con estructura de pirocloro. El compuesto RE2Zr2O7 con composición nominal (La0,2Y0,2Gd0,2Nd0,2Sm0,2)Zr2O7 se preparó mediante un procedimiento simple de nitrato de glicina (GNP). El proceso GNP produjo polvos con baja cristalinidad y después de la posterior calcinación, se formaron cerámicas bien cristalinas. Durante la calcinación coexisten estructuras defectuosas de fluorita (F-RE2Zr2O7) y pirocloro cristalino (Py-RE2Zr2O7). La formación de pirocloro cristalino puro se produce después de la sinterización a 1.450°C. Después de la compactación de polvos y sin presión (PS), así como por la técnica de sinterización asistida en campo (FAST) a 1.450 oC, se obtuvieron cerámicas de alta densidad, libres de aditivos. Se realizaron investigaciones teóricas de los sistemas de pirocloro RE2Zr2O7 de alta entropía. El parámetro de celda unitaria del Py-RE2Zr2O7 obtenido es 105.892(2) Å y 105.999(2) Å para la sinterización PS y FAST, respectivamente, lo que está de acuerdo con los resultados de los cálculos de la teoría funcional de la densidad (DFT). La difusividad térmica de las muestras sinterizadas a temperatura ambiente fue de ∼ 0,7 mm2/s para ambos métodos de sinterización.
T2  - Boletín de la Sociedad Española de Cerámica y Vidrio
T1  - Fabrication and characterization of high entropy pyrochlore ceramics
T1  - Fabricación y caracterización de cerámicas de pirocloro de alta entropía
VL  - 62
IS  - 1
SP  - 66
EP  - 76
DO  - 10.1016/j.bsecv.2021.11.002
ER  - 
@article{
author = "Matović, Branko and Zagorac, Dejan and Cvijović-Alagić, Ivana and Zagorac, Jelena B. and Butulija, Svetlana and Erčić, Jelena and Hanzel, Ondrej and Sedlák, Richard and Lisnichuk, Maksym and Tatarko, Peter",
year = "2023",
abstract = "High-entropy rare-earth (RE) zirconates with pyrochlore structure were successfully fabricated by pressureless and spark plasma sintering. RE2Zr2O7 compound with nominal composition (La0.2Y0.2Gd0.2Nd0.2Sm0.2)Zr2O7 was prepared by simple glycine nitrate procedure (GNP). GNP process yielded powders with low crystallinity and after subsequent calcination, well crystalline ceramics were formed. During calcination defective fluorite (F-RE2Zr2O7) and crystal pyrochlore (Py-RE2Zr2O7) structures coexist. Formation of pure crystalline pyrochlore occurs after sintering at 1450°C. High-density ceramics, free of any additives, were obtained after powders compaction and pressureless (PS), as well as field assisted sintering technique (FAST) at 1450°C. Theoretical investigations of the high-entropy RE2Zr2O7 pyrochlore systems were performed. Unit cell parameter of the obtained Py-RE2Zr2O7 is 10.5892(2)Å and 10.5999(2)Å for PS and FAST sintering, respectively, which is in good agreement with the results of Density Functional Theory (DFT) calculations. The thermal diffusivity of sintered samples at room temperature was ∼0.7mm2/s for both sintering methods.ResumenSe fabricaron con éxito, mediante sinterización por plasma sin presión y por chispa, los circonatos de tierras raras (RE) de alta entropía con estructura de pirocloro. El compuesto RE2Zr2O7 con composición nominal (La0,2Y0,2Gd0,2Nd0,2Sm0,2)Zr2O7 se preparó mediante un procedimiento simple de nitrato de glicina (GNP). El proceso GNP produjo polvos con baja cristalinidad y después de la posterior calcinación, se formaron cerámicas bien cristalinas. Durante la calcinación coexisten estructuras defectuosas de fluorita (F-RE2Zr2O7) y pirocloro cristalino (Py-RE2Zr2O7). La formación de pirocloro cristalino puro se produce después de la sinterización a 1.450°C. Después de la compactación de polvos y sin presión (PS), así como por la técnica de sinterización asistida en campo (FAST) a 1.450 oC, se obtuvieron cerámicas de alta densidad, libres de aditivos. Se realizaron investigaciones teóricas de los sistemas de pirocloro RE2Zr2O7 de alta entropía. El parámetro de celda unitaria del Py-RE2Zr2O7 obtenido es 105.892(2) Å y 105.999(2) Å para la sinterización PS y FAST, respectivamente, lo que está de acuerdo con los resultados de los cálculos de la teoría funcional de la densidad (DFT). La difusividad térmica de las muestras sinterizadas a temperatura ambiente fue de ∼ 0,7 mm2/s para ambos métodos de sinterización.",
journal = "Boletín de la Sociedad Española de Cerámica y Vidrio",
title = "Fabrication and characterization of high entropy pyrochlore ceramics, Fabricación y caracterización de cerámicas de pirocloro de alta entropía",
volume = "62",
number = "1",
pages = "66-76",
doi = "10.1016/j.bsecv.2021.11.002"
}
Matović, B., Zagorac, D., Cvijović-Alagić, I., Zagorac, J. B., Butulija, S., Erčić, J., Hanzel, O., Sedlák, R., Lisnichuk, M.,& Tatarko, P.. (2023). Fabrication and characterization of high entropy pyrochlore ceramics. in Boletín de la Sociedad Española de Cerámica y Vidrio, 62(1), 66-76.
https://doi.org/10.1016/j.bsecv.2021.11.002
Matović B, Zagorac D, Cvijović-Alagić I, Zagorac JB, Butulija S, Erčić J, Hanzel O, Sedlák R, Lisnichuk M, Tatarko P. Fabrication and characterization of high entropy pyrochlore ceramics. in Boletín de la Sociedad Española de Cerámica y Vidrio. 2023;62(1):66-76.
doi:10.1016/j.bsecv.2021.11.002 .
Matović, Branko, Zagorac, Dejan, Cvijović-Alagić, Ivana, Zagorac, Jelena B., Butulija, Svetlana, Erčić, Jelena, Hanzel, Ondrej, Sedlák, Richard, Lisnichuk, Maksym, Tatarko, Peter, "Fabrication and characterization of high entropy pyrochlore ceramics" in Boletín de la Sociedad Española de Cerámica y Vidrio, 62, no. 1 (2023):66-76,
https://doi.org/10.1016/j.bsecv.2021.11.002 . .
11
6

