Meng, Xiangyu

Link to this page

Authority KeyName Variants
939a701e-371e-4593-84a0-22379bb0d2bb
  • Meng, Xiangyu (1)
Projects

Author's Bibliography

Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation

Wu, Zhen; Yao, Jing; Zhu, Pengfei; Yang, Fusheng; Meng, Xiangyu; Kurko, Sandra V.; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Wu, Zhen
AU  - Yao, Jing
AU  - Zhu, Pengfei
AU  - Yang, Fusheng
AU  - Meng, Xiangyu
AU  - Kurko, Sandra V.
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9074
AB  - Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).
T2  - International Journal of Hydrogen Energy
T1  - Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation
VL  - 46
IS  - 19
SP  - 11183
EP  - 11198
DO  - 10.1016/j.ijhydene.2020.02.111
ER  - 
@article{
author = "Wu, Zhen and Yao, Jing and Zhu, Pengfei and Yang, Fusheng and Meng, Xiangyu and Kurko, Sandra V. and Zhang, Zaoxiao",
year = "2021",
abstract = "Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).",
journal = "International Journal of Hydrogen Energy",
title = "Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation",
volume = "46",
number = "19",
pages = "11183-11198",
doi = "10.1016/j.ijhydene.2020.02.111"
}
Wu, Z., Yao, J., Zhu, P., Yang, F., Meng, X., Kurko, S. V.,& Zhang, Z.. (2021). Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation. in International Journal of Hydrogen Energy, 46(19), 11183-11198.
https://doi.org/10.1016/j.ijhydene.2020.02.111
Wu Z, Yao J, Zhu P, Yang F, Meng X, Kurko SV, Zhang Z. Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation. in International Journal of Hydrogen Energy. 2021;46(19):11183-11198.
doi:10.1016/j.ijhydene.2020.02.111 .
Wu, Zhen, Yao, Jing, Zhu, Pengfei, Yang, Fusheng, Meng, Xiangyu, Kurko, Sandra V., Zhang, Zaoxiao, "Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation" in International Journal of Hydrogen Energy, 46, no. 19 (2021):11183-11198,
https://doi.org/10.1016/j.ijhydene.2020.02.111 . .
6
3
4