Ilić-Tomić, Tatjana

Link to this page

Authority KeyName Variants
91389879-ab1e-4837-9fd6-2fb813f7e45f
  • Ilić-Tomić, Tatjana (3)
  • Ilić‐Tomić, Tatjana (1)
Projects

Author's Bibliography

Antimicrobial and UV protective chitosan/lignin multilayer nanocoating with immobilized silver nanoparticles

Marković, Darka; Petkovska, Jovana; Mladenović, Nina; Radoičić, Marija B.; Rodriguez-Melendez, Danixa; Ilić-Tomić, Tatjana; Radetić, Maja M.; Grunlan, Jaime; Jordanov, Igor

(2023)

TY  - JOUR
AU  - Marković, Darka
AU  - Petkovska, Jovana
AU  - Mladenović, Nina
AU  - Radoičić, Marija B.
AU  - Rodriguez-Melendez, Danixa
AU  - Ilić-Tomić, Tatjana
AU  - Radetić, Maja M.
AU  - Grunlan, Jaime
AU  - Jordanov, Igor
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10753
AB  - Poor antimicrobial activity and lack of protection against UV irradiation are weaknesses of cottontextiles. In an attempt to impart superior antimicrobial and UV-protective properties to cotton, layer-by-layer deposition of chitosan and magnesium lignosulfonate, and in situ synthesis of silver (Ag)nanoparticles (NPs), was performed. Lignin, in a chitosan/lignin multilayer, simultaneously acts as a UVprotective macromolecule and natural reducing and stabilizing agent, allowing formation of Ag NPs. Fourbilayers of this coating is sufficient for fabrication of a chitosan/lignin/Ag-NP textile nanocompositetreatment with 50+ UV protection. 100% reduction of Gram-negative bacteria Escherichia coli, gram-positive bacteria Staphylococcus aureus, and yeast Candida albicans can be achieved with a 12-bilayercoating, when 20 mM silver nitrate solution and sodium borohydride are applied. On the other hand,four bilayers impregnated with Ag NPs, using 10 mM silver nitrate solution, provides sufficientantimicrobial activity independent of an added reducing agent. This treatment exhibits no inhibition ofhuman keratinocyte cells growth on the skin, indicating low cytotoxicity.
T2  - Journal of Applied Polymer Science
T1  - Antimicrobial and UV protective chitosan/lignin multilayer nanocoating with immobilized silver nanoparticles
VL  - 140
IS  - 19
SP  - e53823
DO  - 10.1002/app.53823
ER  - 
@article{
author = "Marković, Darka and Petkovska, Jovana and Mladenović, Nina and Radoičić, Marija B. and Rodriguez-Melendez, Danixa and Ilić-Tomić, Tatjana and Radetić, Maja M. and Grunlan, Jaime and Jordanov, Igor",
year = "2023",
abstract = "Poor antimicrobial activity and lack of protection against UV irradiation are weaknesses of cottontextiles. In an attempt to impart superior antimicrobial and UV-protective properties to cotton, layer-by-layer deposition of chitosan and magnesium lignosulfonate, and in situ synthesis of silver (Ag)nanoparticles (NPs), was performed. Lignin, in a chitosan/lignin multilayer, simultaneously acts as a UVprotective macromolecule and natural reducing and stabilizing agent, allowing formation of Ag NPs. Fourbilayers of this coating is sufficient for fabrication of a chitosan/lignin/Ag-NP textile nanocompositetreatment with 50+ UV protection. 100% reduction of Gram-negative bacteria Escherichia coli, gram-positive bacteria Staphylococcus aureus, and yeast Candida albicans can be achieved with a 12-bilayercoating, when 20 mM silver nitrate solution and sodium borohydride are applied. On the other hand,four bilayers impregnated with Ag NPs, using 10 mM silver nitrate solution, provides sufficientantimicrobial activity independent of an added reducing agent. This treatment exhibits no inhibition ofhuman keratinocyte cells growth on the skin, indicating low cytotoxicity.",
journal = "Journal of Applied Polymer Science",
title = "Antimicrobial and UV protective chitosan/lignin multilayer nanocoating with immobilized silver nanoparticles",
volume = "140",
number = "19",
pages = "e53823",
doi = "10.1002/app.53823"
}
Marković, D., Petkovska, J., Mladenović, N., Radoičić, M. B., Rodriguez-Melendez, D., Ilić-Tomić, T., Radetić, M. M., Grunlan, J.,& Jordanov, I.. (2023). Antimicrobial and UV protective chitosan/lignin multilayer nanocoating with immobilized silver nanoparticles. in Journal of Applied Polymer Science, 140(19), e53823.
https://doi.org/10.1002/app.53823
Marković D, Petkovska J, Mladenović N, Radoičić MB, Rodriguez-Melendez D, Ilić-Tomić T, Radetić MM, Grunlan J, Jordanov I. Antimicrobial and UV protective chitosan/lignin multilayer nanocoating with immobilized silver nanoparticles. in Journal of Applied Polymer Science. 2023;140(19):e53823.
doi:10.1002/app.53823 .
Marković, Darka, Petkovska, Jovana, Mladenović, Nina, Radoičić, Marija B., Rodriguez-Melendez, Danixa, Ilić-Tomić, Tatjana, Radetić, Maja M., Grunlan, Jaime, Jordanov, Igor, "Antimicrobial and UV protective chitosan/lignin multilayer nanocoating with immobilized silver nanoparticles" in Journal of Applied Polymer Science, 140, no. 19 (2023):e53823,
https://doi.org/10.1002/app.53823 . .
3
3

Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract

Krkobabić, Ana; Marković, Darka; Kovačević, Aleksandar; Tadić, Vanja; Radoičić, Marija B.; Barudžija, Tanja; Ilić-Tomić, Tatjana; Radetić, Maja M.

(2022)

TY  - JOUR
AU  - Krkobabić, Ana
AU  - Marković, Darka
AU  - Kovačević, Aleksandar
AU  - Tadić, Vanja
AU  - Radoičić, Marija B.
AU  - Barudžija, Tanja
AU  - Ilić-Tomić, Tatjana
AU  - Radetić, Maja M.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10256
AB  - The aim of this study was to develop antimicrobial nanocomposite textile material comprising of Cu-based nanostructures synthesized on oxidized cotton fabric using Arctostaphylos uva-ursi (L.) Spreng., Ericaceae (bearberry leaves) as a green reducing agent for adsorbed Cu2+-ions. In order to provide sufficient number of carboxyl groups for complexation with Cu2+-ions a two-step oxidation process with NaIO4 and NaClO2 was carried out. The influence of NaIO4 concentration on content of carboxyl groups and Cu-based nanoparticles was studied by FTIR and AAS. HPLC analysis identified the gallic acid known as a reducing agent in bearberry leaves extract. FESEM and XRD analyses revealed that using bearberry leaves extract and gallic acid solution as reducing agents led to a formation of spherical Cu2O/CuO nanoparticles and CuO nanosheets, respectively. These nanoparticles and nanosheets provided excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. Cytotoxicity on human keratinocyte cells was shown to depend on their copper content.
T2  - Fibers and Polymers
T1  - Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract
VL  - 23
IS  - 4
SP  - 954
EP  - 966
DO  - 10.1007/s12221-022-4639-5
ER  - 
@article{
author = "Krkobabić, Ana and Marković, Darka and Kovačević, Aleksandar and Tadić, Vanja and Radoičić, Marija B. and Barudžija, Tanja and Ilić-Tomić, Tatjana and Radetić, Maja M.",
year = "2022",
abstract = "The aim of this study was to develop antimicrobial nanocomposite textile material comprising of Cu-based nanostructures synthesized on oxidized cotton fabric using Arctostaphylos uva-ursi (L.) Spreng., Ericaceae (bearberry leaves) as a green reducing agent for adsorbed Cu2+-ions. In order to provide sufficient number of carboxyl groups for complexation with Cu2+-ions a two-step oxidation process with NaIO4 and NaClO2 was carried out. The influence of NaIO4 concentration on content of carboxyl groups and Cu-based nanoparticles was studied by FTIR and AAS. HPLC analysis identified the gallic acid known as a reducing agent in bearberry leaves extract. FESEM and XRD analyses revealed that using bearberry leaves extract and gallic acid solution as reducing agents led to a formation of spherical Cu2O/CuO nanoparticles and CuO nanosheets, respectively. These nanoparticles and nanosheets provided excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. Cytotoxicity on human keratinocyte cells was shown to depend on their copper content.",
journal = "Fibers and Polymers",
title = "Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract",
volume = "23",
number = "4",
pages = "954-966",
doi = "10.1007/s12221-022-4639-5"
}
Krkobabić, A., Marković, D., Kovačević, A., Tadić, V., Radoičić, M. B., Barudžija, T., Ilić-Tomić, T.,& Radetić, M. M.. (2022). Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract. in Fibers and Polymers, 23(4), 954-966.
https://doi.org/10.1007/s12221-022-4639-5
Krkobabić A, Marković D, Kovačević A, Tadić V, Radoičić MB, Barudžija T, Ilić-Tomić T, Radetić MM. Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract. in Fibers and Polymers. 2022;23(4):954-966.
doi:10.1007/s12221-022-4639-5 .
Krkobabić, Ana, Marković, Darka, Kovačević, Aleksandar, Tadić, Vanja, Radoičić, Marija B., Barudžija, Tanja, Ilić-Tomić, Tatjana, Radetić, Maja M., "Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract" in Fibers and Polymers, 23, no. 4 (2022):954-966,
https://doi.org/10.1007/s12221-022-4639-5 . .
3
1
3

The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions

Marković, Darka; Vasiljević, Jelena; Ašanin, Jelena; Ilić‐Tomić, Tatjana; Tomšič, Brigita; Jokić, Bojan M.; Mitrić, Miodrag; Simončič, Barbara; Mišić, Dušan; Radetić, Maja M.