Novel boron-rich aluminum nitride advanced ceramic materials

Zagorac, Dejan; Zagorac, Jelena B.; Fonović, Matej; Prikhna, Tatiana; Matović, Branko

(2023)

TY  - JOUR
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena B.
AU  - Fonović, Matej
AU  - Prikhna, Tatiana
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10399
AB  - Aluminum nitride (AlN) and boron nitride (BN) are well-known ceramic materials with numerous valuable properties, whereas recently there is a growing field of research on the AlN/BN advanced ceramic materials. Here, we present a study on boron-rich AlN, structural and electronic properties, and structure–property relationship. Several AlxB1−xN solid solutions (x = 1, .875, .75, and .625) have been investigated, and structure optimization has been performed for four different structure types: h-BN, wurtzite, sphalerite, and rock salt. First-principles calculations were performed using hybrid B3LYP functional. New modifications and compounds have been predicted as a function of boron concentration in AlN, and especially, interesting phase transitions were found at extreme pressure conditions. Electronic properties and band structures were computed, and the possibility for bandgap tuning has been discovered. The present study, and especially the structure–property relationship, gives new possibilities for bandgap engineering in boron-rich AlN electroceramic materials.
T2  - International Journal of Applied Ceramic Technology
T1  - Novel boron-rich aluminum nitride advanced ceramic materials
VL  - 20
IS  - 1
SP  - 174
EP  - 189
DO  - 10.1111/ijac.14152
ER  - 
@article{
author = "Zagorac, Dejan and Zagorac, Jelena B. and Fonović, Matej and Prikhna, Tatiana and Matović, Branko",
year = "2023",
abstract = "Aluminum nitride (AlN) and boron nitride (BN) are well-known ceramic materials with numerous valuable properties, whereas recently there is a growing field of research on the AlN/BN advanced ceramic materials. Here, we present a study on boron-rich AlN, structural and electronic properties, and structure–property relationship. Several AlxB1−xN solid solutions (x = 1, .875, .75, and .625) have been investigated, and structure optimization has been performed for four different structure types: h-BN, wurtzite, sphalerite, and rock salt. First-principles calculations were performed using hybrid B3LYP functional. New modifications and compounds have been predicted as a function of boron concentration in AlN, and especially, interesting phase transitions were found at extreme pressure conditions. Electronic properties and band structures were computed, and the possibility for bandgap tuning has been discovered. The present study, and especially the structure–property relationship, gives new possibilities for bandgap engineering in boron-rich AlN electroceramic materials.",
journal = "International Journal of Applied Ceramic Technology",
title = "Novel boron-rich aluminum nitride advanced ceramic materials",
volume = "20",
number = "1",
pages = "174-189",
doi = "10.1111/ijac.14152"
}
Zagorac, D., Zagorac, J. B., Fonović, M., Prikhna, T.,& Matović, B.. (2023). Novel boron-rich aluminum nitride advanced ceramic materials. in International Journal of Applied Ceramic Technology, 20(1), 174-189.
https://doi.org/10.1111/ijac.14152
Zagorac D, Zagorac JB, Fonović M, Prikhna T, Matović B. Novel boron-rich aluminum nitride advanced ceramic materials. in International Journal of Applied Ceramic Technology. 2023;20(1):174-189.
doi:10.1111/ijac.14152 .
Zagorac, Dejan, Zagorac, Jelena B., Fonović, Matej, Prikhna, Tatiana, Matović, Branko, "Novel boron-rich aluminum nitride advanced ceramic materials" in International Journal of Applied Ceramic Technology, 20, no. 1 (2023):174-189,
https://doi.org/10.1111/ijac.14152 . .
3

Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach

Zagorac, Jelena B.; Zagorac, Dejan; Šrot, Vesna; Ranđelović, Marjan; Pejić, Milan; van Aken, Peter A.; Matović, Branko; Schön, Christian J.

(2023)

