Chia-Ho, Hsin

Link to this page

Authority KeyName Variants
907ee147-6d0f-4565-94e5-30e516efd8cb
  • Chia-Ho, Hsin (2)
Projects
No records found.

Author's Bibliography

PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate

Petković, Darija; Chia-Ho, Hsin; Trstenjak, Urška; Kovač, Janez; Vengust, Damjan; Spreitzer, Matjaž; Jovanović, Zoran

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Petković, Darija
AU  - Chia-Ho, Hsin
AU  - Trstenjak, Urška
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Spreitzer, Matjaž
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12327
AB  - Epitaxy represents a process of crystal growth or material deposition in which the new created layers have a high degree of crystallographic alignment with the substrate lattice. In this research 10 nm-thick thin films of strontium titanate (STO) were grown using pulsed laser deposition (PLD) method on Si(001) whose surface was either deoxidized with strontium oxide (SrO) or buffered by reduced graphene oxide (rGO) in combination with SrO deoxidation. In addition to differently prepared Si(001) surface, the effect of deposition temperature on the crystalline structure of the STO thin films was also examined. Reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray reflectivity (XRR) and X-ray photoelectron spectroscopy (XPS) methods were used to examine the properties of the grown films. It was concluded that the STO thin film grown on the rGO-coated Si substrate at 515 °C shows the highest crystallinity with a smooth surface, while the film deposited on the bare silicon has amorphous structure. The STO films grown at 700 °C show textured or polycrystalline structure. Good crystallinity, epitaxial alignment, and clean interface are the major requirements for STO/Si and the STO/rGO/Si heterostructure for making an efficient and stable Si photocathode for the photoelectrochemical (PEC) water splitting. Our future work will be directed toward understanding how the obtained interfaces and crystalline structure of STO films are influencing the PEC process.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
T1  - PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate
SP  - 60
EP  - 60
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12327
ER  - 
@conference{
author = "Petković, Darija and Chia-Ho, Hsin and Trstenjak, Urška and Kovač, Janez and Vengust, Damjan and Spreitzer, Matjaž and Jovanović, Zoran",
year = "2023",
abstract = "Epitaxy represents a process of crystal growth or material deposition in which the new created layers have a high degree of crystallographic alignment with the substrate lattice. In this research 10 nm-thick thin films of strontium titanate (STO) were grown using pulsed laser deposition (PLD) method on Si(001) whose surface was either deoxidized with strontium oxide (SrO) or buffered by reduced graphene oxide (rGO) in combination with SrO deoxidation. In addition to differently prepared Si(001) surface, the effect of deposition temperature on the crystalline structure of the STO thin films was also examined. Reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray reflectivity (XRR) and X-ray photoelectron spectroscopy (XPS) methods were used to examine the properties of the grown films. It was concluded that the STO thin film grown on the rGO-coated Si substrate at 515 °C shows the highest crystallinity with a smooth surface, while the film deposited on the bare silicon has amorphous structure. The STO films grown at 700 °C show textured or polycrystalline structure. Good crystallinity, epitaxial alignment, and clean interface are the major requirements for STO/Si and the STO/rGO/Si heterostructure for making an efficient and stable Si photocathode for the photoelectrochemical (PEC) water splitting. Our future work will be directed toward understanding how the obtained interfaces and crystalline structure of STO films are influencing the PEC process.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts",
title = "PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate",
pages = "60-60",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12327"
}
Petković, D., Chia-Ho, H., Trstenjak, U., Kovač, J., Vengust, D., Spreitzer, M.,& Jovanović, Z.. (2023). PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
Belgrade : Institute of Technical Sciences of SASA., 60-60.
https://hdl.handle.net/21.15107/rcub_vinar_12327
Petković D, Chia-Ho H, Trstenjak U, Kovač J, Vengust D, Spreitzer M, Jovanović Z. PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts. 2023;:60-60.
https://hdl.handle.net/21.15107/rcub_vinar_12327 .
Petković, Darija, Chia-Ho, Hsin, Trstenjak, Urška, Kovač, Janez, Vengust, Damjan, Spreitzer, Matjaž, Jovanović, Zoran, "PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate" in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts (2023):60-60,
https://hdl.handle.net/21.15107/rcub_vinar_12327 .

PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting

Petković, Darija; Chia-Ho, Hsin; Trstenjak, Urška; Kovač, Janez; Vengust, Damjan; Jovanović, Zoran; Spreitzer, Matjaž

(EU COST Action OPERA, 2023)

TY  - CONF
AU  - Petković, Darija
AU  - Chia-Ho, Hsin
AU  - Trstenjak, Urška
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Jovanović, Zoran
AU  - Spreitzer, Matjaž
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12333
AB  - Epitaxial films of metal oxides deposited on silicon substrates represent a new type of material that could be used as protective (or electroactive) layer in the photoelectrochemical water splitting. To understand the influence of crystalline and interfacial properties of oxide layer on the water splitting process a ~10 nm strontium titanate (STO) films have been grown using the PLD method on bare and reduced graphene oxide (rGO) buffered silicon substrate. Our approach relied on the oxide-silicon integration using combination of SrO-assisted deoxidation and controllable coverage of silicon surface with a mono- to threelayer of spin-coated GO. The STO films have been grown at 515 and 700 °C and various experimental techniques were used to examine the surface and crystalline properties of grown films (reflection high energy electron diffraction, atomic force microscopy, scanning electron microscopy, X-ray diffraction, X-ray reflectivity and X-ray photoelectron spectroscopy). The results show that the best the crystallinity of the STO thin films was obtained on rGO/SrO deoxidized silicon surface at 515 °C. Future studies will be devoted to electrochemical characterization of the grown films, that will help to establish clearer link on how the interface and crystalline parameters affect the water splitting process.
PB  - EU COST Action OPERA
C3  - Workshop “Application-oriented material development” : Book of abstracts
T1  - PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12333
ER  - 
@conference{
author = "Petković, Darija and Chia-Ho, Hsin and Trstenjak, Urška and Kovač, Janez and Vengust, Damjan and Jovanović, Zoran and Spreitzer, Matjaž",
year = "2023",
abstract = "Epitaxial films of metal oxides deposited on silicon substrates represent a new type of material that could be used as protective (or electroactive) layer in the photoelectrochemical water splitting. To understand the influence of crystalline and interfacial properties of oxide layer on the water splitting process a ~10 nm strontium titanate (STO) films have been grown using the PLD method on bare and reduced graphene oxide (rGO) buffered silicon substrate. Our approach relied on the oxide-silicon integration using combination of SrO-assisted deoxidation and controllable coverage of silicon surface with a mono- to threelayer of spin-coated GO. The STO films have been grown at 515 and 700 °C and various experimental techniques were used to examine the surface and crystalline properties of grown films (reflection high energy electron diffraction, atomic force microscopy, scanning electron microscopy, X-ray diffraction, X-ray reflectivity and X-ray photoelectron spectroscopy). The results show that the best the crystallinity of the STO thin films was obtained on rGO/SrO deoxidized silicon surface at 515 °C. Future studies will be devoted to electrochemical characterization of the grown films, that will help to establish clearer link on how the interface and crystalline parameters affect the water splitting process.",
publisher = "EU COST Action OPERA",
journal = "Workshop “Application-oriented material development” : Book of abstracts",
title = "PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12333"
}
Petković, D., Chia-Ho, H., Trstenjak, U., Kovač, J., Vengust, D., Jovanović, Z.,& Spreitzer, M.. (2023). PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting. in Workshop “Application-oriented material development” : Book of abstracts
EU COST Action OPERA..
https://hdl.handle.net/21.15107/rcub_vinar_12333
Petković D, Chia-Ho H, Trstenjak U, Kovač J, Vengust D, Jovanović Z, Spreitzer M. PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting. in Workshop “Application-oriented material development” : Book of abstracts. 2023;.
https://hdl.handle.net/21.15107/rcub_vinar_12333 .
Petković, Darija, Chia-Ho, Hsin, Trstenjak, Urška, Kovač, Janez, Vengust, Damjan, Jovanović, Zoran, Spreitzer, Matjaž, "PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting" in Workshop “Application-oriented material development” : Book of abstracts (2023),
https://hdl.handle.net/21.15107/rcub_vinar_12333 .