(2020)

TY  - JOUR
AU  - Marković, Darka
AU  - Vasiljević, Jelena
AU  - Ašanin, Jelena
AU  - Ilić‐Tomić, Tatjana
AU  - Tomšič, Brigita
AU  - Jokić, Bojan M.
AU  - Mitrić, Miodrag
AU  - Simončič, Barbara
AU  - Mišić, Dušan
AU  - Radetić, Maja M.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8844
AB  - A novel impregnation process for the fabrication of cotton nanocomposite with strong antimicrobial activity against antibiotics-resistant bacteria and yeast was developed. The impregnation process includes the sol–gel treatment of fabric with (3-aminopropyl)triethoxysilane in the first step, and synthesis of the CuO/Cu2O nanoparticles (NPs) on the fabric surface in the second step. The in situ synthesis of the CuO/Cu2O NPs was based on the adsorption of Cu2+-ions by the introduced amino groups of the sol–gel coating. The adsorbed Cu2+-ions are subsequently reduced in the alkaline solution of NaBH4. X-ray diffraction measurements confirmed the formation of CuO/Cu2O NPs. Scanning electron microscopy and atomic absorption spectrometry analyses indicate that the particle size, agglomeration, and amounts of synthesized NPs were highly affected by the initial concentration of CuSO4 solution. The toxicity of nanocomposites to human keratinocytes (HaCaT) and antimicrobial activity against Gram-negative Escherichia coli ATCC 25922, E. coli ATCC BAA 2469, and Klebsiella pneumoniae ATCC BAA 2146, and Gram-positive bacteria Staphylococcus aureus ATCC 25923, S. aureus ATCC 43300 and yeast Candida albicans ATCC 24433 strongly depended on the copper content. In addition to excellent antimicrobial activity, controlled release of Cu2+-ions from the fabrics into physiological saline solution was obtained. © 2020 Wiley Periodicals, Inc.
T2  - Journal of Applied Polymer Science
T1  - The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions
VL  - 137
IS  - 40
SP  - 49194
DO  - 10.1002/app.49194
ER  - 
@article{
author = "Marković, Darka and Vasiljević, Jelena and Ašanin, Jelena and Ilić‐Tomić, Tatjana and Tomšič, Brigita and Jokić, Bojan M. and Mitrić, Miodrag and Simončič, Barbara and Mišić, Dušan and Radetić, Maja M.",
year = "2020",
abstract = "A novel impregnation process for the fabrication of cotton nanocomposite with strong antimicrobial activity against antibiotics-resistant bacteria and yeast was developed. The impregnation process includes the sol–gel treatment of fabric with (3-aminopropyl)triethoxysilane in the first step, and synthesis of the CuO/Cu2O nanoparticles (NPs) on the fabric surface in the second step. The in situ synthesis of the CuO/Cu2O NPs was based on the adsorption of Cu2+-ions by the introduced amino groups of the sol–gel coating. The adsorbed Cu2+-ions are subsequently reduced in the alkaline solution of NaBH4. X-ray diffraction measurements confirmed the formation of CuO/Cu2O NPs. Scanning electron microscopy and atomic absorption spectrometry analyses indicate that the particle size, agglomeration, and amounts of synthesized NPs were highly affected by the initial concentration of CuSO4 solution. The toxicity of nanocomposites to human keratinocytes (HaCaT) and antimicrobial activity against Gram-negative Escherichia coli ATCC 25922, E. coli ATCC BAA 2469, and Klebsiella pneumoniae ATCC BAA 2146, and Gram-positive bacteria Staphylococcus aureus ATCC 25923, S. aureus ATCC 43300 and yeast Candida albicans ATCC 24433 strongly depended on the copper content. In addition to excellent antimicrobial activity, controlled release of Cu2+-ions from the fabrics into physiological saline solution was obtained. © 2020 Wiley Periodicals, Inc.",
journal = "Journal of Applied Polymer Science",
title = "The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions",
volume = "137",
number = "40",
pages = "49194",
doi = "10.1002/app.49194"
}
Marković, D., Vasiljević, J., Ašanin, J., Ilić‐Tomić, T., Tomšič, B., Jokić, B. M., Mitrić, M., Simončič, B., Mišić, D.,& Radetić, M. M.. (2020). The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. in Journal of Applied Polymer Science, 137(40), 49194.
https://doi.org/10.1002/app.49194
Marković D, Vasiljević J, Ašanin J, Ilić‐Tomić T, Tomšič B, Jokić BM, Mitrić M, Simončič B, Mišić D, Radetić MM. The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. in Journal of Applied Polymer Science. 2020;137(40):49194.
doi:10.1002/app.49194 .
Marković, Darka, Vasiljević, Jelena, Ašanin, Jelena, Ilić‐Tomić, Tatjana, Tomšič, Brigita, Jokić, Bojan M., Mitrić, Miodrag, Simončič, Barbara, Mišić, Dušan, Radetić, Maja M., "The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions" in Journal of Applied Polymer Science, 137, no. 40 (2020):49194,
https://doi.org/10.1002/app.49194 . .
3
19
4
18

Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles

Marković, Darka; Tseng, Hsiang-Han; Nunney, Tim; Radoičić, Marija B.; Ilić-Tomić, Tatjana; Radetić, Maja M.

(2020)

TY  - JOUR
AU  - Marković, Darka
AU  - Tseng, Hsiang-Han
AU  - Nunney, Tim
AU  - Radoičić, Marija B.
AU  - Ilić-Tomić, Tatjana
AU  - Radetić, Maja M.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9029
AB  - The objective of this study was to develop novel antimicrobial nanocomposite material based on polypropylene (PP) non-woven fabric, biopolymer alginate and copper oxides nanoparticles. In order to introduce polar groups onto the surface of PP fibers necessary for binding of alginate, non-woven fabric was activated by corona discharge. Carboxylate groups of alginate were further utilized for binding of Cu2+-ions which were reduced with sodium borohydride as a conventional and ascorbic acid as a green reducing agent. Characteristic morphological and chemical changes induced by corona activation and alginate impregnation were confirmed by FTIR, XPS and FESEM analyses. AAS measurements showed that the amounts of generated nanoparticles depend on applied reducing agent and the concentration of precursor salt. XPS analysis suggested that nanoparticles were mixture of copper (I) and (II) oxides. XPS depth profiling gave an exceptional insight into chemical changes within the thin layer on the fiber surface and formation of certain interfaces induced by each treatment. All fabricated nanocomposites provided excellent antimicrobial activity against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. The cytotoxicity assay indicated that maximum amount of Cu2+-ions released from synthetized nanocomposite within 24 h was not cytotoxic to human keratinocyte (HaCaT) cells.
T2  - Applied Surface Science
T1  - Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles
VL  - 527
SP  - 146829
DO  - 10.1016/j.apsusc.2020.146829
ER  - 
@article{
author = "Marković, Darka and Tseng, Hsiang-Han and Nunney, Tim and Radoičić, Marija B. and Ilić-Tomić, Tatjana and Radetić, Maja M.",
year = "2020",
abstract = "The objective of this study was to develop novel antimicrobial nanocomposite material based on polypropylene (PP) non-woven fabric, biopolymer alginate and copper oxides nanoparticles. In order to introduce polar groups onto the surface of PP fibers necessary for binding of alginate, non-woven fabric was activated by corona discharge. Carboxylate groups of alginate were further utilized for binding of Cu2+-ions which were reduced with sodium borohydride as a conventional and ascorbic acid as a green reducing agent. Characteristic morphological and chemical changes induced by corona activation and alginate impregnation were confirmed by FTIR, XPS and FESEM analyses. AAS measurements showed that the amounts of generated nanoparticles depend on applied reducing agent and the concentration of precursor salt. XPS analysis suggested that nanoparticles were mixture of copper (I) and (II) oxides. XPS depth profiling gave an exceptional insight into chemical changes within the thin layer on the fiber surface and formation of certain interfaces induced by each treatment. All fabricated nanocomposites provided excellent antimicrobial activity against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. The cytotoxicity assay indicated that maximum amount of Cu2+-ions released from synthetized nanocomposite within 24 h was not cytotoxic to human keratinocyte (HaCaT) cells.",
journal = "Applied Surface Science",
title = "Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles",
volume = "527",
pages = "146829",
doi = "10.1016/j.apsusc.2020.146829"
}
Marković, D., Tseng, H., Nunney, T., Radoičić, M. B., Ilić-Tomić, T.,& Radetić, M. M.. (2020). Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles. in Applied Surface Science, 527, 146829.
https://doi.org/10.1016/j.apsusc.2020.146829
Marković D, Tseng H, Nunney T, Radoičić MB, Ilić-Tomić T, Radetić MM. Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles. in Applied Surface Science. 2020;527:146829.
doi:10.1016/j.apsusc.2020.146829 .
Marković, Darka, Tseng, Hsiang-Han, Nunney, Tim, Radoičić, Marija B., Ilić-Tomić, Tatjana, Radetić, Maja M., "Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles" in Applied Surface Science, 527 (2020):146829,
https://doi.org/10.1016/j.apsusc.2020.146829 . .
1
56
16
48