TY  - JOUR
AU  - Zagorac, Jelena B.
AU  - Zagorac, Dejan
AU  - Šrot, Vesna
AU  - Ranđelović, Marjan
AU  - Pejić, Milan
AU  - van Aken, Peter A.
AU  - Matović, Branko
AU  - Schön, Christian J.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10592
AB  - ZnO/ZnS core/shell nanostructures, which are studied for diverse possible applications, ranging from semiconductors, photovoltaics, and light-emitting diodes (LED), to solar cells, infrared detectors, and thermoelectrics, were synthesized and characterized by XRD, HR-(S)TEM, and analytical TEM (EDX and EELS). Moreover, band-gap measurements of the ZnO/ZnS core/shell nanostructures have been performed using UV/Vis DRS. The experimental results were combined with theoretical modeling of ZnO/ZnS (hetero)structures and band structure calculations for ZnO/ZnS systems, yielding more insights into the properties of the nanoparticles. The ab initio calculations were performed using hybrid PBE0 and HSE06 functionals. The synthesized and characterized ZnO/ZnS core/shell materials show a unique three-phase composition, where the ZnO phase is dominant in the core region and, interestingly, the auxiliary ZnS compound occurs in two phases as wurtzite and sphalerite in the shell region. Moreover, theoretical ab initio calculations show advanced semiconducting properties and possible band-gap tuning in such ZnO/ZnS structures.
T2  - Materials
T1  - Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach
VL  - 16
IS  - 1
SP  - 326
DO  - 10.3390/ma16010326
ER  - 
@article{
author = "Zagorac, Jelena B. and Zagorac, Dejan and Šrot, Vesna and Ranđelović, Marjan and Pejić, Milan and van Aken, Peter A. and Matović, Branko and Schön, Christian J.",
year = "2023",
abstract = "ZnO/ZnS core/shell nanostructures, which are studied for diverse possible applications, ranging from semiconductors, photovoltaics, and light-emitting diodes (LED), to solar cells, infrared detectors, and thermoelectrics, were synthesized and characterized by XRD, HR-(S)TEM, and analytical TEM (EDX and EELS). Moreover, band-gap measurements of the ZnO/ZnS core/shell nanostructures have been performed using UV/Vis DRS. The experimental results were combined with theoretical modeling of ZnO/ZnS (hetero)structures and band structure calculations for ZnO/ZnS systems, yielding more insights into the properties of the nanoparticles. The ab initio calculations were performed using hybrid PBE0 and HSE06 functionals. The synthesized and characterized ZnO/ZnS core/shell materials show a unique three-phase composition, where the ZnO phase is dominant in the core region and, interestingly, the auxiliary ZnS compound occurs in two phases as wurtzite and sphalerite in the shell region. Moreover, theoretical ab initio calculations show advanced semiconducting properties and possible band-gap tuning in such ZnO/ZnS structures.",
journal = "Materials",
title = "Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach",
volume = "16",
number = "1",
pages = "326",
doi = "10.3390/ma16010326"
}
Zagorac, J. B., Zagorac, D., Šrot, V., Ranđelović, M., Pejić, M., van Aken, P. A., Matović, B.,& Schön, C. J.. (2023). Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach. in Materials, 16(1), 326.
https://doi.org/10.3390/ma16010326
Zagorac JB, Zagorac D, Šrot V, Ranđelović M, Pejić M, van Aken PA, Matović B, Schön CJ. Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach. in Materials. 2023;16(1):326.
doi:10.3390/ma16010326 .
Zagorac, Jelena B., Zagorac, Dejan, Šrot, Vesna, Ranđelović, Marjan, Pejić, Milan, van Aken, Peter A., Matović, Branko, Schön, Christian J., "Synthesis, Characterization, and Electronic Properties of ZnO/ZnS Core/Shell Nanostructures Investigated Using a Multidisciplinary Approach" in Materials, 16, no. 1 (2023):326,
https://doi.org/10.3390/ma16010326 . .
2

Computational Discovery of New Feasible Crystal Structures in Ce3O3N

Zagorac, Jelena B.; Schön, Johann Christian; Matović, Branko; Pejić, Milan; Prekajski-Đorđević, Marija D.; Zagorac, Dejan

(2023)

TY  - JOUR
AU  - Zagorac, Jelena B.
AU  - Schön, Johann Christian
AU  - Matović, Branko
AU  - Pejić, Milan
AU  - Prekajski-Đorđević, Marija D.
AU  - Zagorac, Dejan
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11073
AB  - Oxynitrides of cerium are expected to have many useful properties but have not been synthesized so far. We identified possible modifications of a not-yet-synthesized Ce3O3N compound, combining global search (GS) and data mining (DM) methods. Employing empirical potentials, structure candidates were obtained via global optimization on the energy landscape of Ce3O3N for different pressure values. Furthermore, additional feasible structure candidates were found using data mining of the ICSD database. The most promising structure candidates obtained were locally optimized at the ab initio level, and their E(V) curves were computed. The structure lowest in total energy, Ce3O3N-DM1, was found via local optimization starting from a data mining candidate and should be thermodynamically metastable up to high pressures.
T2  - Crystals
T1  - Computational Discovery of New Feasible Crystal Structures in Ce3O3N
VL  - 13
IS  - 5
SP  - 774
DO  - 10.3390/cryst13050774
ER  - 
@article{
author = "Zagorac, Jelena B. and Schön, Johann Christian and Matović, Branko and Pejić, Milan and Prekajski-Đorđević, Marija D. and Zagorac, Dejan",
year = "2023",
abstract = "Oxynitrides of cerium are expected to have many useful properties but have not been synthesized so far. We identified possible modifications of a not-yet-synthesized Ce3O3N compound, combining global search (GS) and data mining (DM) methods. Employing empirical potentials, structure candidates were obtained via global optimization on the energy landscape of Ce3O3N for different pressure values. Furthermore, additional feasible structure candidates were found using data mining of the ICSD database. The most promising structure candidates obtained were locally optimized at the ab initio level, and their E(V) curves were computed. The structure lowest in total energy, Ce3O3N-DM1, was found via local optimization starting from a data mining candidate and should be thermodynamically metastable up to high pressures.",
journal = "Crystals",
title = "Computational Discovery of New Feasible Crystal Structures in Ce3O3N",
volume = "13",
number = "5",
pages = "774",
doi = "10.3390/cryst13050774"
}
Zagorac, J. B., Schön, J. C., Matović, B., Pejić, M., Prekajski-Đorđević, M. D.,& Zagorac, D.. (2023). Computational Discovery of New Feasible Crystal Structures in Ce3O3N. in Crystals, 13(5), 774.
https://doi.org/10.3390/cryst13050774
Zagorac JB, Schön JC, Matović B, Pejić M, Prekajski-Đorđević MD, Zagorac D. Computational Discovery of New Feasible Crystal Structures in Ce3O3N. in Crystals. 2023;13(5):774.
doi:10.3390/cryst13050774 .
Zagorac, Jelena B., Schön, Johann Christian, Matović, Branko, Pejić, Milan, Prekajski-Đorđević, Marija D., Zagorac, Dejan, "Computational Discovery of New Feasible Crystal Structures in Ce3O3N" in Crystals, 13, no. 5 (2023):774,
https://doi.org/10.3390/cryst13050774 . .
1
1

Prospective of the LDI MS to characterization the corrosion products of silver-copper alloys on an example of the Ag-Cu-X (X- Zn, Pd, In) system

Veljković, Filip M.; Dimitrijević, Stevan P.; Dimitrijević, Silvana B.; Vurdelja, Borislava D.; Matović, Branko; Stoiljković, Milovan; Kamberović, Željko; Veličković, Suzana

(2023)

TY  - JOUR
AU  - Veljković, Filip M.
AU  - Dimitrijević, Stevan P.
AU  - Dimitrijević, Silvana B.
AU  - Vurdelja, Borislava D.
AU  - Matović, Branko
AU  - Stoiljković, Milovan
AU  - Kamberović, Željko
AU  - Veličković, Suzana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10589
AB  - This work presents the perspective of applying the laser desorption/ionization mass spectrometry (LDI MS) for characterization the anode film of the Ag60Cu26Zn14, Ag58.5Cu31.5Pd10, and Ag63Cu27In10 alloys (at high concentrations of chloride ions in solutions). The reference LDI mass spectra of anode films of pure Ag and Cu have been used for the identification of product corrosion. Knowing the clusters detected in the reference spectra lead to the facilitating identification of the LDI mass spectrum of the sample and reduces the analysis time. The LDI MS analysis of these alloys revealed that the predominant corrosion product are AgCl (from AgnCln+1−/+, n = 1–3), and CuCl (from “superhalogen” CumCln− clusters, m = 1–2, n = 2–6); it also revealed Cu2(OH)3Cl (from Cu2(OH)(H2O)2+) and Cu2O (from Cu(H2O)+, Cu2O doped with chlorine). These results are in accordance with the X-ray diffraction and Raman analysis. The LDI MS spectra of alloys contain the additional peaks formed due to the mutual influences of different metals in the alloys (AgCuCl3− (AgCl-CuCl2−), AgCu2Cl4− (AgCl-CuCl-CuCl2−), and Ag2CuCl4− (AgCl-AgCl-CuCl−), which is consistent with the identified corrosion products. It should be noted that the LDI MS suggest the presence of CuCl2, which can be interpreted as the corrosion products retained in the porous films of alloys, and not detected by the other methods due to a small amount. The future theoretical and experimental studies of metal clusters, significant for metallurgy, can contribute that the LDI MS is becoming a powerful analytical tool for characterization the metal surfaces.
T2  - Arabian Journal of Chemistry
T1  - Prospective of the LDI MS to characterization the corrosion products of silver-copper alloys on an example of the Ag-Cu-X (X- Zn, Pd, In) system
VL  - 16
IS  - 2
SP  - 104461
DO  - 10.1016/j.arabjc.2022.104461
ER  - 
@article{
author = "Veljković, Filip M. and Dimitrijević, Stevan P. and Dimitrijević, Silvana B. and Vurdelja, Borislava D. and Matović, Branko and Stoiljković, Milovan and Kamberović, Željko and Veličković, Suzana",
year = "2023",
abstract = "This work presents the perspective of applying the laser desorption/ionization mass spectrometry (LDI MS) for characterization the anode film of the Ag60Cu26Zn14, Ag58.5Cu31.5Pd10, and Ag63Cu27In10 alloys (at high concentrations of chloride ions in solutions). The reference LDI mass spectra of anode films of pure Ag and Cu have been used for the identification of product corrosion. Knowing the clusters detected in the reference spectra lead to the facilitating identification of the LDI mass spectrum of the sample and reduces the analysis time. The LDI MS analysis of these alloys revealed that the predominant corrosion product are AgCl (from AgnCln+1−/+, n = 1–3), and CuCl (from “superhalogen” CumCln− clusters, m = 1–2, n = 2–6); it also revealed Cu2(OH)3Cl (from Cu2(OH)(H2O)2+) and Cu2O (from Cu(H2O)+, Cu2O doped with chlorine). These results are in accordance with the X-ray diffraction and Raman analysis. The LDI MS spectra of alloys contain the additional peaks formed due to the mutual influences of different metals in the alloys (AgCuCl3− (AgCl-CuCl2−), AgCu2Cl4− (AgCl-CuCl-CuCl2−), and Ag2CuCl4− (AgCl-AgCl-CuCl−), which is consistent with the identified corrosion products. It should be noted that the LDI MS suggest the presence of CuCl2, which can be interpreted as the corrosion products retained in the porous films of alloys, and not detected by the other methods due to a small amount. The future theoretical and experimental studies of metal clusters, significant for metallurgy, can contribute that the LDI MS is becoming a powerful analytical tool for characterization the metal surfaces.",
journal = "Arabian Journal of Chemistry",
title = "Prospective of the LDI MS to characterization the corrosion products of silver-copper alloys on an example of the Ag-Cu-X (X- Zn, Pd, In) system",
volume = "16",
number = "2",
pages = "104461",
doi = "10.1016/j.arabjc.2022.104461"
}
Veljković, F. M., Dimitrijević, S. P., Dimitrijević, S. B., Vurdelja, B. D., Matović, B., Stoiljković, M., Kamberović, Ž.,& Veličković, S.. (2023). Prospective of the LDI MS to characterization the corrosion products of silver-copper alloys on an example of the Ag-Cu-X (X- Zn, Pd, In) system. in Arabian Journal of Chemistry, 16(2), 104461.
https://doi.org/10.1016/j.arabjc.2022.104461
Veljković FM, Dimitrijević SP, Dimitrijević SB, Vurdelja BD, Matović B, Stoiljković M, Kamberović Ž, Veličković S. Prospective of the LDI MS to characterization the corrosion products of silver-copper alloys on an example of the Ag-Cu-X (X- Zn, Pd, In) system. in Arabian Journal of Chemistry. 2023;16(2):104461.
doi:10.1016/j.arabjc.2022.104461 .
Veljković, Filip M., Dimitrijević, Stevan P., Dimitrijević, Silvana B., Vurdelja, Borislava D., Matović, Branko, Stoiljković, Milovan, Kamberović, Željko, Veličković, Suzana, "Prospective of the LDI MS to characterization the corrosion products of silver-copper alloys on an example of the Ag-Cu-X (X- Zn, Pd, In) system" in Arabian Journal of Chemistry, 16, no. 2 (2023):104461,
https://doi.org/10.1016/j.arabjc.2022.104461 . .
1

Seeded silicon nitride powders obtained by carbothermal reduction—nitridation of diatomite and various sources of carbon

Šaponjić, Aleksandra; Ilić, Svetlana; Barudžija, Tanja; Radosavljević-Mihajlović, Ana S.; Kokunešoski, Maja; Matović, Branko

(2023)

TY  - JOUR
AU  - Šaponjić, Aleksandra
AU  - Ilić, Svetlana
AU  - Barudžija, Tanja
AU  - Radosavljević-Mihajlović, Ana S.
AU  - Kokunešoski, Maja
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10852
AB  - In this paper, the effects of the addition of silicon nitride seeds on the phase composition, particle size, and shape of silicon nitride powders obtained by carbothermal reduction-nitridation were studied. Environmentally friendly natural raw material, diatomaceous earth, was used as a Si precursor. Three different carbon sources were used: activated carbon, carbonized sucrose, and carbon cryogel as reducing agents in the molar ratio C/SiO2 = 5. To obtain better-quality Si3N4 powder, the commercial α-Si3N4 powder was added into starting mixtures as seeds in four different quantities. The X-ray diffraction, specific surface area, infrared spectroscopy with Fourier transform, and scanning electron microscopy were employed to characterize the obtained powders. Sucrose as a carbon source enables a major reduction of SiO2 and the onset of β-Si3N4 crystallization at a lower temperature (1350 °C) as well as the complete absence of diatomaceous earth relics. It indicates that the carbothermal reduction-nitridation takes place faster in contrast to the other two carbon sources.
T2  - Journal of the Australian Ceramic Society
T1  - Seeded silicon nitride powders obtained by carbothermal reduction—nitridation of diatomite and various sources of carbon
VL  - 59
SP  - 823
EP  - 835
DO  - 10.1007/s41779-023-00876-w
ER  - 
@article{
author = "Šaponjić, Aleksandra and Ilić, Svetlana and Barudžija, Tanja and Radosavljević-Mihajlović, Ana S. and Kokunešoski, Maja and Matović, Branko",
year = "2023",
abstract = "In this paper, the effects of the addition of silicon nitride seeds on the phase composition, particle size, and shape of silicon nitride powders obtained by carbothermal reduction-nitridation were studied. Environmentally friendly natural raw material, diatomaceous earth, was used as a Si precursor. Three different carbon sources were used: activated carbon, carbonized sucrose, and carbon cryogel as reducing agents in the molar ratio C/SiO2 = 5. To obtain better-quality Si3N4 powder, the commercial α-Si3N4 powder was added into starting mixtures as seeds in four different quantities. The X-ray diffraction, specific surface area, infrared spectroscopy with Fourier transform, and scanning electron microscopy were employed to characterize the obtained powders. Sucrose as a carbon source enables a major reduction of SiO2 and the onset of β-Si3N4 crystallization at a lower temperature (1350 °C) as well as the complete absence of diatomaceous earth relics. It indicates that the carbothermal reduction-nitridation takes place faster in contrast to the other two carbon sources.",
journal = "Journal of the Australian Ceramic Society",
title = "Seeded silicon nitride powders obtained by carbothermal reduction—nitridation of diatomite and various sources of carbon",
volume = "59",
pages = "823-835",
doi = "10.1007/s41779-023-00876-w"
}
Šaponjić, A., Ilić, S., Barudžija, T., Radosavljević-Mihajlović, A. S., Kokunešoski, M.,& Matović, B.. (2023). Seeded silicon nitride powders obtained by carbothermal reduction—nitridation of diatomite and various sources of carbon. in Journal of the Australian Ceramic Society, 59, 823-835.
https://doi.org/10.1007/s41779-023-00876-w
Šaponjić A, Ilić S, Barudžija T, Radosavljević-Mihajlović AS, Kokunešoski M, Matović B. Seeded silicon nitride powders obtained by carbothermal reduction—nitridation of diatomite and various sources of carbon. in Journal of the Australian Ceramic Society. 2023;59:823-835.
doi:10.1007/s41779-023-00876-w .
Šaponjić, Aleksandra, Ilić, Svetlana, Barudžija, Tanja, Radosavljević-Mihajlović, Ana S., Kokunešoski, Maja, Matović, Branko, "Seeded silicon nitride powders obtained by carbothermal reduction—nitridation of diatomite and various sources of carbon" in Journal of the Australian Ceramic Society, 59 (2023):823-835,
https://doi.org/10.1007/s41779-023-00876-w . .

Novel basalt-stainless steel composite materials with improved fracture toughness

Pavkov, Vladimir; Bakić, Gordana; Maksimović, Vesna; Cvijović-Alagić, Ivana; Bučevac, Dušan; Matović, Branko

(2023)

TY  - JOUR
AU  - Pavkov, Vladimir
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Cvijović-Alagić, Ivana
AU  - Bučevac, Dušan
AU  - Matović, Branko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11323
AB  - This paper presents the technological process for obtaining basalt-stainless steel composite materials and testing their physical and mechanical properties. The phases of the technological process consist of: milling, homogenization, pressing, and sintering to obtain composite materials with improved fracture toughness. Andesite basalt from the deposit site "Donje Jarinje", Serbia, was used as a matrix in the composites, while commercial austenitic stainless steel 316L in the amount of 0-30 wt.% was used as a reinforcement. Although the increase of 316L amount caused a continuous decrease in the relative density of sintered samples, the relative density of sample containing 30 wt.% of 316L was above 94%. The 316L grains, which possess a larger coefficient of thermal expansion than the basalt matrix, shrinking faster during cooling from sintering temperature resulting in the formation of compressive residual stress in the basalt matrix surrounding the spherical steel grains. The presence of this stress activated toughening mechanisms such as crack deflection and toughening due to compressive residual stress. The addition of 20 wt.% of reinforcing 316L particles increased the fracture toughness of basalt by more than 30%. The relative density of these samples was measured to be 97%, whereas macrohardness was found to be 6.2 GPa.
T2  - Science of Sintering
T1  - Novel basalt-stainless steel composite materials with improved fracture toughness
VL  - 55
IS  - 2
SP  - 145
EP  - 158
DO  - 10.2298/SOS220429002P
ER  - 
@article{
author = "Pavkov, Vladimir and Bakić, Gordana and Maksimović, Vesna and Cvijović-Alagić, Ivana and Bučevac, Dušan and Matović, Branko",
year = "2023",
abstract = "This paper presents the technological process for obtaining basalt-stainless steel composite materials and testing their physical and mechanical properties. The phases of the technological process consist of: milling, homogenization, pressing, and sintering to obtain composite materials with improved fracture toughness. Andesite basalt from the deposit site "Donje Jarinje", Serbia, was used as a matrix in the composites, while commercial austenitic stainless steel 316L in the amount of 0-30 wt.% was used as a reinforcement. Although the increase of 316L amount caused a continuous decrease in the relative density of sintered samples, the relative density of sample containing 30 wt.% of 316L was above 94%. The 316L grains, which possess a larger coefficient of thermal expansion than the basalt matrix, shrinking faster during cooling from sintering temperature resulting in the formation of compressive residual stress in the basalt matrix surrounding the spherical steel grains. The presence of this stress activated toughening mechanisms such as crack deflection and toughening due to compressive residual stress. The addition of 20 wt.% of reinforcing 316L particles increased the fracture toughness of basalt by more than 30%. The relative density of these samples was measured to be 97%, whereas macrohardness was found to be 6.2 GPa.",
journal = "Science of Sintering",
title = "Novel basalt-stainless steel composite materials with improved fracture toughness",
volume = "55",
number = "2",
pages = "145-158",
doi = "10.2298/SOS220429002P"
}
Pavkov, V., Bakić, G., Maksimović, V., Cvijović-Alagić, I., Bučevac, D.,& Matović, B.. (2023). Novel basalt-stainless steel composite materials with improved fracture toughness. in Science of Sintering, 55(2), 145-158.
https://doi.org/10.2298/SOS220429002P
Pavkov V, Bakić G, Maksimović V, Cvijović-Alagić I, Bučevac D, Matović B. Novel basalt-stainless steel composite materials with improved fracture toughness. in Science of Sintering. 2023;55(2):145-158.
doi:10.2298/SOS220429002P .
Pavkov, Vladimir, Bakić, Gordana, Maksimović, Vesna, Cvijović-Alagić, Ivana, Bučevac, Dušan, Matović, Branko, "Novel basalt-stainless steel composite materials with improved fracture toughness" in Science of Sintering, 55, no. 2 (2023):145-158,
https://doi.org/10.2298/SOS220429002P . .